-#ifndef CONFIGURATION_H
-#define CONFIGURATION_H
-
-//#define DEBUG_STEPS
-
-// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
-
-//// The following define selects which electronics board you have. Please choose the one that matches your setup
-// MEGA/RAMPS up to 1.2 = 3,
-// RAMPS 1.3 = 33
-// Gen6 = 5,
-// Sanguinololu 1.2 and above = 62
-// Ultimaker = 7,
-#define MOTHERBOARD 7
-//#define MOTHERBOARD 5
-
-
-//// Thermistor settings:
-// 1 is 100k thermistor
-// 2 is 200k thermistor
-// 3 is mendel-parts thermistor
-// 4 is 10k thermistor
-// 5 is ParCan supplied 104GT-2 100K
-// 6 is EPCOS 100k
-// 7 is 100k Honeywell thermistor 135-104LAG-J01
-#define THERMISTORHEATER_1 3
-#define THERMISTORHEATER_2 3
-#define THERMISTORBED 3
-
-//#define HEATER_0_USES_THERMISTOR
-//#define HEATER_1_USES_THERMISTOR
-#define HEATER_0_USES_AD595
-//#define HEATER_1_USES_AD595
-
-// Select one of these only to define how the bed temp is read.
-//#define BED_USES_THERMISTOR
-//#define BED_USES_AD595
-
-#define HEATER_CHECK_INTERVAL 50
-#define BED_CHECK_INTERVAL 5000
-
-
-//// Endstop Settings
-#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
-// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
-const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
-// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
-
-// This determines the communication speed of the printer
-#define BAUDRATE 250000
-//#define BAUDRATE 115200
-//#define BAUDRATE 230400
-
-// Comment out (using // at the start of the line) to disable SD support:
-
-// #define ULTRA_LCD //any lcd
-
-#define ULTIPANEL
-#define ULTIPANEL
-#ifdef ULTIPANEL
- //#define NEWPANEL //enable this if you have a click-encoder panel
- #define SDSUPPORT
- #define ULTRA_LCD
- #define LCD_WIDTH 20
-#define LCD_HEIGHT 4
-#else //no panel but just lcd
- #ifdef ULTRA_LCD
- #define LCD_WIDTH 16
- #define LCD_HEIGHT 2
- #endif
-#endif
-
-
-//#define SDSUPPORT // Enable SD Card Support in Hardware Console
-
-
-
-const int dropsegments=5; //everything with this number of steps will be ignored as move
-
-//// ADVANCED SETTINGS - to tweak parameters
-
-#include "thermistortables.h"
-
-// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
-#define X_ENABLE_ON 0
-#define Y_ENABLE_ON 0
-#define Z_ENABLE_ON 0
-#define E_ENABLE_ON 0
-
-// Disables axis when it's not being used.
-#define DISABLE_X false
-#define DISABLE_Y false
-#define DISABLE_Z false
-#define DISABLE_E false
-
-// Inverting axis direction
-#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
-#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
-#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
-#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
-
-//// ENDSTOP SETTINGS:
-// Sets direction of endstops when homing; 1=MAX, -1=MIN
-#define X_HOME_DIR -1
-#define Y_HOME_DIR -1
-#define Z_HOME_DIR -1
-
-#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
-#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
-#define X_MAX_LENGTH 210
-#define Y_MAX_LENGTH 210
-#define Z_MAX_LENGTH 210
-
-//// MOVEMENT SETTINGS
-#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
-//note: on bernhards ultimaker 200 200 12 are working well.
-#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
-//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
-//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
-// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
-#define TRAVELING_AT_MAXSPEED
-#define AXIS_RELATIVE_MODES {false, false, false, false}
-
-#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
-
-// default settings
-
-#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
-#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
-#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
-
-#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
-#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
-
-#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
-#define DEFAULT_MINTRAVELFEEDRATE 10
-
-// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
-#define DEFAULT_MINSEGMENTTIME 20000
-#define DEFAULT_XYJERK 30.0*60
-#define DEFAULT_ZJERK 10.0*60
-
-
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
-//this enables the watchdog interrupt.
-#define USE_WATCHDOG
-//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
-#define RESET_MANUAL
-
-#define WATCHDOG_TIMEOUT 4
-
-
-
-//// Experimental watchdog and minimal temp
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
-// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
-//#define WATCHPERIOD 5000 //5 seconds
-
-// Actual temperature must be close to target for this long before M109 returns success
-//#define TEMP_RESIDENCY_TIME 20 // (seconds)
-//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
-
-//// The minimal temperature defines the temperature below which the heater will not be enabled
-#define HEATER_0_MINTEMP 5
-//#define HEATER_1_MINTEMP 5
-//#define BED_MINTEMP 5
-
-
-// When temperature exceeds max temp, your heater will be switched off.
-// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
-// You should use MINTEMP for thermistor short/failure protection.
-#define HEATER_0_MAXTEMP 275
-//#define_HEATER_1_MAXTEMP 275
-//#define BED_MAXTEMP 150
-
-
-
-
-
-
-
-#define PIDTEMP
-#ifdef PIDTEMP
- /// PID settings:
- // Uncomment the following line to enable PID support.
- //#define SMOOTHING
- //#define SMOOTHFACTOR 5.0
- //float current_raw_average=0;
- #define K1 0.95 //smoothing of the PID
- //#define PID_DEBUG // Sends debug data to the serial port.
- //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
- #define PID_MAX 255 // limits current to nozzle
- #define PID_INTEGRAL_DRIVE_MAX 255
- #define PID_dT 0.1
- //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
-
- #define PID_CRITIAL_GAIN 3000
- #define PID_SWING_AT_CRITIAL 45 //seconds
- #define PIDIADD 5
- /*
- //PID according to Ziegler-Nichols method
- float Kp = 0.6*PID_CRITIAL_GAIN;
- float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
- float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
- */
- //PI according to Ziegler-Nichols method
- #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
- #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
- #define DEFAULT_Kd (0)
-
- #define PID_ADD_EXTRUSION_RATE
- #ifdef PID_ADD_EXTRUSION_RATE
- #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
- #endif
-#endif // PIDTEMP
-
-// extruder advance constant (s2/mm3)
-//
-// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
-//
-// hooke's law says: force = k * distance
-// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
-// so: v ^ 2 is proportional to number of steps we advance the extruder
-//#define ADVANCE
-
-#ifdef ADVANCE
-#define EXTRUDER_ADVANCE_K .3
-
-#define D_FILAMENT 1.7
-#define STEPS_MM_E 65
-#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
-#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
-
-#endif // ADVANCE
-
-// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
-#if defined SDSUPPORT
-// The number of linear motions that can be in the plan at any give time.
- #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
-#else
- #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
-#endif
-
-
-#endif
+#ifndef CONFIGURATION_H\r\r\r
+#define CONFIGURATION_H\r\r\r
+\r\r\r
+//#define DEBUG_STEPS\r\r\r
+\r\r\r
+// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration\r\r\r
+\r\r\r
+//// The following define selects which electronics board you have. Please choose the one that matches your setup\r\r\r
+// MEGA/RAMPS up to 1.2 = 3,\r\r\r
+// RAMPS 1.3 = 33\r\r\r
+// Gen6 = 5,\r\r\r
+// Sanguinololu 1.2 and above = 62\r\r\r
+// Ultimaker = 7,\r\r\r
+#define MOTHERBOARD 7\r\r\r
+//#define MOTHERBOARD 5\r\r\r
+\r\r\r
+\r\r\r
+//// Thermistor settings:\r\r\r
+// 1 is 100k thermistor\r\r\r
+// 2 is 200k thermistor\r\r\r
+// 3 is mendel-parts thermistor\r\r\r
+// 4 is 10k thermistor\r\r\r
+// 5 is ParCan supplied 104GT-2 100K\r\r\r
+// 6 is EPCOS 100k\r\r\r
+// 7 is 100k Honeywell thermistor 135-104LAG-J01\r\r\r
+#define THERMISTORHEATER_1 3\r\r\r
+#define THERMISTORHEATER_2 3\r\r\r
+#define THERMISTORBED 3\r\r\r
+\r\r\r
+//#define HEATER_0_USES_THERMISTOR\r\r\r
+//#define HEATER_1_USES_THERMISTOR\r\r\r
+#define HEATER_0_USES_AD595\r\r\r
+//#define HEATER_1_USES_AD595\r\r\r
+\r\r\r
+// Select one of these only to define how the bed temp is read.\r\r\r
+//#define BED_USES_THERMISTOR\r\r\r
+//#define BED_USES_AD595\r\r\r
+\r\r\r
+#define HEATER_CHECK_INTERVAL 50\r\r\r
+#define BED_CHECK_INTERVAL 5000\r\r\r
+\r\r\r
+\r\r\r
+//// Endstop Settings\r\r\r
+#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors\r\r\r
+// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.\r\r\r
+const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. \r\r\r
+// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false\r\r\r
+\r\r\r
+// This determines the communication speed of the printer\r\r\r
+#define BAUDRATE 250000\r\r\r
+//#define BAUDRATE 115200\r\r\r
+//#define BAUDRATE 230400\r\r\r
+\r\r\r
+// Comment out (using // at the start of the line) to disable SD support:\r\r\r
+\r\r\r
+// #define ULTRA_LCD //any lcd \r\r\r
+\r\r\r
+#define ULTIPANEL\r\r\r
+#define ULTIPANEL\r\r\r
+#ifdef ULTIPANEL\r\r\r
+ //#define NEWPANEL //enable this if you have a click-encoder panel\r\r\r
+ #define SDSUPPORT\r\r\r
+ #define ULTRA_LCD\r\r\r
+ #define LCD_WIDTH 20\r\r\r
+#define LCD_HEIGHT 4\r\r\r
+#else //no panel but just lcd \r\r\r
+ #ifdef ULTRA_LCD\r\r\r
+ #define LCD_WIDTH 16\r\r\r
+ #define LCD_HEIGHT 2\r\r\r
+ #endif\r\r\r
+#endif\r\r\r
+\r\r\r
+\r\r\r
+//#define SDSUPPORT // Enable SD Card Support in Hardware Console\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+const int dropsegments=5; //everything with this number of steps will be ignored as move\r\r\r
+\r\r\r
+//// ADVANCED SETTINGS - to tweak parameters\r\r\r
+\r\r\r
+#include "thermistortables.h"\r\r\r
+\r\r\r
+// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1\r\r\r
+#define X_ENABLE_ON 0\r\r\r
+#define Y_ENABLE_ON 0\r\r\r
+#define Z_ENABLE_ON 0\r\r\r
+#define E_ENABLE_ON 0\r\r\r
+\r\r\r
+// Disables axis when it's not being used.\r\r\r
+#define DISABLE_X false\r\r\r
+#define DISABLE_Y false\r\r\r
+#define DISABLE_Z false\r\r\r
+#define DISABLE_E false\r\r\r
+\r\r\r
+// Inverting axis direction\r\r\r
+#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true\r\r\r
+#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false\r\r\r
+#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true\r\r\r
+#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false\r\r\r
+\r\r\r
+//// ENDSTOP SETTINGS:\r\r\r
+// Sets direction of endstops when homing; 1=MAX, -1=MIN\r\r\r
+#define X_HOME_DIR -1\r\r\r
+#define Y_HOME_DIR -1\r\r\r
+#define Z_HOME_DIR -1\r\r\r
+\r\r\r
+#define min_software_endstops false //If true, axis won't move to coordinates less than zero.\r\r\r
+#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.\r\r\r
+#define X_MAX_LENGTH 210\r\r\r
+#define Y_MAX_LENGTH 210\r\r\r
+#define Z_MAX_LENGTH 210\r\r\r
+\r\r\r
+//// MOVEMENT SETTINGS\r\r\r
+#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E\r\r\r
+//note: on bernhards ultimaker 200 200 12 are working well.\r\r\r
+#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds\r\r\r
+//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed. \r\r\r
+//!!!!!!Use only if you know that your printer works at the maximum declared speeds.\r\r\r
+// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze\r\r\r
+#define TRAVELING_AT_MAXSPEED \r\r\r
+#define AXIS_RELATIVE_MODES {false, false, false, false}\r\r\r
+\r\r\r
+#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)\r\r\r
+\r\r\r
+// default settings \r\r\r
+\r\r\r
+#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker \r\r\r
+#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000} \r\r\r
+#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.\r\r\r
+\r\r\r
+#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves \r\r\r
+#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts\r\r\r
+\r\r\r
+#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate\r\r\r
+#define DEFAULT_MINTRAVELFEEDRATE 10\r\r\r
+\r\r\r
+// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.\r\r\r
+#define DEFAULT_MINSEGMENTTIME 20000\r\r\r
+#define DEFAULT_XYJERK 30.0*60 \r\r\r
+#define DEFAULT_ZJERK 10.0*60\r\r\r
+\r\r\r
+\r\r\r
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature\r\r\r
+//this enables the watchdog interrupt.\r\r\r
+#define USE_WATCHDOG\r\r\r
+//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:\r\r\r
+#define RESET_MANUAL\r\r\r
+\r\r\r
+#define WATCHDOG_TIMEOUT 4\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+//// Experimental watchdog and minimal temp\r\r\r
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature\r\r\r
+// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109\r\r\r
+//#define WATCHPERIOD 5000 //5 seconds\r\r\r
+\r\r\r
+// Actual temperature must be close to target for this long before M109 returns success\r\r\r
+//#define TEMP_RESIDENCY_TIME 20 // (seconds)\r\r\r
+//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one\r\r\r
+\r\r\r
+//// The minimal temperature defines the temperature below which the heater will not be enabled\r\r\r
+#define HEATER_0_MINTEMP 5\r\r\r
+//#define HEATER_1_MINTEMP 5\r\r\r
+//#define BED_MINTEMP 5\r\r\r
+\r\r\r
+\r\r\r
+// When temperature exceeds max temp, your heater will be switched off.\r\r\r
+// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!\r\r\r
+// You should use MINTEMP for thermistor short/failure protection.\r\r\r
+#define HEATER_0_MAXTEMP 275\r\r\r
+//#define_HEATER_1_MAXTEMP 275\r\r\r
+//#define BED_MAXTEMP 150\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+\r\r\r
+#define PIDTEMP\r\r\r
+#ifdef PIDTEMP\r\r\r
+ /// PID settings:\r\r\r
+ // Uncomment the following line to enable PID support.\r\r\r
+ //#define SMOOTHING\r\r\r
+ //#define SMOOTHFACTOR 5.0\r\r\r
+ //float current_raw_average=0;\r\r\r
+ #define K1 0.95 //smoothing of the PID\r\r\r
+ //#define PID_DEBUG // Sends debug data to the serial port. \r\r\r
+ //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %\r\r\r
+ #define PID_MAX 255 // limits current to nozzle\r\r\r
+ #define PID_INTEGRAL_DRIVE_MAX 255\r\r\r
+ #define PID_dT 0.1\r\r\r
+ //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47\r\r\r
+\r\r\r
+ #define PID_CRITIAL_GAIN 3000\r\r\r
+ #define PID_SWING_AT_CRITIAL 45 //seconds\r\r\r
+ #define PIDIADD 5\r\r\r
+ /*\r\r\r
+ //PID according to Ziegler-Nichols method\r\r\r
+ float Kp = 0.6*PID_CRITIAL_GAIN; \r\r\r
+ float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT; \r\r\r
+ float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT; \r\r\r
+ */\r\r\r
+ //PI according to Ziegler-Nichols method\r\r\r
+ #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) \r\r\r
+ #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)\r\r\r
+ #define DEFAULT_Kd (0)\r\r\r
+ \r\r\r
+ #define PID_ADD_EXTRUSION_RATE \r\r\r
+ #ifdef PID_ADD_EXTRUSION_RATE\r\r\r
+ #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)\r\r\r
+ #endif\r\r\r
+#endif // PIDTEMP\r\r\r
+\r\r\r
+// extruder advance constant (s2/mm3)\r\r\r
+//\r\r\r
+// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2\r\r\r
+//\r\r\r
+// hooke's law says: force = k * distance\r\r\r
+// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant\r\r\r
+// so: v ^ 2 is proportional to number of steps we advance the extruder\r\r\r
+//#define ADVANCE\r\r\r
+\r\r\r
+#ifdef ADVANCE\r\r\r
+#define EXTRUDER_ADVANCE_K .3\r\r\r
+\r\r\r
+#define D_FILAMENT 1.7\r\r\r
+#define STEPS_MM_E 65\r\r\r
+#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)\r\r\r
+#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)\r\r\r
+\r\r\r
+#endif // ADVANCE\r\r\r
+\r\r\r
+// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32 \r\r\r
+#if defined SDSUPPORT\r\r\r
+// The number of linear motions that can be in the plan at any give time. \r\r\r
+ #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller\r\r\r
+#else\r\r\r
+ #define BLOCK_BUFFER_SIZE 16 // maximize block buffer\r\r\r
+#endif\r\r\r
+\r\r\r
+\r\r\r
+#endif\r\r\r
-/*
- Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "EEPROMwrite.h"
-#include "fastio.h"
-#include "Configuration.h"
-#include "pins.h"
-#include "Marlin.h"
-#include "ultralcd.h"
-#include "streaming.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-
-#ifdef SIMPLE_LCD
- #include "Simplelcd.h"
-#endif
-
-char version_string[] = "1.0.0 Alpha 1";
-
-#ifdef SDSUPPORT
-#include "SdFat.h"
-#endif //SDSUPPORT
-
-
-// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-// G0 -> G1
-// G1 - Coordinated Movement X Y Z E
-// G2 - CW ARC
-// G3 - CCW ARC
-// G4 - Dwell S<seconds> or P<milliseconds>
-// G28 - Home all Axis
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to cordinates given
-
-//RepRap M Codes
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Wait for extruder current temp to reach target temp.
-// M114 - Display current position
-
-//Custom M Codes
-// M20 - List SD card
-// M21 - Init SD card
-// M22 - Release SD card
-// M23 - Select SD file (M23 filename.g)
-// M24 - Start/resume SD print
-// M25 - Pause SD print
-// M26 - Set SD position in bytes (M26 S12345)
-// M27 - Report SD print status
-// M28 - Start SD write (M28 filename.g)
-// M29 - Stop SD write
-// M42 - Change pin status via gcode
-// M80 - Turn on Power Supply
-// M81 - Turn off Power Supply
-// M82 - Set E codes absolute (default)
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84 - Disable steppers until next move,
-// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
-// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
-// M92 - Set axis_steps_per_unit - same syntax as G92
-// M115 - Capabilities string
-// M140 - Set bed target temp
-// M190 - Wait for bed current temp to reach target temp.
-// M200 - Set filament diameter
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
-// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-// M220 - set speed factor override percentage S:factor in percent
-// M301 - Set PID parameters P I and D
-// M500 - stores paramters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
-// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
-
-//Stepper Movement Variables
-
-char axis_codes[NUM_AXIS] = {
- 'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
-float current_position[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
-bool home_all_axis = true;
-float feedrate = 1500.0, next_feedrate, saved_feedrate;
-long gcode_N, gcode_LastN;
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-
-bool relative_mode = false; //Determines Absolute or Relative Coordinates
-bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-
-uint8_t fanpwm=0;
-
-volatile int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-volatile bool feedmultiplychanged=false;
-// comm variables
-#define MAX_CMD_SIZE 96
-#define BUFSIZE 4
-char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
-bool fromsd[BUFSIZE];
-int bufindr = 0;
-int bufindw = 0;
-int buflen = 0;
-int i = 0;
-char serial_char;
-int serial_count = 0;
-boolean comment_mode = false;
-char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-extern float HeaterPower;
-
-#include "EEPROM.h"
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-float tt = 0, bt = 0;
-#ifdef WATCHPERIOD
-int watch_raw = -1000;
-unsigned long watchmillis = 0;
-#endif //WATCHPERIOD
-
-//Inactivity shutdown variables
-unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-unsigned long stepper_inactive_time = 0;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-#ifdef SDSUPPORT
-Sd2Card card;
-SdVolume volume;
-SdFile root;
-SdFile file;
-uint32_t filesize = 0;
-uint32_t sdpos = 0;
-bool sdmode = false;
-bool sdactive = false;
-bool savetosd = false;
-int16_t n;
-unsigned long autostart_atmillis=0;
-
-void initsd(){
- sdactive = false;
-#if SDSS >- 1
- if(root.isOpen())
- root.close();
- if (!card.init(SPI_FULL_SPEED,SDSS)){
- //if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
- }
- else if (!volume.init(&card))
- Serial.println("volume.init failed");
- else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
- else
- {
- sdactive = true;
- Serial.println("SD card ok");
- }
-#endif //SDSS
-}
-
-void quickinitsd(){
- sdactive=false;
- autostart_atmillis=millis()+5000;
-}
-
-inline void write_command(char *buf){
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
- //Serial.println(begin);
- file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
- }
-}
-#endif //SDSUPPORT
-
-
-///adds an command to the main command buffer
-void enquecommand(const char *cmd)
-{
- if(buflen < BUFSIZE)
- {
- //this is dangerous if a mixing of serial and this happsens
- strcpy(&(cmdbuffer[bufindw][0]),cmd);
- Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
- bufindw= (bufindw + 1)%BUFSIZE;
- buflen += 1;
- }
-}
-
-void setup()
-{
-
- Serial.begin(BAUDRATE);
- ECHOLN("Marlin "<<version_string);
- Serial.println("start");
-#if defined FANCY_LCD || defined SIMPLE_LCD
- lcd_init();
-#endif
- for(int i = 0; i < BUFSIZE; i++){
- fromsd[i] = false;
- }
-
- RetrieveSettings(); // loads data from EEPROM if available
-
-
- for(int i=0; i < NUM_AXIS; i++){
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
-
-#ifdef SDSUPPORT
- //power to SD reader
-#if SDPOWER > -1
- SET_OUTPUT(SDPOWER);
- WRITE(SDPOWER,HIGH);
-#endif //SDPOWER
- quickinitsd();
-
-#endif //SDSUPPORT
- plan_init(); // Initialize planner;
- st_init(); // Initialize stepper;
- tp_init(); // Initialize temperature loop
- //checkautostart();
-}
-
-#ifdef SDSUPPORT
-bool autostart_stilltocheck=true;
-
-
-void checkautostart(bool force)
-{
- //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
- if(!force)
- {
- if(!autostart_stilltocheck)
- return;
- if(autostart_atmillis<millis())
- return;
- }
- autostart_stilltocheck=false;
- if(!sdactive)
- {
- initsd();
- if(!sdactive) //fail
- return;
- }
- static int lastnr=0;
- char autoname[30];
- sprintf(autoname,"auto%i.g",lastnr);
- for(int i=0;i<(int)strlen(autoname);i++)
- autoname[i]=tolower(autoname[i]);
- dir_t p;
-
- root.rewind();
- //char filename[11];
- //int cnt=0;
-
- bool found=false;
- while (root.readDir(p) > 0)
- {
- for(int i=0;i<(int)strlen((char*)p.name);i++)
- p.name[i]=tolower(p.name[i]);
- //Serial.print((char*)p.name);
- //Serial.print(" ");
- //Serial.println(autoname);
- if(p.name[9]!='~') //skip safety copies
- if(strncmp((char*)p.name,autoname,5)==0)
- {
- char cmd[30];
-
- sprintf(cmd,"M23 %s",autoname);
- //sprintf(cmd,"M115");
- //enquecommand("G92 Z0");
- //enquecommand("G1 Z10 F2000");
- //enquecommand("G28 X-105 Y-105");
- enquecommand(cmd);
- enquecommand("M24");
- found=true;
-
- }
- }
- if(!found)
- lastnr=-1;
- else
- lastnr++;
-
-}
-#else
-
-inline void checkautostart(bool x)
-{
-}
-#endif
-
-
-void loop()
-{
- if(buflen<3)
- get_command();
- checkautostart(false);
- if(buflen)
- {
-#ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
- write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }
- else{
- file.sync();
- file.close();
- savetosd = false;
- Serial.println("Done saving file.");
- }
- }
- else{
- process_commands();
- }
-#else
- process_commands();
-#endif //SDSUPPORT
- buflen = (buflen-1);
- bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
- LCD_STATUS;
-}
-
-
-inline void get_command()
-{
- while( Serial.available() > 0 && buflen < BUFSIZE) {
- serial_char = Serial.read();
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
- {
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
-#ifdef SDSUPPORT
- if(savetosd)
- break;
-#endif //SDSUPPORT
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
- bufindw = (bufindw + 1)%BUFSIZE;
- buflen += 1;
-
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
-#ifdef SDSUPPORT
- if(!sdmode || serial_count!=0){
- return;
- }
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
- {
- sdpos = file.curPosition();
- if(sdpos >= filesize){
- sdmode = false;
- Serial.println("Done printing file");
- stoptime=millis();
- char time[30];
- unsigned long t=(stoptime-starttime)/1000;
- int sec,min;
- min=t/60;
- sec=t%60;
- sprintf(time,"%i min, %i sec",min,sec);
- Serial.println(time);
- LCD_MESSAGE(time);
- checkautostart(true);
- }
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
-#endif //SDSUPPORT
-
-}
-
-
-inline float code_value() {
- return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
-}
-inline long code_value_long() {
- return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
-}
-inline bool code_seen(char code_string[]) {
- return (strstr(cmdbuffer[bufindr], code_string) != NULL);
-} //Return True if the string was found
-
-inline bool code_seen(char code)
-{
- strchr_pointer = strchr(cmdbuffer[bufindr], code);
- return (strchr_pointer != NULL); //Return True if a character was found
-}
-
-inline void process_commands()
-{
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
-
- if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- get_coordinates(); // For X Y Z E F
- prepare_move();
- previous_millis_cmd = millis();
- //ClearToSend();
- return;
- //break;
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum ){
- manage_heater();
- }
- break;
- case 28: //G28 Home all Axis one at a time
- saved_feedrate = feedrate;
- saved_feedmultiply = feedmultiply;
- feedmultiply = 100;
-
- for(int i=0; i < NUM_AXIS; i++) {
- destination[i] = current_position[i];
- }
- feedrate = 0.0;
-
- home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
-
- if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
-// st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS];
- prepare_move();
-
-// st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = -5 * X_HOME_DIR;
- prepare_move();
-
-// st_synchronize();
- destination[X_AXIS] = 10 * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS]/2 ;
- prepare_move();
-
-// st_synchronize();
- current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = current_position[X_AXIS];
- feedrate = 0.0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS];
- prepare_move();
-// st_synchronize();
-
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = -5 * Y_HOME_DIR;
- prepare_move();
-// st_synchronize();
-
- destination[Y_AXIS] = 10 * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS]/2;
- prepare_move();
-// st_synchronize();
-
- current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = current_position[Y_AXIS];
- feedrate = 0.0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS];
- prepare_move();
-// st_synchronize();
-
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = -2 * Z_HOME_DIR;
- prepare_move();
-// st_synchronize();
-
- destination[Z_AXIS] = 3 * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS]/2;
- prepare_move();
-// st_synchronize();
-
- current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = current_position[Z_AXIS];
- feedrate = 0.0;
- }
- }
- feedrate = saved_feedrate;
- feedmultiply = saved_feedmultiply;
- previous_millis_cmd = millis();
- break;
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(!code_seen(axis_codes[E_AXIS]))
- st_synchronize();
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) current_position[i] = code_value();
- }
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- break;
- }
- }
-
- else if(code_seen('M'))
- {
-
- switch( (int)code_value() )
- {
-#ifdef SDSUPPORT
-
- case 20: // M20 - list SD card
- Serial.println("Begin file list");
- root.ls();
- Serial.println("End file list");
- break;
- case 21: // M21 - init SD card
- sdmode = false;
- initsd();
- break;
- case 22: //M22 - release SD card
- sdmode = false;
- sdactive = false;
- break;
- case 23: //M23 - Select file
- if(sdactive){
- sdmode = false;
- file.close();
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos!=NULL)
- *(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
- Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
- Serial.println(file.fileSize());
- sdpos = 0;
- filesize = file.fileSize();
- Serial.println("File selected");
- }
- else{
- Serial.println("file.open failed");
- }
- }
- break;
- case 24: //M24 - Start SD print
- if(sdactive){
- sdmode = true;
- starttime=millis();
- }
- break;
- case 25: //M25 - Pause SD print
- if(sdmode){
- sdmode = false;
- }
- break;
- case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
- sdpos = code_value_long();
- file.seekSet(sdpos);
- }
- break;
- case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
- Serial.print(sdpos);
- Serial.print("/");
- Serial.println(filesize);
- }
- else{
- Serial.println("Not SD printing");
- }
- break;
- case 28: //M28 - Start SD write
- if(sdactive){
- char* npos = 0;
- file.close();
- sdmode = false;
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- npos = strchr(cmdbuffer[bufindr], 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos-1) = '\0';
- }
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }
- else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
- }
- }
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //savetosd = false;
- break;
- case 30:
- {
- stoptime=millis();
- char time[30];
- unsigned long t=(stoptime-starttime)/1000;
- int sec,min;
- min=t/60;
- sec=t%60;
- sprintf(time,"%i min, %i sec",min,sec);
- Serial.println(time);
- LCD_MESSAGE(time);
- }
- break;
-#endif //SDSUPPORT
- case 42: //M42 -Change pin status via gcode
- if (code_seen('S'))
- {
- int pin_status = code_value();
- if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
- {
- int pin_number = code_value();
- for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
- {
- if (sensitive_pins[i] == pin_number)
- {
- pin_number = -1;
- break;
- }
- }
-
- if (pin_number > -1)
- {
- pinMode(pin_number, OUTPUT);
- digitalWrite(pin_number, pin_status);
- analogWrite(pin_number, pin_status);
- }
- }
- }
- break;
- case 104: // M104
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
-#ifdef PIDTEMP
- pid_setpoint = code_value();
-#endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND] > current_raw[TEMPSENSOR_HOTEND]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
- }else{
- watchmillis = 0;
- }
- #endif
- break;
- case 140: // M140 set bed temp
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
- break;
- case 105: // M105
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- tt = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
- #endif
- #if TEMP_1_PIN > -1
- bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- Serial.print("ok T:");
- Serial.print(tt);
-// Serial.print(", raw:");
-// Serial.print(current_raw);
- #if TEMP_1_PIN > -1
-#ifdef PIDTEMP
- Serial.print(" B:");
- #if TEMP_1_PIN > -1
- Serial.println(bt);
- #else
- Serial.println(HeaterPower);
- #endif
-#else
- Serial.println();
-#endif
- #else
- Serial.println();
- #endif
- #else
- Serial.println("No thermistors - no temp");
- #endif
- return;
- //break;
- case 109: {// M109 - Wait for extruder heater to reach target.
- LCD_MESSAGE("Heating...");
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
- #ifdef PIDTEMP
- pid_setpoint = code_value();
- #endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND]>current_raw[TEMPSENSOR_HOTEND]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
- } else {
- watchmillis = 0;
- }
- #endif //WATCHPERIOD
- codenum = millis();
-
- /* See if we are heating up or cooling down */
- bool target_direction = (current_raw[0] < target_raw[0]); // true if heating, false if cooling
-
- #ifdef TEMP_RESIDENCY_TIME
- long residencyStart;
- residencyStart = -1;
- /* continue to loop until we have reached the target temp
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
- while((target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0])) ||
- (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
- #else
- while ( target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0]) ) {
- #endif //TEMP_RESIDENCY_TIME
- if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
- Serial.print("T:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND]) );
- codenum = millis();
- }
- manage_heater();
- LCD_STATUS;
- #ifdef TEMP_RESIDENCY_TIME
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
- or when current temp falls outside the hysteresis after target temp was reached */
- if ((residencyStart == -1 && target_direction && current_raw[0] >= target_raw[0]) ||
- (residencyStart == -1 && !target_direction && current_raw[0] <= target_raw[0]) ||
- (residencyStart > -1 && labs(analog2temp(current_raw[0]) - analog2temp(target_raw[0])) > TEMP_HYSTERESIS) ) {
- residencyStart = millis();
- }
- #endif //TEMP_RESIDENCY_TIME
- }
- LCD_MESSAGE("Marlin ready.");
- }
- break;
- case 190: // M190 - Wait bed for heater to reach target.
- #if TEMP_1_PIN > -1
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
- codenum = millis();
- while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
- {
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND]);
- Serial.print("T:");
- Serial.println( tt );
- Serial.print("ok T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
- codenum = millis();
- }
- manage_heater();
- }
- #endif
- break;
-#if FAN_PIN > -1
- case 106: //M106 Fan On
- if (code_seen('S')){
- WRITE(FAN_PIN,HIGH);
- fanpwm=constrain(code_value(),0,255);
- analogWrite(FAN_PIN, fanpwm);
- }
- else {
- WRITE(FAN_PIN,HIGH);
- fanpwm=255;
- analogWrite(FAN_PIN, fanpwm);
- }
- break;
- case 107: //M107 Fan Off
- WRITE(FAN_PIN,LOW);
- analogWrite(FAN_PIN, 0);
- break;
-#endif
-#if (PS_ON_PIN > -1)
- case 80: // M80 - ATX Power On
- SET_OUTPUT(PS_ON_PIN); //GND
- break;
- case 81: // M81 - ATX Power Off
- SET_INPUT(PS_ON_PIN); //Floating
- break;
-#endif
- case 82:
- axis_relative_modes[3] = false;
- break;
- case 83:
- axis_relative_modes[3] = true;
- break;
- case 18:
- case 84:
- if(code_seen('S')){
- stepper_inactive_time = code_value() * 1000;
- }
- else{
- st_synchronize();
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- break;
- case 85: // M85
- code_seen('S');
- max_inactive_time = code_value() * 1000;
- break;
- case 92: // M92
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
- }
-
- break;
- case 115: // M115
- Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
- break;
- case 114: // M114
- Serial.print("X:");
- Serial.print(current_position[X_AXIS]);
- Serial.print("Y:");
- Serial.print(current_position[Y_AXIS]);
- Serial.print("Z:");
- Serial.print(current_position[Z_AXIS]);
- Serial.print("E:");
- Serial.print(current_position[E_AXIS]);
- #ifdef DEBUG_STEPS
- Serial.print(" Count X:");
- Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
- Serial.print("Y:");
- Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
- Serial.print("Z:");
- Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
- #endif
- Serial.println("");
- break;
- case 119: // M119
-#if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
- Serial.println("");
- break;
- //TODO: update for all axis, use for loop
- case 201: // M201
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
-#if 0 // Not used for Sprinter/grbl gen6
- case 202: // M202
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
-#endif
- case 203: // M203 max feedrate mm/sec
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
- }
- break;
- case 204: // M204 acclereration S normal moves T filmanent only moves
- {
- if(code_seen('S')) acceleration = code_value() ;
- if(code_seen('T')) retract_acceleration = code_value() ;
- }
- break;
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
- {
- if(code_seen('S')) minimumfeedrate = code_value()*60 ;
- if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
- if(code_seen('B')) minsegmenttime = code_value() ;
- if(code_seen('X')) max_xy_jerk = code_value()*60 ;
- if(code_seen('Z')) max_z_jerk = code_value()*60 ;
- }
- break;
- case 220: // M220 S<factor in percent>- set speed factor override percentage
- {
- if(code_seen('S'))
- {
- feedmultiply = code_value() ;
- feedmultiplychanged=true;
- }
- }
- break;
-#ifdef PIDTEMP
- case 301: // M301
- if(code_seen('P')) Kp = code_value();
- if(code_seen('I')) Ki = code_value()*PID_dT;
- if(code_seen('D')) Kd = code_value()/PID_dT;
-// ECHOLN("Kp "<<_FLOAT(Kp,2));
-// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
-// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
-
-// temp_iState_min = 0.0;
-// if (Ki!=0) {
-// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
-// }
-// else temp_iState_max = 1.0e10;
- break;
-#endif //PIDTEMP
- case 500: // Store settings in EEPROM
- {
- StoreSettings();
- }
- break;
- case 501: // Read settings from EEPROM
- {
- RetrieveSettings();
- }
- break;
- case 502: // Revert to default settings
- {
- RetrieveSettings(true);
- }
- break;
-
- }
- }
- else{
- Serial.println("Unknown command:");
- Serial.println(cmdbuffer[bufindr]);
- }
-
- ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
- //char cmdbuffer[bufindr][100]="Resend:";
- Serial.flush();
- Serial.print("Resend:");
- Serial.println(gcode_LastN + 1);
- ClearToSend();
-}
-
-void ClearToSend()
-{
- previous_millis_cmd = millis();
-#ifdef SDSUPPORT
- if(fromsd[bufindr])
- return;
-#endif //SDSUPPORT
- Serial.println("ok");
-}
-
-inline void get_coordinates()
-{
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
- else destination[i] = current_position[i]; //Are these else lines really needed?
- }
- if(code_seen('F')) {
- next_feedrate = code_value();
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
-}
-
-void prepare_move()
-{
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
- for(int i=0; i < NUM_AXIS; i++) {
- current_position[i] = destination[i];
- }
-}
-
-
-
-#ifdef USE_WATCHDOG
-
-#include <avr/wdt.h>
-#include <avr/interrupt.h>
-
-volatile uint8_t timeout_seconds=0;
-
-void(* ctrlaltdelete) (void) = 0;
-
-ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
- if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
- {
- kill();
-#ifdef RESET_MANUAL
- LCD_MESSAGE("Please Reset!");
- ECHOLN("echo_: Something is wrong, please turn off the printer.");
-#else
- LCD_MESSAGE("Timeout, resetting!");
-#endif
- //disable watchdog, it will survife reboot.
- WDTCSR |= (1<<WDCE) | (1<<WDE);
- WDTCSR = 0;
-#ifdef RESET_MANUAL
- while(1); //wait for user or serial reset
-#else
- ctrlaltdelete();
-#endif
- }
-}
-
-/// intialise watch dog with a 1 sec interrupt time
-void wd_init() {
- WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
- WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
-}
-
-/// reset watchdog. MUST be called every 1s after init or avr will reset.
-void wd_reset() {
- wdt_reset();
- timeout_seconds=0; //reset counter for resets
-}
-#endif /* USE_WATCHDOG */
-
-
-inline void kill()
-{
- #if TEMP_0_PIN > -1
- target_raw[0]=0;
- #if HEATER_0_PIN > -1
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #endif
- #if TEMP_1_PIN > -1
- target_raw[1]=0;
- #if HEATER_1_PIN > -1
- WRITE(HEATER_1_PIN,LOW);
- #endif
- #endif
- #if TEMP_2_PIN > -1
- target_raw[2]=0;
- #if HEATER_2_PIN > -1
- WRITE(HEATER_2_PIN,LOW);
- #endif
- #endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
- Serial.println("!! Printer halted. kill() called!!");
- while(1); // Wait for reset
-}
-
-void manage_inactivity(byte debug) {
- if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
- if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- check_axes_activity();
-}
+/*\r
+ Reprap firmware based on Sprinter and grbl.\r
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm\r
+ \r
+ This program is free software: you can redistribute it and/or modify\r
+ it under the terms of the GNU General Public License as published by\r
+ the Free Software Foundation, either version 3 of the License, or\r
+ (at your option) any later version.\r
+ \r
+ This program is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
+ GNU General Public License for more details.\r
+ \r
+ You should have received a copy of the GNU General Public License\r
+ along with this program. If not, see <http://www.gnu.org/licenses/>.\r
+ */\r
+\r
+/*\r
+ This firmware is a mashup between Sprinter and grbl.\r
+ (https://github.com/kliment/Sprinter)\r
+ (https://github.com/simen/grbl/tree)\r
+ \r
+ It has preliminary support for Matthew Roberts advance algorithm \r
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html\r
+ */\r
+\r
+#include "EEPROMwrite.h"\r
+#include "fastio.h"\r
+#include "Configuration.h"\r
+#include "pins.h"\r
+#include "Marlin.h"\r
+#include "ultralcd.h"\r
+#include "streaming.h"\r
+#include "planner.h"\r
+#include "stepper.h"\r
+#include "temperature.h"\r
+\r
+#ifdef SIMPLE_LCD\r
+ #include "Simplelcd.h"\r
+#endif\r
+\r
+char version_string[] = "1.0.0 Alpha 1";\r
+\r
+#ifdef SDSUPPORT\r
+#include "SdFat.h"\r
+#endif //SDSUPPORT\r
+\r
+\r
+// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html\r
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes\r
+\r
+//Implemented Codes\r
+//-------------------\r
+// G0 -> G1\r
+// G1 - Coordinated Movement X Y Z E\r
+// G2 - CW ARC\r
+// G3 - CCW ARC\r
+// G4 - Dwell S<seconds> or P<milliseconds>\r
+// G28 - Home all Axis\r
+// G90 - Use Absolute Coordinates\r
+// G91 - Use Relative Coordinates\r
+// G92 - Set current position to cordinates given\r
+\r
+//RepRap M Codes\r
+// M104 - Set extruder target temp\r
+// M105 - Read current temp\r
+// M106 - Fan on\r
+// M107 - Fan off\r
+// M109 - Wait for extruder current temp to reach target temp.\r
+// M114 - Display current position\r
+\r
+//Custom M Codes\r
+// M20 - List SD card\r
+// M21 - Init SD card\r
+// M22 - Release SD card\r
+// M23 - Select SD file (M23 filename.g)\r
+// M24 - Start/resume SD print\r
+// M25 - Pause SD print\r
+// M26 - Set SD position in bytes (M26 S12345)\r
+// M27 - Report SD print status\r
+// M28 - Start SD write (M28 filename.g)\r
+// M29 - Stop SD write\r
+// M42 - Change pin status via gcode\r
+// M80 - Turn on Power Supply\r
+// M81 - Turn off Power Supply\r
+// M82 - Set E codes absolute (default)\r
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode\r
+// M84 - Disable steppers until next move, \r
+// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.\r
+// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)\r
+// M92 - Set axis_steps_per_unit - same syntax as G92\r
+// M115 - Capabilities string\r
+// M140 - Set bed target temp\r
+// M190 - Wait for bed current temp to reach target temp.\r
+// M200 - Set filament diameter\r
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)\r
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!\r
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec\r
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate\r
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk\r
+// M220 - set speed factor override percentage S:factor in percent\r
+// M301 - Set PID parameters P I and D\r
+// M500 - stores paramters in EEPROM\r
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D\r
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.\r
+\r
+//Stepper Movement Variables\r
+\r
+char axis_codes[NUM_AXIS] = {\r
+ 'X', 'Y', 'Z', 'E'};\r
+float destination[NUM_AXIS] = {\r
+ 0.0, 0.0, 0.0, 0.0};\r
+float current_position[NUM_AXIS] = {\r
+ 0.0, 0.0, 0.0, 0.0};\r
+bool home_all_axis = true;\r
+float feedrate = 1500.0, next_feedrate, saved_feedrate;\r
+long gcode_N, gcode_LastN;\r
+\r
+float homing_feedrate[] = HOMING_FEEDRATE;\r
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;\r
+\r
+bool relative_mode = false; //Determines Absolute or Relative Coordinates\r
+bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.\r
+\r
+uint8_t fanpwm=0;\r
+\r
+volatile int feedmultiply=100; //100->1 200->2\r
+int saved_feedmultiply;\r
+volatile bool feedmultiplychanged=false;\r
+// comm variables\r
+#define MAX_CMD_SIZE 96\r
+#define BUFSIZE 4\r
+char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];\r
+bool fromsd[BUFSIZE];\r
+int bufindr = 0;\r
+int bufindw = 0;\r
+int buflen = 0;\r
+int i = 0;\r
+char serial_char;\r
+int serial_count = 0;\r
+boolean comment_mode = false;\r
+char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc\r
+extern float HeaterPower;\r
+\r
+#include "EEPROM.h"\r
+\r
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42\r
+\r
+float tt = 0, bt = 0;\r
+#ifdef WATCHPERIOD\r
+int watch_raw = -1000;\r
+unsigned long watchmillis = 0;\r
+#endif //WATCHPERIOD\r
+\r
+//Inactivity shutdown variables\r
+unsigned long previous_millis_cmd = 0;\r
+unsigned long max_inactive_time = 0;\r
+unsigned long stepper_inactive_time = 0;\r
+\r
+unsigned long starttime=0;\r
+unsigned long stoptime=0;\r
+#ifdef SDSUPPORT\r
+Sd2Card card;\r
+SdVolume volume;\r
+SdFile root;\r
+SdFile file;\r
+uint32_t filesize = 0;\r
+uint32_t sdpos = 0;\r
+bool sdmode = false;\r
+bool sdactive = false;\r
+bool savetosd = false;\r
+int16_t n;\r
+unsigned long autostart_atmillis=0;\r
+\r
+void initsd(){\r
+ sdactive = false;\r
+#if SDSS >- 1\r
+ if(root.isOpen())\r
+ root.close();\r
+ if (!card.init(SPI_FULL_SPEED,SDSS)){\r
+ //if (!card.init(SPI_HALF_SPEED,SDSS))\r
+ Serial.println("SD init fail");\r
+ }\r
+ else if (!volume.init(&card))\r
+ Serial.println("volume.init failed");\r
+ else if (!root.openRoot(&volume)) \r
+ Serial.println("openRoot failed");\r
+ else \r
+ {\r
+ sdactive = true;\r
+ Serial.println("SD card ok");\r
+ }\r
+#endif //SDSS\r
+}\r
+\r
+void quickinitsd(){\r
+ sdactive=false;\r
+ autostart_atmillis=millis()+5000;\r
+}\r
+\r
+inline void write_command(char *buf){\r
+ char* begin = buf;\r
+ char* npos = 0;\r
+ char* end = buf + strlen(buf) - 1;\r
+\r
+ file.writeError = false;\r
+ if((npos = strchr(buf, 'N')) != NULL){\r
+ begin = strchr(npos, ' ') + 1;\r
+ end = strchr(npos, '*') - 1;\r
+ }\r
+ end[1] = '\r';\r
+ end[2] = '\n';\r
+ end[3] = '\0';\r
+ //Serial.println(begin);\r
+ file.write(begin);\r
+ if (file.writeError){\r
+ Serial.println("error writing to file");\r
+ }\r
+}\r
+#endif //SDSUPPORT\r
+\r
+\r
+///adds an command to the main command buffer\r
+void enquecommand(const char *cmd)\r
+{\r
+ if(buflen < BUFSIZE)\r
+ {\r
+ //this is dangerous if a mixing of serial and this happsens\r
+ strcpy(&(cmdbuffer[bufindw][0]),cmd);\r
+ Serial.print("en:");Serial.println(cmdbuffer[bufindw]);\r
+ bufindw= (bufindw + 1)%BUFSIZE;\r
+ buflen += 1;\r
+ }\r
+}\r
+\r
+void setup()\r
+{ \r
+ \r
+ Serial.begin(BAUDRATE);\r
+ ECHOLN("Marlin "<<version_string);\r
+ Serial.println("start");\r
+#if defined FANCY_LCD || defined SIMPLE_LCD\r
+ lcd_init();\r
+#endif\r
+ for(int i = 0; i < BUFSIZE; i++){\r
+ fromsd[i] = false;\r
+ }\r
+ \r
+ RetrieveSettings(); // loads data from EEPROM if available\r
+\r
+\r
+ for(int i=0; i < NUM_AXIS; i++){\r
+ axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];\r
+ }\r
+\r
+#ifdef SDSUPPORT\r
+ //power to SD reader\r
+#if SDPOWER > -1\r
+ SET_OUTPUT(SDPOWER); \r
+ WRITE(SDPOWER,HIGH);\r
+#endif //SDPOWER\r
+ quickinitsd();\r
+\r
+#endif //SDSUPPORT\r
+ plan_init(); // Initialize planner;\r
+ st_init(); // Initialize stepper;\r
+ tp_init(); // Initialize temperature loop\r
+ //checkautostart();\r
+}\r
+\r
+#ifdef SDSUPPORT\r
+bool autostart_stilltocheck=true;\r
+\r
+\r
+void checkautostart(bool force)\r
+{\r
+ //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset\r
+ if(!force)\r
+ {\r
+ if(!autostart_stilltocheck)\r
+ return;\r
+ if(autostart_atmillis<millis())\r
+ return;\r
+ }\r
+ autostart_stilltocheck=false;\r
+ if(!sdactive)\r
+ {\r
+ initsd();\r
+ if(!sdactive) //fail\r
+ return;\r
+ }\r
+ static int lastnr=0;\r
+ char autoname[30];\r
+ sprintf(autoname,"auto%i.g",lastnr);\r
+ for(int i=0;i<(int)strlen(autoname);i++)\r
+ autoname[i]=tolower(autoname[i]);\r
+ dir_t p;\r
+\r
+ root.rewind();\r
+ //char filename[11];\r
+ //int cnt=0;\r
+\r
+ bool found=false;\r
+ while (root.readDir(p) > 0) \r
+ {\r
+ for(int i=0;i<(int)strlen((char*)p.name);i++)\r
+ p.name[i]=tolower(p.name[i]);\r
+ //Serial.print((char*)p.name);\r
+ //Serial.print(" ");\r
+ //Serial.println(autoname);\r
+ if(p.name[9]!='~') //skip safety copies\r
+ if(strncmp((char*)p.name,autoname,5)==0)\r
+ {\r
+ char cmd[30];\r
+ \r
+ sprintf(cmd,"M23 %s",autoname);\r
+ //sprintf(cmd,"M115");\r
+ //enquecommand("G92 Z0");\r
+ //enquecommand("G1 Z10 F2000");\r
+ //enquecommand("G28 X-105 Y-105");\r
+ enquecommand(cmd);\r
+ enquecommand("M24");\r
+ found=true;\r
+ \r
+ }\r
+ }\r
+ if(!found)\r
+ lastnr=-1;\r
+ else\r
+ lastnr++;\r
+ \r
+}\r
+#else\r
+\r
+inline void checkautostart(bool x)\r
+{\r
+}\r
+#endif\r
+\r
+\r
+void loop()\r
+{\r
+ if(buflen<3)\r
+ get_command();\r
+ checkautostart(false);\r
+ if(buflen)\r
+ {\r
+#ifdef SDSUPPORT\r
+ if(savetosd){\r
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL){\r
+ write_command(cmdbuffer[bufindr]);\r
+ Serial.println("ok");\r
+ }\r
+ else{\r
+ file.sync();\r
+ file.close();\r
+ savetosd = false;\r
+ Serial.println("Done saving file.");\r
+ }\r
+ }\r
+ else{\r
+ process_commands();\r
+ }\r
+#else\r
+ process_commands();\r
+#endif //SDSUPPORT\r
+ buflen = (buflen-1);\r
+ bufindr = (bufindr + 1)%BUFSIZE;\r
+ }\r
+ //check heater every n milliseconds\r
+ manage_heater();\r
+ manage_inactivity(1);\r
+ LCD_STATUS;\r
+}\r
+\r
+\r
+inline void get_command() \r
+{ \r
+ while( Serial.available() > 0 && buflen < BUFSIZE) {\r
+ serial_char = Serial.read();\r
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) \r
+ {\r
+ if(!serial_count) return; //if empty line\r
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string\r
+ if(!comment_mode){\r
+ fromsd[bufindw] = false;\r
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)\r
+ {\r
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');\r
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));\r
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {\r
+ Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");\r
+ Serial.println(gcode_LastN);\r
+ //Serial.println(gcode_N);\r
+ FlushSerialRequestResend();\r
+ serial_count = 0;\r
+ return;\r
+ }\r
+\r
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)\r
+ {\r
+ byte checksum = 0;\r
+ byte count = 0;\r
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];\r
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');\r
+\r
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {\r
+ Serial.print("Error: checksum mismatch, Last Line:");\r
+ Serial.println(gcode_LastN);\r
+ FlushSerialRequestResend();\r
+ serial_count = 0;\r
+ return;\r
+ }\r
+ //if no errors, continue parsing\r
+ }\r
+ else \r
+ {\r
+ Serial.print("Error: No Checksum with line number, Last Line:");\r
+ Serial.println(gcode_LastN);\r
+ FlushSerialRequestResend();\r
+ serial_count = 0;\r
+ return;\r
+ }\r
+\r
+ gcode_LastN = gcode_N;\r
+ //if no errors, continue parsing\r
+ }\r
+ else // if we don't receive 'N' but still see '*'\r
+ {\r
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))\r
+ {\r
+ Serial.print("Error: No Line Number with checksum, Last Line:");\r
+ Serial.println(gcode_LastN);\r
+ serial_count = 0;\r
+ return;\r
+ }\r
+ }\r
+ if((strstr(cmdbuffer[bufindw], "G") != NULL)){\r
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');\r
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){\r
+ case 0:\r
+ case 1:\r
+#ifdef SDSUPPORT\r
+ if(savetosd)\r
+ break;\r
+#endif //SDSUPPORT\r
+ Serial.println("ok"); \r
+ break;\r
+ default:\r
+ break;\r
+ }\r
+\r
+ }\r
+ bufindw = (bufindw + 1)%BUFSIZE;\r
+ buflen += 1;\r
+\r
+ }\r
+ comment_mode = false; //for new command\r
+ serial_count = 0; //clear buffer\r
+ }\r
+ else\r
+ {\r
+ if(serial_char == ';') comment_mode = true;\r
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;\r
+ }\r
+ }\r
+#ifdef SDSUPPORT\r
+ if(!sdmode || serial_count!=0){\r
+ return;\r
+ }\r
+ while( filesize > sdpos && buflen < BUFSIZE) {\r
+ n = file.read();\r
+ serial_char = (char)n;\r
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) \r
+ {\r
+ sdpos = file.curPosition();\r
+ if(sdpos >= filesize){\r
+ sdmode = false;\r
+ Serial.println("Done printing file");\r
+ stoptime=millis();\r
+ char time[30];\r
+ unsigned long t=(stoptime-starttime)/1000;\r
+ int sec,min;\r
+ min=t/60;\r
+ sec=t%60;\r
+ sprintf(time,"%i min, %i sec",min,sec);\r
+ Serial.println(time);\r
+ LCD_MESSAGE(time);\r
+ checkautostart(true);\r
+ }\r
+ if(!serial_count) return; //if empty line\r
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string\r
+ if(!comment_mode){\r
+ fromsd[bufindw] = true;\r
+ buflen += 1;\r
+ bufindw = (bufindw + 1)%BUFSIZE;\r
+ }\r
+ comment_mode = false; //for new command\r
+ serial_count = 0; //clear buffer\r
+ }\r
+ else\r
+ {\r
+ if(serial_char == ';') comment_mode = true;\r
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;\r
+ }\r
+ }\r
+#endif //SDSUPPORT\r
+\r
+}\r
+\r
+\r
+inline float code_value() { \r
+ return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); \r
+}\r
+inline long code_value_long() { \r
+ return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); \r
+}\r
+inline bool code_seen(char code_string[]) { \r
+ return (strstr(cmdbuffer[bufindr], code_string) != NULL); \r
+} //Return True if the string was found\r
+\r
+inline bool code_seen(char code)\r
+{\r
+ strchr_pointer = strchr(cmdbuffer[bufindr], code);\r
+ return (strchr_pointer != NULL); //Return True if a character was found\r
+}\r
+\r
+inline void process_commands()\r
+{\r
+ unsigned long codenum; //throw away variable\r
+ char *starpos = NULL;\r
+\r
+ if(code_seen('G'))\r
+ {\r
+ switch((int)code_value())\r
+ {\r
+ case 0: // G0 -> G1\r
+ case 1: // G1\r
+ get_coordinates(); // For X Y Z E F\r
+ prepare_move();\r
+ previous_millis_cmd = millis();\r
+ //ClearToSend();\r
+ return;\r
+ //break;\r
+ case 4: // G4 dwell\r
+ codenum = 0;\r
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait\r
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait\r
+ codenum += millis(); // keep track of when we started waiting\r
+ while(millis() < codenum ){\r
+ manage_heater();\r
+ }\r
+ break;\r
+ case 28: //G28 Home all Axis one at a time\r
+ saved_feedrate = feedrate;\r
+ saved_feedmultiply = feedmultiply;\r
+ feedmultiply = 100;\r
+ \r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ destination[i] = current_position[i];\r
+ }\r
+ feedrate = 0.0;\r
+\r
+ home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));\r
+\r
+ if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {\r
+ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){\r
+// st_synchronize();\r
+ current_position[X_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;\r
+ feedrate = homing_feedrate[X_AXIS];\r
+ prepare_move();\r
+ \r
+// st_synchronize(); \r
+ current_position[X_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[X_AXIS] = -5 * X_HOME_DIR;\r
+ prepare_move();\r
+ \r
+// st_synchronize(); \r
+ destination[X_AXIS] = 10 * X_HOME_DIR;\r
+ feedrate = homing_feedrate[X_AXIS]/2 ;\r
+ prepare_move();\r
+ \r
+// st_synchronize();\r
+ current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[X_AXIS] = current_position[X_AXIS];\r
+ feedrate = 0.0;\r
+ }\r
+ }\r
+\r
+ if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {\r
+ if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){\r
+ current_position[Y_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;\r
+ feedrate = homing_feedrate[Y_AXIS];\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ current_position[Y_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Y_AXIS] = -5 * Y_HOME_DIR;\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ destination[Y_AXIS] = 10 * Y_HOME_DIR;\r
+ feedrate = homing_feedrate[Y_AXIS]/2;\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Y_AXIS] = current_position[Y_AXIS];\r
+ feedrate = 0.0;\r
+ }\r
+ }\r
+\r
+ if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {\r
+ if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){\r
+ current_position[Z_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;\r
+ feedrate = homing_feedrate[Z_AXIS];\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ current_position[Z_AXIS] = 0;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Z_AXIS] = -2 * Z_HOME_DIR;\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ destination[Z_AXIS] = 3 * Z_HOME_DIR;\r
+ feedrate = homing_feedrate[Z_AXIS]/2;\r
+ prepare_move();\r
+// st_synchronize();\r
+\r
+ current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ destination[Z_AXIS] = current_position[Z_AXIS];\r
+ feedrate = 0.0; \r
+ }\r
+ } \r
+ feedrate = saved_feedrate;\r
+ feedmultiply = saved_feedmultiply;\r
+ previous_millis_cmd = millis();\r
+ break;\r
+ case 90: // G90\r
+ relative_mode = false;\r
+ break;\r
+ case 91: // G91\r
+ relative_mode = true;\r
+ break;\r
+ case 92: // G92\r
+ if(!code_seen(axis_codes[E_AXIS])) \r
+ st_synchronize();\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) current_position[i] = code_value(); \r
+ }\r
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
+ break;\r
+ }\r
+ }\r
+\r
+ else if(code_seen('M'))\r
+ {\r
+\r
+ switch( (int)code_value() ) \r
+ {\r
+#ifdef SDSUPPORT\r
+\r
+ case 20: // M20 - list SD card\r
+ Serial.println("Begin file list");\r
+ root.ls();\r
+ Serial.println("End file list");\r
+ break;\r
+ case 21: // M21 - init SD card\r
+ sdmode = false;\r
+ initsd();\r
+ break;\r
+ case 22: //M22 - release SD card\r
+ sdmode = false;\r
+ sdactive = false;\r
+ break;\r
+ case 23: //M23 - Select file\r
+ if(sdactive){\r
+ sdmode = false;\r
+ file.close();\r
+ starpos = (strchr(strchr_pointer + 4,'*'));\r
+ if(starpos!=NULL)\r
+ *(starpos-1)='\0';\r
+ if (file.open(&root, strchr_pointer + 4, O_READ)) {\r
+ Serial.print("File opened:");\r
+ Serial.print(strchr_pointer + 4);\r
+ Serial.print(" Size:");\r
+ Serial.println(file.fileSize());\r
+ sdpos = 0;\r
+ filesize = file.fileSize();\r
+ Serial.println("File selected");\r
+ }\r
+ else{\r
+ Serial.println("file.open failed");\r
+ }\r
+ }\r
+ break;\r
+ case 24: //M24 - Start SD print\r
+ if(sdactive){\r
+ sdmode = true;\r
+ starttime=millis();\r
+ }\r
+ break;\r
+ case 25: //M25 - Pause SD print\r
+ if(sdmode){\r
+ sdmode = false;\r
+ }\r
+ break;\r
+ case 26: //M26 - Set SD index\r
+ if(sdactive && code_seen('S')){\r
+ sdpos = code_value_long();\r
+ file.seekSet(sdpos);\r
+ }\r
+ break;\r
+ case 27: //M27 - Get SD status\r
+ if(sdactive){\r
+ Serial.print("SD printing byte ");\r
+ Serial.print(sdpos);\r
+ Serial.print("/");\r
+ Serial.println(filesize);\r
+ }\r
+ else{\r
+ Serial.println("Not SD printing");\r
+ }\r
+ break;\r
+ case 28: //M28 - Start SD write\r
+ if(sdactive){\r
+ char* npos = 0;\r
+ file.close();\r
+ sdmode = false;\r
+ starpos = (strchr(strchr_pointer + 4,'*'));\r
+ if(starpos != NULL){\r
+ npos = strchr(cmdbuffer[bufindr], 'N');\r
+ strchr_pointer = strchr(npos,' ') + 1;\r
+ *(starpos-1) = '\0';\r
+ }\r
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))\r
+ {\r
+ Serial.print("open failed, File: ");\r
+ Serial.print(strchr_pointer + 4);\r
+ Serial.print(".");\r
+ }\r
+ else{\r
+ savetosd = true;\r
+ Serial.print("Writing to file: ");\r
+ Serial.println(strchr_pointer + 4);\r
+ }\r
+ }\r
+ break;\r
+ case 29: //M29 - Stop SD write\r
+ //processed in write to file routine above\r
+ //savetosd = false;\r
+ break;\r
+ case 30:\r
+ {\r
+ stoptime=millis();\r
+ char time[30];\r
+ unsigned long t=(stoptime-starttime)/1000;\r
+ int sec,min;\r
+ min=t/60;\r
+ sec=t%60;\r
+ sprintf(time,"%i min, %i sec",min,sec);\r
+ Serial.println(time);\r
+ LCD_MESSAGE(time);\r
+ }\r
+ break;\r
+#endif //SDSUPPORT\r
+ case 42: //M42 -Change pin status via gcode\r
+ if (code_seen('S'))\r
+ {\r
+ int pin_status = code_value();\r
+ if (code_seen('P') && pin_status >= 0 && pin_status <= 255)\r
+ {\r
+ int pin_number = code_value();\r
+ for(int i = 0; i < (int)sizeof(sensitive_pins); i++)\r
+ {\r
+ if (sensitive_pins[i] == pin_number)\r
+ {\r
+ pin_number = -1;\r
+ break;\r
+ }\r
+ }\r
+ \r
+ if (pin_number > -1)\r
+ { \r
+ pinMode(pin_number, OUTPUT);\r
+ digitalWrite(pin_number, pin_status);\r
+ analogWrite(pin_number, pin_status);\r
+ }\r
+ }\r
+ }\r
+ break;\r
+ case 104: // M104\r
+ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());\r
+#ifdef PIDTEMP\r
+ pid_setpoint = code_value();\r
+#endif //PIDTEM\r
+ #ifdef WATCHPERIOD\r
+ if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){\r
+ watchmillis = max(1,millis());\r
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];\r
+ }else{\r
+ watchmillis = 0;\r
+ }\r
+ #endif\r
+ break;\r
+ case 140: // M140 set bed temp\r
+ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());\r
+ break;\r
+ case 105: // M105\r
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)\r
+ tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);\r
+ #endif\r
+ #if TEMP_1_PIN > -1\r
+ bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);\r
+ #endif\r
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)\r
+ Serial.print("ok T:");\r
+ Serial.print(tt); \r
+// Serial.print(", raw:");\r
+// Serial.print(current_raw); \r
+ #if TEMP_1_PIN > -1 \r
+#ifdef PIDTEMP\r
+ Serial.print(" B:");\r
+ #if TEMP_1_PIN > -1\r
+ Serial.println(bt); \r
+ #else\r
+ Serial.println(HeaterPower); \r
+ #endif\r
+#else\r
+ Serial.println();\r
+#endif\r
+ #else\r
+ Serial.println();\r
+ #endif\r
+ #else\r
+ Serial.println("No thermistors - no temp");\r
+ #endif\r
+ return;\r
+ //break;\r
+ case 109: {// M109 - Wait for extruder heater to reach target.\r
+ LCD_MESSAGE("Heating...");\r
+ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());\r
+ #ifdef PIDTEMP\r
+ pid_setpoint = code_value();\r
+ #endif //PIDTEM\r
+ #ifdef WATCHPERIOD\r
+ if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){\r
+ watchmillis = max(1,millis());\r
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];\r
+ } else {\r
+ watchmillis = 0;\r
+ }\r
+ #endif //WATCHPERIOD\r
+ codenum = millis(); \r
+ \r
+ /* See if we are heating up or cooling down */\r
+ bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling\r
+\r
+ #ifdef TEMP_RESIDENCY_TIME\r
+ long residencyStart;\r
+ residencyStart = -1;\r
+ /* continue to loop until we have reached the target temp \r
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */\r
+ while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||\r
+ (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {\r
+ #else\r
+ while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {\r
+ #endif //TEMP_RESIDENCY_TIME\r
+ if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down\r
+ Serial.print("T:");\r
+ Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) ); \r
+ codenum = millis();\r
+ }\r
+ manage_heater();\r
+ LCD_STATUS;\r
+ #ifdef TEMP_RESIDENCY_TIME\r
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time\r
+ or when current temp falls outside the hysteresis after target temp was reached */\r
+ if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||\r
+ (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||\r
+ (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {\r
+ residencyStart = millis();\r
+ }\r
+ #endif //TEMP_RESIDENCY_TIME\r
+ }\r
+ LCD_MESSAGE("Marlin ready.");\r
+ }\r
+ break;\r
+ case 190: // M190 - Wait bed for heater to reach target.\r
+ #if TEMP_1_PIN > -1\r
+ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());\r
+ codenum = millis(); \r
+ while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED]) \r
+ {\r
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.\r
+ {\r
+ float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);\r
+ Serial.print("T:");\r
+ Serial.println( tt );\r
+ Serial.print("ok T:");\r
+ Serial.print( tt ); \r
+ Serial.print(" B:");\r
+ Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) ); \r
+ codenum = millis(); \r
+ }\r
+ manage_heater();\r
+ }\r
+ #endif\r
+ break;\r
+#if FAN_PIN > -1\r
+ case 106: //M106 Fan On\r
+ if (code_seen('S')){\r
+ WRITE(FAN_PIN,HIGH);\r
+ fanpwm=constrain(code_value(),0,255);\r
+ analogWrite(FAN_PIN, fanpwm);\r
+ }\r
+ else {\r
+ WRITE(FAN_PIN,HIGH);\r
+ fanpwm=255;\r
+ analogWrite(FAN_PIN, fanpwm); \r
+ }\r
+ break;\r
+ case 107: //M107 Fan Off\r
+ WRITE(FAN_PIN,LOW);\r
+ analogWrite(FAN_PIN, 0);\r
+ break;\r
+#endif\r
+#if (PS_ON_PIN > -1)\r
+ case 80: // M80 - ATX Power On\r
+ SET_OUTPUT(PS_ON_PIN); //GND\r
+ break;\r
+ case 81: // M81 - ATX Power Off\r
+ SET_INPUT(PS_ON_PIN); //Floating\r
+ break;\r
+#endif\r
+ case 82:\r
+ axis_relative_modes[3] = false;\r
+ break;\r
+ case 83:\r
+ axis_relative_modes[3] = true;\r
+ break;\r
+ case 18:\r
+ case 84:\r
+ if(code_seen('S')){ \r
+ stepper_inactive_time = code_value() * 1000; \r
+ }\r
+ else{ \r
+ st_synchronize(); \r
+ disable_x(); \r
+ disable_y(); \r
+ disable_z(); \r
+ disable_e(); \r
+ }\r
+ break;\r
+ case 85: // M85\r
+ code_seen('S');\r
+ max_inactive_time = code_value() * 1000; \r
+ break;\r
+ case 92: // M92\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();\r
+ }\r
+\r
+ break;\r
+ case 115: // M115\r
+ Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");\r
+ break;\r
+ case 114: // M114\r
+ Serial.print("X:");\r
+ Serial.print(current_position[X_AXIS]);\r
+ Serial.print("Y:");\r
+ Serial.print(current_position[Y_AXIS]);\r
+ Serial.print("Z:");\r
+ Serial.print(current_position[Z_AXIS]);\r
+ Serial.print("E:"); \r
+ Serial.print(current_position[E_AXIS]);\r
+ #ifdef DEBUG_STEPS\r
+ Serial.print(" Count X:");\r
+ Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);\r
+ Serial.print("Y:");\r
+ Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);\r
+ Serial.print("Z:");\r
+ Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);\r
+ #endif\r
+ Serial.println("");\r
+ break;\r
+ case 119: // M119\r
+#if (X_MIN_PIN > -1)\r
+ Serial.print("x_min:");\r
+ Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+#if (X_MAX_PIN > -1)\r
+ Serial.print("x_max:");\r
+ Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+#if (Y_MIN_PIN > -1)\r
+ Serial.print("y_min:");\r
+ Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+#if (Y_MAX_PIN > -1)\r
+ Serial.print("y_max:");\r
+ Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+#if (Z_MIN_PIN > -1)\r
+ Serial.print("z_min:");\r
+ Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+#if (Z_MAX_PIN > -1)\r
+ Serial.print("z_max:");\r
+ Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
+#endif\r
+ Serial.println("");\r
+ break;\r
+ //TODO: update for all axis, use for loop\r
+ case 201: // M201\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];\r
+ }\r
+ break;\r
+#if 0 // Not used for Sprinter/grbl gen6\r
+ case 202: // M202\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];\r
+ }\r
+ break;\r
+#endif\r
+ case 203: // M203 max feedrate mm/sec\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;\r
+ }\r
+ break;\r
+ case 204: // M204 acclereration S normal moves T filmanent only moves\r
+ {\r
+ if(code_seen('S')) acceleration = code_value() ;\r
+ if(code_seen('T')) retract_acceleration = code_value() ;\r
+ }\r
+ break;\r
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk\r
+ {\r
+ if(code_seen('S')) minimumfeedrate = code_value()*60 ;\r
+ if(code_seen('T')) mintravelfeedrate = code_value()*60 ;\r
+ if(code_seen('B')) minsegmenttime = code_value() ;\r
+ if(code_seen('X')) max_xy_jerk = code_value()*60 ;\r
+ if(code_seen('Z')) max_z_jerk = code_value()*60 ;\r
+ }\r
+ break;\r
+ case 220: // M220 S<factor in percent>- set speed factor override percentage\r
+ {\r
+ if(code_seen('S')) \r
+ {\r
+ feedmultiply = code_value() ;\r
+ feedmultiplychanged=true;\r
+ }\r
+ }\r
+ break;\r
+#ifdef PIDTEMP\r
+ case 301: // M301\r
+ if(code_seen('P')) Kp = code_value();\r
+ if(code_seen('I')) Ki = code_value()*PID_dT;\r
+ if(code_seen('D')) Kd = code_value()/PID_dT;\r
+// ECHOLN("Kp "<<_FLOAT(Kp,2));\r
+// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));\r
+// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));\r
+\r
+// temp_iState_min = 0.0;\r
+// if (Ki!=0) {\r
+// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);\r
+// }\r
+// else temp_iState_max = 1.0e10;\r
+ break;\r
+#endif //PIDTEMP\r
+ case 500: // Store settings in EEPROM\r
+ {\r
+ StoreSettings();\r
+ }\r
+ break;\r
+ case 501: // Read settings from EEPROM\r
+ {\r
+ RetrieveSettings();\r
+ }\r
+ break;\r
+ case 502: // Revert to default settings\r
+ {\r
+ RetrieveSettings(true);\r
+ }\r
+ break;\r
+\r
+ }\r
+ }\r
+ else{\r
+ Serial.println("Unknown command:");\r
+ Serial.println(cmdbuffer[bufindr]);\r
+ }\r
+\r
+ ClearToSend();\r
+}\r
+\r
+void FlushSerialRequestResend()\r
+{\r
+ //char cmdbuffer[bufindr][100]="Resend:";\r
+ Serial.flush();\r
+ Serial.print("Resend:");\r
+ Serial.println(gcode_LastN + 1);\r
+ ClearToSend();\r
+}\r
+\r
+void ClearToSend()\r
+{\r
+ previous_millis_cmd = millis();\r
+#ifdef SDSUPPORT\r
+ if(fromsd[bufindr])\r
+ return;\r
+#endif //SDSUPPORT\r
+ Serial.println("ok"); \r
+}\r
+\r
+inline void get_coordinates()\r
+{\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];\r
+ else destination[i] = current_position[i]; //Are these else lines really needed?\r
+ }\r
+ if(code_seen('F')) {\r
+ next_feedrate = code_value();\r
+ if(next_feedrate > 0.0) feedrate = next_feedrate;\r
+ }\r
+}\r
+\r
+void prepare_move()\r
+{\r
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);\r
+ for(int i=0; i < NUM_AXIS; i++) {\r
+ current_position[i] = destination[i];\r
+ }\r
+}\r
+\r
+\r
+\r
+#ifdef USE_WATCHDOG\r
+\r
+#include <avr/wdt.h>\r
+#include <avr/interrupt.h>\r
+\r
+volatile uint8_t timeout_seconds=0;\r
+\r
+void(* ctrlaltdelete) (void) = 0;\r
+\r
+ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec\r
+ if(timeout_seconds++ >= WATCHDOG_TIMEOUT)\r
+ {\r
+ kill();\r
+#ifdef RESET_MANUAL\r
+ LCD_MESSAGE("Please Reset!");\r
+ ECHOLN("echo_: Something is wrong, please turn off the printer.");\r
+#else\r
+ LCD_MESSAGE("Timeout, resetting!");\r
+#endif \r
+ //disable watchdog, it will survife reboot.\r
+ WDTCSR |= (1<<WDCE) | (1<<WDE);\r
+ WDTCSR = 0;\r
+#ifdef RESET_MANUAL\r
+ while(1); //wait for user or serial reset\r
+#else\r
+ ctrlaltdelete();\r
+#endif\r
+ }\r
+}\r
+\r
+/// intialise watch dog with a 1 sec interrupt time\r
+void wd_init() {\r
+ WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes\r
+ WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);\r
+}\r
+\r
+/// reset watchdog. MUST be called every 1s after init or avr will reset.\r
+void wd_reset() {\r
+ wdt_reset();\r
+ timeout_seconds=0; //reset counter for resets\r
+}\r
+#endif /* USE_WATCHDOG */\r
+\r
+\r
+inline void kill()\r
+{\r
+ #if TEMP_0_PIN > -1\r
+ target_raw[0]=0;\r
+ #if HEATER_0_PIN > -1 \r
+ WRITE(HEATER_0_PIN,LOW);\r
+ #endif\r
+ #endif\r
+ #if TEMP_1_PIN > -1\r
+ target_raw[1]=0;\r
+ #if HEATER_1_PIN > -1 \r
+ WRITE(HEATER_1_PIN,LOW);\r
+ #endif\r
+ #endif\r
+ #if TEMP_2_PIN > -1\r
+ target_raw[2]=0;\r
+ #if HEATER_2_PIN > -1 \r
+ WRITE(HEATER_2_PIN,LOW);\r
+ #endif\r
+ #endif\r
+ disable_x();\r
+ disable_y();\r
+ disable_z();\r
+ disable_e();\r
+ \r
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);\r
+ Serial.println("!! Printer halted. kill() called!!");\r
+ while(1); // Wait for reset\r
+}\r
+\r
+void manage_inactivity(byte debug) { \r
+ if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); \r
+ if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { \r
+ disable_x(); \r
+ disable_y(); \r
+ disable_z(); \r
+ disable_e(); \r
+ }\r
+ check_axes_activity();\r
+}\r\r
-/*
- temperature.c - temperature control
- Part of Marlin
-
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
-
- This firmware is optimized for gen6 electronics.
- */
-
-#include "fastio.h"
-#include "Configuration.h"
-#include "pins.h"
-#include "Marlin.h"
-#include "ultralcd.h"
-#include "streaming.h"
-#include "temperature.h"
-
-int target_bed_raw = 0;
-int current_bed_raw = 0;
-
-int target_raw[3] = {0, 0, 0};
-int current_raw[3] = {0, 0, 0};
-unsigned char temp_meas_ready = false;
-
-unsigned long previous_millis_heater, previous_millis_bed_heater;
-
-#ifdef PIDTEMP
- double temp_iState = 0;
- double temp_dState = 0;
- double pTerm;
- double iTerm;
- double dTerm;
- //int output;
- double pid_error;
- double temp_iState_min;
- double temp_iState_max;
- double pid_setpoint = 0.0;
- double pid_input;
- double pid_output;
- bool pid_reset;
- float HeaterPower;
-
- float Kp=DEFAULT_Kp;
- float Ki=DEFAULT_Ki;
- float Kd=DEFAULT_Kd;
- float Kc=DEFAULT_Kc;
-#endif //PIDTEMP
-
-#ifdef HEATER_0_MINTEMP
-int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
-#endif //MINTEMP
-#ifdef HEATER_0_MAXTEMP
-int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
-#endif //MAXTEMP
-
-#ifdef HEATER_1_MINTEMP
-int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
-#endif //MINTEMP
-#ifdef HEATER_1_MAXTEMP
-int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
-#endif //MAXTEMP
-
-#ifdef BED_MINTEMP
-int bed_minttemp = temp2analog(BED_MINTEMP);
-#endif //BED_MINTEMP
-#ifdef BED_MAXTEMP
-int bed_maxttemp = temp2analog(BED_MAXTEMP);
-#endif //BED_MAXTEMP
-
-void manage_heater()
-{
-#ifdef USE_WATCHDOG
- wd_reset();
-#endif
-
- float pid_input;
- float pid_output;
- if(temp_meas_ready != true) //better readability
- return;
-
-CRITICAL_SECTION_START;
- temp_meas_ready = false;
-CRITICAL_SECTION_END;
-
-#ifdef PIDTEMP
- pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
-
-#ifndef PID_OPENLOOP
- pid_error = pid_setpoint - pid_input;
- if(pid_error > 10){
- pid_output = PID_MAX;
- pid_reset = true;
- }
- else if(pid_error < -10) {
- pid_output = 0;
- pid_reset = true;
- }
- else {
- if(pid_reset == true) {
- temp_iState = 0.0;
- pid_reset = false;
- }
- pTerm = Kp * pid_error;
- temp_iState += pid_error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = Ki * temp_iState;
- //K1 defined in Configuration.h in the PID settings
- #define K2 (1.0-K1)
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
- temp_dState = pid_input;
- #ifdef PID_ADD_EXTRUSION_RATE
- pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
- #endif
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
- }
-#endif //PID_OPENLOOP
-#ifdef PID_DEBUG
- Serial.print(" Input ");
- Serial.print(pid_input);
- Serial.print(" Output ");
- Serial.print(pid_output);
- Serial.print(" pTerm ");
- Serial.print(pTerm);
- Serial.print(" iTerm ");
- Serial.print(iTerm);
- Serial.print(" dTerm ");
- Serial.print(dTerm);
- Serial.println();
-#endif //PID_DEBUG
- analogWrite(HEATER_0_PIN, pid_output);
-#endif //PIDTEMP
-
-#ifndef PIDTEMP
- if(current_raw[0] >= target_raw[0])
- {
- WRITE(HEATER_0_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_0_PIN,HIGH);
- }
-#endif
-
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
- return;
- previous_millis_bed_heater = millis();
-
- #if TEMP_1_PIN > -1
- if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
- {
- WRITE(HEATER_1_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_1_PIN,HIGH);
- }
- #endif
- }
-
-// Takes hot end temperature value as input and returns corresponding raw value.
-// For a thermistor, it uses the RepRap thermistor temp table.
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
-int temp2analog(int celsius) {
- #ifdef HEATER_0_USES_THERMISTOR
- int raw = 0;
- byte i;
-
- for (i=1; i<NUMTEMPS_HEATER_0; i++)
- {
- if (heater_0_temptable[i][1] < celsius)
- {
- raw = heater_0_temptable[i-1][0] +
- (celsius - heater_0_temptable[i-1][1]) *
- (heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
- (heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS_0) raw = heater_0_temptable[i-1][0];
-
- return (1023 * OVERSAMPLENR) - raw;
- #elif defined HEATER_0_USES_AD595
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
- #endif
-}
-
-// Takes bed temperature value as input and returns corresponding raw value.
-// For a thermistor, it uses the RepRap thermistor temp table.
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
-int temp2analogBed(int celsius) {
- #ifdef BED_USES_THERMISTOR
-
- int raw = 0;
- byte i;
-
- for (i=1; i<BNUMTEMPS; i++)
- {
- if (bedtemptable[i][1] < celsius)
- {
- raw = bedtemptable[i-1][0] +
- (celsius - bedtemptable[i-1][1]) *
- (bedtemptable[i][0] - bedtemptable[i-1][0]) /
- (bedtemptable[i][1] - bedtemptable[i-1][1]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
-
- return (1023 * OVERSAMPLENR) - raw;
- #elif defined BED_USES_AD595
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
- #endif
-}
-
-// Derived from RepRap FiveD extruder::getTemperature()
-// For hot end temperature measurement.
-float analog2temp(int raw) {
- #ifdef HEATER_0_USES_THERMISTOR
- float celsius = 0;
- byte i;
- raw = (1023 * OVERSAMPLENR) - raw;
- for (i=1; i<NUMTEMPS_HEATER_0; i++)
- {
- if (heater_0_temptable[i][0] > raw)
- {
- celsius = heater_0_temptable[i-1][1] +
- (raw - heater_0_temptable[i-1][0]) *
- (float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
- (float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
-
- return celsius;
- #elif defined HEATER_0_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
- #endif
-}
-
-// Derived from RepRap FiveD extruder::getTemperature()
-// For bed temperature measurement.
-float analog2tempBed(int raw) {
- #ifdef BED_USES_THERMISTOR
- int celsius = 0;
- byte i;
-
- raw = (1023 * OVERSAMPLENR) - raw;
-
- for (i=1; i<BNUMTEMPS; i++)
- {
- if (bedtemptable[i][0] > raw)
- {
- celsius = bedtemptable[i-1][1] +
- (raw - bedtemptable[i-1][0]) *
- (bedtemptable[i][1] - bedtemptable[i-1][1]) /
- (bedtemptable[i][0] - bedtemptable[i-1][0]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
-
- return celsius;
-
- #elif defined BED_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
- #endif
-}
-
-void tp_init()
-{
-#if (HEATER_0_PIN > -1)
- SET_OUTPUT(HEATER_0_PIN);
-#endif
-#if (HEATER_1_PIN > -1)
- SET_OUTPUT(HEATER_1_PIN);
-#endif
-#if (HEATER_2_PIN > -1)
- SET_OUTPUT(HEATER_2_PIN);
-#endif
-
-#ifdef PIDTEMP
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
-#endif //PIDTEMP
-
-// Set analog inputs
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
-
-// Use timer0 for temperature measurement
-// Interleave temperature interrupt with millies interrupt
- OCR0B = 128;
- TIMSK0 |= (1<<OCIE0B);
-}
-
-
-
-// Timer 0 is shared with millies
-ISR(TIMER0_COMPB_vect)
-{
- //these variables are only accesible from the ISR, but static, so they don't loose their value
- static unsigned char temp_count = 0;
- static unsigned long raw_temp_0_value = 0;
- static unsigned long raw_temp_1_value = 0;
- static unsigned long raw_temp_2_value = 0;
- static unsigned char temp_state = 0;
-
- switch(temp_state) {
- case 0: // Prepare TEMP_0
- #if (TEMP_0_PIN > -1)
- #if TEMP_0_PIN < 8
- DIDR0 = 1 << TEMP_0_PIN;
- #else
- DIDR2 = 1<<(TEMP_0_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 1;
- break;
- case 1: // Measure TEMP_0
- #if (TEMP_0_PIN > -1)
- raw_temp_0_value += ADC;
- #endif
- temp_state = 2;
- break;
- case 2: // Prepare TEMP_1
- #if (TEMP_1_PIN > -1)
- #if TEMP_1_PIN < 7
- DIDR0 = 1<<TEMP_1_PIN;
- #else
- DIDR2 = 1<<(TEMP_1_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 3;
- break;
- case 3: // Measure TEMP_1
- #if (TEMP_1_PIN > -1)
- raw_temp_1_value += ADC;
- #endif
- temp_state = 4;
- break;
- case 4: // Prepare TEMP_2
- #if (TEMP_2_PIN > -1)
- #if TEMP_2_PIN < 7
- DIDR0 = 1 << TEMP_2_PIN;
- #else
- DIDR2 = 1<<(TEMP_2_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 5;
- break;
- case 5: // Measure TEMP_2
- #if (TEMP_2_PIN > -1)
- raw_temp_2_value += ADC;
- #endif
- temp_state = 0;
- temp_count++;
- break;
- default:
- Serial.println("!! Temp measurement error !!");
- break;
- }
-
- if(temp_count >= 16) // 6 ms * 16 = 96ms.
- {
- #ifdef HEATER_0_USES_AD595
- current_raw[0] = raw_temp_0_value;
- #else
- current_raw[0] = 16383 - raw_temp_0_value;
- #endif
-
- #ifdef HEATER_1_USES_AD595
- current_raw[2] = raw_temp_2_value;
- #else
- current_raw[2] = 16383 - raw_temp_2_value;
- #endif
-
- #ifdef BED_USES_AD595
- current_raw[1] = raw_temp_1_value;
- #else
- current_raw[1] = 16383 - raw_temp_1_value;
- #endif
-
- temp_meas_ready = true;
- temp_count = 0;
- raw_temp_0_value = 0;
- raw_temp_1_value = 0;
- raw_temp_2_value = 0;
-#ifdef HEATER_0_MAXTEMP
- #if (HEATER_0_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND] >= maxttemp) {
- target_raw[TEMPSENSOR_HOTEND] = 0;
- analogWrite(HEATER_0_PIN, 0);
- Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
- kill();
- }
- #endif
-#endif
- if(current_raw[TEMPSENSOR_AUX] >= maxttemp) {
- target_raw[TEMPSENSOR_AUX] = 0;
- if(current_raw[2] >= maxttemp_1) {
- analogWrite(HEATER_2_PIN, 0);
- Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
- kill()
- }
- #endif
-#endif //MAXTEMP
-#ifdef HEATER_0_MINTEMP
- #if (HEATER_0_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND] <= minttemp) {
- target_raw[TEMPSENSOR_HOTEND] = 0;
- analogWrite(HEATER_0_PIN, 0);
- Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
-#endif
-#ifdef HEATER_1_MINTEMP
- #if (HEATER_2_PIN > -1)
- if(current_raw[TEMPSENSOR_AUX] <= minttemp) {
- target_raw[TEMPSENSOR_AUX] = 0;
- analogWrite(HEATER_2_PIN, 0);
- Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
-#endif //MAXTEMP
-#ifdef BED_MINTEMP
- #if (HEATER_1_PIN > -1)
- if(current_raw[1] <= bed_minttemp) {
- target_raw[1] = 0;
- WRITE(HEATER_1_PIN, 0);
- Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
-#endif
-#ifdef BED_MAXTEMP
- #if (HEATER_1_PIN > -1)
- if(current_raw[1] >= bed_maxttemp) {
- target_raw[1] = 0;
- WRITE(HEATER_1_PIN, 0);
- Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
- kill();
- }
- #endif
-#endif
- }
-}
+/*\r
+ temperature.c - temperature control\r
+ Part of Marlin\r
+ \r
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm\r
+ \r
+ This program is free software: you can redistribute it and/or modify\r
+ it under the terms of the GNU General Public License as published by\r
+ the Free Software Foundation, either version 3 of the License, or\r
+ (at your option) any later version.\r
+ \r
+ This program is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
+ GNU General Public License for more details.\r
+ \r
+ You should have received a copy of the GNU General Public License\r
+ along with this program. If not, see <http://www.gnu.org/licenses/>.\r
+ */\r
+\r
+/*\r
+ This firmware is a mashup between Sprinter and grbl.\r
+ (https://github.com/kliment/Sprinter)\r
+ (https://github.com/simen/grbl/tree)\r
+ \r
+ It has preliminary support for Matthew Roberts advance algorithm \r
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html\r
+\r
+ This firmware is optimized for gen6 electronics.\r
+ */\r
+\r
+#include "fastio.h"\r
+#include "Configuration.h"\r
+#include "pins.h"\r
+#include "Marlin.h"\r
+#include "ultralcd.h"\r
+#include "streaming.h"\r
+#include "temperature.h"\r
+\r
+int target_bed_raw = 0;\r
+int current_bed_raw = 0;\r
+\r
+int target_raw[3] = {0, 0, 0};\r
+int current_raw[3] = {0, 0, 0};\r
+unsigned char temp_meas_ready = false;\r
+\r
+unsigned long previous_millis_heater, previous_millis_bed_heater;\r
+\r
+#ifdef PIDTEMP\r
+ double temp_iState = 0;\r
+ double temp_dState = 0;\r
+ double pTerm;\r
+ double iTerm;\r
+ double dTerm;\r
+ //int output;\r
+ double pid_error;\r
+ double temp_iState_min;\r
+ double temp_iState_max;\r
+ double pid_setpoint = 0.0;\r
+ double pid_input;\r
+ double pid_output;\r
+ bool pid_reset;\r
+ float HeaterPower;\r
+ \r
+ float Kp=DEFAULT_Kp;\r
+ float Ki=DEFAULT_Ki;\r
+ float Kd=DEFAULT_Kd;\r
+ float Kc=DEFAULT_Kc;\r
+#endif //PIDTEMP\r
+\r
+#ifdef HEATER_0_MINTEMP\r
+int minttemp_0 = temp2analog(HEATER_0_MINTEMP);\r
+#endif //MINTEMP\r
+#ifdef HEATER_0_MAXTEMP\r
+int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);\r
+#endif //MAXTEMP\r
+\r
+#ifdef HEATER_1_MINTEMP\r
+int minttemp_1 = temp2analog(HEATER_1_MINTEMP);\r
+#endif //MINTEMP\r
+#ifdef HEATER_1_MAXTEMP\r
+int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);\r
+#endif //MAXTEMP\r
+\r
+#ifdef BED_MINTEMP\r
+int bed_minttemp = temp2analog(BED_MINTEMP);\r
+#endif //BED_MINTEMP\r
+#ifdef BED_MAXTEMP\r
+int bed_maxttemp = temp2analog(BED_MAXTEMP);\r
+#endif //BED_MAXTEMP\r
+\r
+void manage_heater()\r
+{\r
+#ifdef USE_WATCHDOG\r
+ wd_reset();\r
+#endif\r
+ \r
+ float pid_input;\r
+ float pid_output;\r
+ if(temp_meas_ready != true) //better readability\r
+ return; \r
+\r
+CRITICAL_SECTION_START;\r
+ temp_meas_ready = false;\r
+CRITICAL_SECTION_END;\r
+\r
+#ifdef PIDTEMP\r
+ pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);\r
+\r
+#ifndef PID_OPENLOOP\r
+ pid_error = pid_setpoint - pid_input;\r
+ if(pid_error > 10){\r
+ pid_output = PID_MAX;\r
+ pid_reset = true;\r
+ }\r
+ else if(pid_error < -10) {\r
+ pid_output = 0;\r
+ pid_reset = true;\r
+ }\r
+ else {\r
+ if(pid_reset == true) {\r
+ temp_iState = 0.0;\r
+ pid_reset = false;\r
+ }\r
+ pTerm = Kp * pid_error;\r
+ temp_iState += pid_error;\r
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);\r
+ iTerm = Ki * temp_iState;\r
+ //K1 defined in Configuration.h in the PID settings\r
+ #define K2 (1.0-K1)\r
+ dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);\r
+ temp_dState = pid_input;\r
+ #ifdef PID_ADD_EXTRUSION_RATE\r
+ pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high\r
+ #endif\r
+ pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);\r
+ }\r
+#endif //PID_OPENLOOP\r
+#ifdef PID_DEBUG\r
+ Serial.print(" Input ");\r
+ Serial.print(pid_input);\r
+ Serial.print(" Output ");\r
+ Serial.print(pid_output); \r
+ Serial.print(" pTerm ");\r
+ Serial.print(pTerm); \r
+ Serial.print(" iTerm ");\r
+ Serial.print(iTerm); \r
+ Serial.print(" dTerm ");\r
+ Serial.print(dTerm); \r
+ Serial.println();\r
+#endif //PID_DEBUG\r
+ analogWrite(HEATER_0_PIN, pid_output);\r
+#endif //PIDTEMP\r
+\r
+#ifndef PIDTEMP\r
+ if(current_raw[0] >= target_raw[0])\r
+ {\r
+ WRITE(HEATER_0_PIN,LOW);\r
+ }\r
+ else \r
+ {\r
+ WRITE(HEATER_0_PIN,HIGH);\r
+ }\r
+#endif\r
+ \r
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)\r
+ return;\r
+ previous_millis_bed_heater = millis();\r
+ \r
+ #if TEMP_1_PIN > -1\r
+ if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])\r
+ {\r
+ WRITE(HEATER_1_PIN,LOW);\r
+ }\r
+ else \r
+ {\r
+ WRITE(HEATER_1_PIN,HIGH);\r
+ }\r
+ #endif\r
+ }\r
+\r
+// Takes hot end temperature value as input and returns corresponding raw value. \r
+// For a thermistor, it uses the RepRap thermistor temp table.\r
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
+int temp2analog(int celsius) {\r
+ #ifdef HEATER_0_USES_THERMISTOR\r
+ int raw = 0;\r
+ byte i;\r
+ \r
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)\r
+ {\r
+ if (heater_0_temptable[i][1] < celsius)\r
+ {\r
+ raw = heater_0_temptable[i-1][0] + \r
+ (celsius - heater_0_temptable[i-1][1]) * \r
+ (heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /\r
+ (heater_0_temptable[i][1] - heater_0_temptable[i-1][1]); \r
+ break;\r
+ }\r
+ }\r
+\r
+ // Overflow: Set to last value in the table\r
+ if (i == NUMTEMPS_0) raw = heater_0_temptable[i-1][0];\r
+\r
+ return (1023 * OVERSAMPLENR) - raw;\r
+ #elif defined HEATER_0_USES_AD595\r
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
+ #endif\r
+}\r
+\r
+// Takes bed temperature value as input and returns corresponding raw value. \r
+// For a thermistor, it uses the RepRap thermistor temp table.\r
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
+int temp2analogBed(int celsius) {\r
+ #ifdef BED_USES_THERMISTOR\r
+\r
+ int raw = 0;\r
+ byte i;\r
+ \r
+ for (i=1; i<BNUMTEMPS; i++)\r
+ {\r
+ if (bedtemptable[i][1] < celsius)\r
+ {\r
+ raw = bedtemptable[i-1][0] + \r
+ (celsius - bedtemptable[i-1][1]) * \r
+ (bedtemptable[i][0] - bedtemptable[i-1][0]) /\r
+ (bedtemptable[i][1] - bedtemptable[i-1][1]);\r
+ \r
+ break;\r
+ }\r
+ }\r
+\r
+ // Overflow: Set to last value in the table\r
+ if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];\r
+\r
+ return (1023 * OVERSAMPLENR) - raw;\r
+ #elif defined BED_USES_AD595\r
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
+ #endif\r
+}\r
+\r
+// Derived from RepRap FiveD extruder::getTemperature()\r
+// For hot end temperature measurement.\r
+float analog2temp(int raw) {\r
+ #ifdef HEATER_0_USES_THERMISTOR\r
+ float celsius = 0;\r
+ byte i; \r
+ raw = (1023 * OVERSAMPLENR) - raw;\r
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)\r
+ {\r
+ if (heater_0_temptable[i][0] > raw)\r
+ {\r
+ celsius = heater_0_temptable[i-1][1] + \r
+ (raw - heater_0_temptable[i-1][0]) * \r
+ (float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /\r
+ (float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);\r
+\r
+ break;\r
+ }\r
+ }\r
+\r
+ // Overflow: Set to last value in the table\r
+ if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];\r
+\r
+ return celsius;\r
+ #elif defined HEATER_0_USES_AD595\r
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
+ #endif\r
+}\r
+\r
+// Derived from RepRap FiveD extruder::getTemperature()\r
+// For bed temperature measurement.\r
+float analog2tempBed(int raw) {\r
+ #ifdef BED_USES_THERMISTOR\r
+ int celsius = 0;\r
+ byte i;\r
+\r
+ raw = (1023 * OVERSAMPLENR) - raw;\r
+\r
+ for (i=1; i<BNUMTEMPS; i++)\r
+ {\r
+ if (bedtemptable[i][0] > raw)\r
+ {\r
+ celsius = bedtemptable[i-1][1] + \r
+ (raw - bedtemptable[i-1][0]) * \r
+ (bedtemptable[i][1] - bedtemptable[i-1][1]) /\r
+ (bedtemptable[i][0] - bedtemptable[i-1][0]);\r
+\r
+ break;\r
+ }\r
+ }\r
+\r
+ // Overflow: Set to last value in the table\r
+ if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];\r
+\r
+ return celsius;\r
+ \r
+ #elif defined BED_USES_AD595\r
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
+ #endif\r
+}\r
+\r
+void tp_init()\r
+{\r
+#if (HEATER_0_PIN > -1) \r
+ SET_OUTPUT(HEATER_0_PIN);\r
+#endif \r
+#if (HEATER_1_PIN > -1) \r
+ SET_OUTPUT(HEATER_1_PIN);\r
+#endif \r
+#if (HEATER_2_PIN > -1) \r
+ SET_OUTPUT(HEATER_2_PIN);\r
+#endif \r
+\r
+#ifdef PIDTEMP\r
+ temp_iState_min = 0.0;\r
+ temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;\r
+#endif //PIDTEMP\r
+\r
+// Set analog inputs\r
+ ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;\r
+ \r
+// Use timer0 for temperature measurement\r
+// Interleave temperature interrupt with millies interrupt\r
+ OCR0B = 128;\r
+ TIMSK0 |= (1<<OCIE0B); \r
+}\r
+\r
+\r
+\r
+// Timer 0 is shared with millies\r
+ISR(TIMER0_COMPB_vect)\r
+{\r
+ //these variables are only accesible from the ISR, but static, so they don't loose their value\r
+ static unsigned char temp_count = 0;\r
+ static unsigned long raw_temp_0_value = 0;\r
+ static unsigned long raw_temp_1_value = 0;\r
+ static unsigned long raw_temp_2_value = 0;\r
+ static unsigned char temp_state = 0;\r
+ \r
+ switch(temp_state) {\r
+ case 0: // Prepare TEMP_0\r
+ #if (TEMP_0_PIN > -1)\r
+ #if TEMP_0_PIN < 8\r
+ DIDR0 = 1 << TEMP_0_PIN; \r
+ #else\r
+ DIDR2 = 1<<(TEMP_0_PIN - 8); \r
+ ADCSRB = 1<<MUX5;\r
+ #endif\r
+ ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));\r
+ ADCSRA |= 1<<ADSC; // Start conversion\r
+ #endif\r
+ #ifdef ULTIPANEL\r
+ buttons_check();\r
+ #endif\r
+ temp_state = 1;\r
+ break;\r
+ case 1: // Measure TEMP_0\r
+ #if (TEMP_0_PIN > -1)\r
+ raw_temp_0_value += ADC;\r
+ #endif\r
+ temp_state = 2;\r
+ break;\r
+ case 2: // Prepare TEMP_1\r
+ #if (TEMP_1_PIN > -1)\r
+ #if TEMP_1_PIN < 7\r
+ DIDR0 = 1<<TEMP_1_PIN; \r
+ #else\r
+ DIDR2 = 1<<(TEMP_1_PIN - 8); \r
+ ADCSRB = 1<<MUX5;\r
+ #endif\r
+ ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));\r
+ ADCSRA |= 1<<ADSC; // Start conversion\r
+ #endif\r
+ #ifdef ULTIPANEL\r
+ buttons_check();\r
+ #endif\r
+ temp_state = 3;\r
+ break;\r
+ case 3: // Measure TEMP_1\r
+ #if (TEMP_1_PIN > -1)\r
+ raw_temp_1_value += ADC;\r
+ #endif\r
+ temp_state = 4;\r
+ break;\r
+ case 4: // Prepare TEMP_2\r
+ #if (TEMP_2_PIN > -1)\r
+ #if TEMP_2_PIN < 7\r
+ DIDR0 = 1 << TEMP_2_PIN; \r
+ #else\r
+ DIDR2 = 1<<(TEMP_2_PIN - 8); \r
+ ADCSRB = 1<<MUX5;\r
+ #endif\r
+ ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));\r
+ ADCSRA |= 1<<ADSC; // Start conversion\r
+ #endif\r
+ #ifdef ULTIPANEL\r
+ buttons_check();\r
+ #endif\r
+ temp_state = 5;\r
+ break;\r
+ case 5: // Measure TEMP_2\r
+ #if (TEMP_2_PIN > -1)\r
+ raw_temp_2_value += ADC;\r
+ #endif\r
+ temp_state = 0;\r
+ temp_count++;\r
+ break;\r
+ default:\r
+ Serial.println("!! Temp measurement error !!");\r
+ break;\r
+ }\r
+ \r
+ if(temp_count >= 16) // 6 ms * 16 = 96ms.\r
+ {\r
+ #ifdef HEATER_0_USES_AD595\r
+ current_raw[0] = raw_temp_0_value;\r
+ #else\r
+ current_raw[0] = 16383 - raw_temp_0_value;\r
+ #endif\r
+ \r
+ #ifdef HEATER_1_USES_AD595\r
+ current_raw[2] = raw_temp_2_value;\r
+ #else\r
+ current_raw[2] = 16383 - raw_temp_2_value;\r
+ #endif\r
+ \r
+ #ifdef BED_USES_AD595\r
+ current_raw[1] = raw_temp_1_value;\r
+ #else\r
+ current_raw[1] = 16383 - raw_temp_1_value;\r
+ #endif\r
+ \r
+ temp_meas_ready = true;\r
+ temp_count = 0;\r
+ raw_temp_0_value = 0;\r
+ raw_temp_1_value = 0;\r
+ raw_temp_2_value = 0;\r
+#ifdef HEATER_0_MAXTEMP\r
+ #if (HEATER_0_PIN > -1)\r
+ if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {\r
+ target_raw[TEMPSENSOR_HOTEND_0] = 0;\r
+ analogWrite(HEATER_0_PIN, 0);\r
+ Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");\r
+ kill();\r
+ }\r
+ #endif\r
+#endif\r
+#ifdef HEATER_1_MAXTEMP\r
+ #if (HEATER_1_PIN > -1)\r
+ if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {\r
+ target_raw[TEMPSENSOR_HOTEND_1] = 0;\r
+ if(current_raw[2] >= maxttemp_1) {\r
+ analogWrite(HEATER_2_PIN, 0);\r
+ Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");\r
+ kill()\r
+ }\r
+ #endif\r
+#endif //MAXTEMP\r
+#ifdef HEATER_0_MINTEMP\r
+ #if (HEATER_0_PIN > -1)\r
+ if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {\r
+ target_raw[TEMPSENSOR_HOTEND_0] = 0;\r
+ analogWrite(HEATER_0_PIN, 0);\r
+ Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");\r
+ kill();\r
+ }\r
+ #endif\r
+#endif\r
+#ifdef HEATER_1_MINTEMP\r
+ #if (HEATER_2_PIN > -1)\r
+ if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {\r
+ target_raw[TEMPSENSOR_HOTEND_1] = 0;\r
+ analogWrite(HEATER_2_PIN, 0);\r
+ Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");\r
+ kill();\r
+ }\r
+ #endif\r
+#endif //MAXTEMP\r
+#ifdef BED_MINTEMP\r
+ #if (HEATER_1_PIN > -1)\r
+ if(current_raw[1] <= bed_minttemp) {\r
+ target_raw[1] = 0;\r
+ WRITE(HEATER_1_PIN, 0);\r
+ Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");\r
+ kill();\r
+ }\r
+ #endif\r
+#endif\r
+#ifdef BED_MAXTEMP\r
+ #if (HEATER_1_PIN > -1)\r
+ if(current_raw[1] >= bed_maxttemp) {\r
+ target_raw[1] = 0;\r
+ WRITE(HEATER_1_PIN, 0);\r
+ Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");\r
+ kill();\r
+ }\r
+ #endif\r
+#endif\r
+ }\r
+}\r\r