destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
feedrate = homing_feedrate[LETTER##_AXIS]; \
prepare_move(); \
- st_synchronize();\
\
current_position[LETTER##_AXIS] = 0;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
prepare_move(); \
- st_synchronize();\
\
destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
prepare_move(); \
- st_synchronize();\
\
current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
feedrate = 0.0;\
st_synchronize();\
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
endstops_hit_on_purpose();\
}
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
- case 105: // M105
+ case 105 : // M105
//SERIAL_ECHOLN(freeMemory());
//test watchdog:
//delay(20000);
axis_relative_modes[3] = true;
break;
case 18: //compatibility
- case 84:
+ case 84: // M84
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
- #ifdef DEBUG_STEPS
- SERIAL_PROTOCOLPGM(" Count X:");
- SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
- SERIAL_PROTOCOLPGM("Y:");
- SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
- SERIAL_PROTOCOLPGM("Z:");
- SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
- #endif
+
+ SERIAL_PROTOCOLPGM(" Count X:");
+ SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
+ SERIAL_PROTOCOLPGM("Y:");
+ SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
+ SERIAL_PROTOCOLPGM("Z:");
+ SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
+
SERIAL_PROTOCOLLN("");
break;
case 119: // M119
volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone;
-static volatile bool endstops_hit=false;
+static volatile bool endstop_x_hit=false;
+static volatile bool endstop_y_hit=false;
+static volatile bool endstop_z_hit=false;
-// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
-// for debugging purposes only, should be disabled by default
-#ifdef DEBUG_STEPS
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
- volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
-#endif
+volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
+volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
//===========================================================================
//=============================functions ============================
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
-
-inline void endstops_triggered(const unsigned long &stepstaken)
-{
- //this will only work if there is no bufferig
- //however, if you perform a move at which the endstops should be triggered, and wait for it to complete, i.e. by blocking command, it should work
- //yes, it uses floats, but: if endstops are triggered, thats hopefully not critical anymore anyways.
- //endstops_triggerpos;
-
- if(endstops_hit) //hitting a second time while the first hit is not reported
- return;
- if(current_block == NULL)
- return;
- endstops_stepsTotal=current_block->step_event_count;
- endstops_stepsDone=stepstaken;
- endstops_trigsteps[0]=current_block->steps_x;
- endstops_trigsteps[1]=current_block->steps_y;
- endstops_trigsteps[2]=current_block->steps_z;
-
- endstops_hit=true;
-}
-
void checkHitEndstops()
{
- if( !endstops_hit)
- return;
- float endstops_triggerpos[3]={0,0,0};
- float ratiodone=endstops_stepsDone/float(endstops_stepsTotal); //ratio of current_block thas was performed
-
- endstops_triggerpos[0]=current_position[0]-(endstops_trigsteps[0]*ratiodone)/float(axis_steps_per_unit[0]);
- endstops_triggerpos[1]=current_position[1]-(endstops_trigsteps[1]*ratiodone)/float(axis_steps_per_unit[1]);
- endstops_triggerpos[2]=current_position[2]-(endstops_trigsteps[2]*ratiodone)/float(axis_steps_per_unit[2]);
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM("endstops hit: ");
- SERIAL_ECHOPAIR(" X:",endstops_triggerpos[0]);
- SERIAL_ECHOPAIR(" Y:",endstops_triggerpos[1]);
- SERIAL_ECHOPAIR(" Z:",endstops_triggerpos[2]);
- SERIAL_ECHOLN("");
- endstops_hit=false;
+ if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
+ SERIAL_ECHO_START;
+ SERIAL_ECHOPGM("endstops hit: ");
+ if(endstop_x_hit) {
+ SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
+ }
+ if(endstop_y_hit) {
+ SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
+ }
+ if(endstop_z_hit) {
+ SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
+ }
+ SERIAL_ECHOLN("");
+ endstop_x_hit=false;
+ endstop_y_hit=false;
+ endstop_z_hit=false;
+ }
}
void endstops_hit_on_purpose()
{
- endstops_hit=false;
+ endstop_x_hit=false;
+ endstop_y_hit=false;
+ endstop_z_hit=false;
}
// __________________________
// Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR);
- #ifdef DEBUG_STEPS
- count_direction[X_AXIS]=-1;
- #endif
+ count_direction[X_AXIS]=-1;
#if X_MIN_PIN > -1
- if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
- // endstops_triggered(step_events_completed);
+ if((READ(X_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)) {
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
- #ifdef DEBUG_STEPS
- count_direction[X_AXIS]=1;
- #endif
+ count_direction[X_AXIS]=1;
#if X_MAX_PIN > -1
- if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
- // endstops_triggered(step_events_completed);
+ if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)){
+ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
+ endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Y_AXIS]=-1;
- #endif
+ count_direction[Y_AXIS]=-1;
#if Y_MIN_PIN > -1
- if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
-// endstops_triggered(step_events_completed);
+ if((READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)) {
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
- #ifdef DEBUG_STEPS
- count_direction[Y_AXIS]=1;
- #endif
+ count_direction[Y_AXIS]=1;
#if Y_MAX_PIN > -1
- if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
- // endstops_triggered(step_events_completed);
+ if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)){
+ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
+ endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- #ifdef DEBUG_STEPS
count_direction[Z_AXIS]=-1;
- #endif
#if Z_MIN_PIN > -1
- if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
- // endstops_triggered(step_events_completed);
+ if((READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z > 0)) {
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
- #ifdef DEBUG_STEPS
count_direction[Z_AXIS]=1;
- #endif
#if Z_MAX_PIN > -1
- if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
- // endstops_triggered(step_events_completed);
+ if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z > 0)){
+ endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
+ endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
#endif
}
#ifndef ADVANCE
- if ((out_bits & (1<<E_AXIS)) != 0) // -direction
+ if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
WRITE(E_DIR_PIN,INVERT_E_DIR);
- else // +direction
+ count_direction[E_AXIS]=-1;
+ }
+ else { // +direction
WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ count_direction[E_AXIS]=-1;
+ }
#endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[X_AXIS]+=count_direction[X_AXIS];
- #endif
+ count_position[X_AXIS]+=count_direction[X_AXIS];
}
counter_y += current_block->steps_y;
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[Y_AXIS]+=count_direction[Y_AXIS];
- #endif
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
}
counter_z += current_block->steps_z;
WRITE(Z_STEP_PIN, HIGH);
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
- #ifdef DEBUG_STEPS
- count_position[Z_AXIS]+=count_direction[Z_AXIS];
- #endif
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
}
#ifndef ADVANCE
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
+ count_position[E_AXIS]+=count_direction[E_AXIS];
}
#endif //!ADVANCE
step_events_completed += 1;
LCD_STATUS;
}
}
+
+void st_set_position(const long &x, const long &y, const long &z, const long &e)
+{
+ CRITICAL_SECTION_START;
+ count_position[X_AXIS] = x;
+ count_position[Y_AXIS] = y;
+ count_position[Z_AXIS] = z;
+ count_position[E_AXIS] = e;
+ CRITICAL_SECTION_END;
+}
+
+long st_get_position(char axis)
+{
+ long count_pos;
+ CRITICAL_SECTION_START;
+ count_pos = count_position[axis];
+ CRITICAL_SECTION_END;
+ return count_pos;
+}
-/*\r
- stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors\r
- Part of Grbl\r
-\r
- Copyright (c) 2009-2011 Simen Svale Skogsrud\r
-\r
- Grbl is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
-\r
- Grbl is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
-\r
- You should have received a copy of the GNU General Public License\r
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.\r
-*/\r
-\r
-#ifndef stepper_h\r
-#define stepper_h \r
-\r
-#include "planner.h"\r
-\r
-// Initialize and start the stepper motor subsystem\r
-void st_init();\r
-\r
-// Block until all buffered steps are executed\r
-void st_synchronize();\r
-\r
-// The stepper subsystem goes to sleep when it runs out of things to execute. Call this\r
-// to notify the subsystem that it is time to go to work.\r
-void st_wake_up();\r
-\r
-// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.\r
-// for debugging purposes only, should be disabled by default\r
-#ifdef DEBUG_STEPS\r
- extern volatile long count_position[NUM_AXIS];\r
- extern volatile int count_direction[NUM_AXIS];\r
-#endif\r
- \r
-void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered\r
-void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();\r
-\r
-\r
-\r
-extern block_t *current_block; // A pointer to the block currently being traced\r
-\r
-\r
+/*
+ stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef stepper_h
+#define stepper_h
+
+#include "planner.h"
+
+// Initialize and start the stepper motor subsystem
+void st_init();
+
+// Block until all buffered steps are executed
+void st_synchronize();
+
+// Set current position in steps
+void st_set_position(const long &x, const long &y, const long &z, const long &e);
+
+// Get current position in steps
+long st_get_position(char axis);
+
+// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
+// to notify the subsystem that it is time to go to work.
+void st_wake_up();
+
+
+void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
+void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
+
+
+
+extern block_t *current_block; // A pointer to the block currently being traced
+
+
#endif\r