//// Experimental watchdog and minimal temp
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
+/// CURRENTLY NOT IMPLEMENTED AND UNUSEABLE
//#define WATCHPERIOD 5000 //5 seconds
// Actual temperature must be close to target for this long before M109 returns success
#endif
-#endif\r
+#endif
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
float tt = 0, bt = 0;
-#ifdef WATCHPERIOD
-int watch_raw = -1000;
-unsigned long watchmillis = 0;
-#endif //WATCHPERIOD
+
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
}
break;
case 104: // M104
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
-#ifdef PIDTEMP
- pid_setpoint = code_value();
-#endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
- }else{
- watchmillis = 0;
- }
- #endif
+ if (code_seen('S')) setTargetHotend0(code_value());
+ setWatch();
break;
case 140: // M140 set bed temp
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
+ if (code_seen('S')) setTargetBed(code_value());
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+ tt = degHotend0();
#endif
#if TEMP_1_PIN > -1
- bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
+ bt = degBed();
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
Serial.print("ok T:");
//break;
case 109: {// M109 - Wait for extruder heater to reach target.
LCD_MESSAGE("Heating...");
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
- #ifdef PIDTEMP
- pid_setpoint = code_value();
- #endif //PIDTEM
- #ifdef WATCHPERIOD
- if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
- } else {
- watchmillis = 0;
- }
- #endif //WATCHPERIOD
+ if (code_seen('S')) setTargetHotend0(code_value());
+
+ setWatch();
codenum = millis();
/* See if we are heating up or cooling down */
- bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
+ bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
- while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
+ while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
- while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
+ while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
Serial.print("T:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
+ Serial.println( degHotend0() );
codenum = millis();
}
manage_heater();
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
- if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
- (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
- (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
+ if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
+ (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
+ (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) ) {
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
- codenum = millis();
- while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
- {
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ if (code_seen('S')) setTargetBed(code_value());
+ codenum = millis();
+ while(isHeatingBed())
{
- float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
- Serial.print("T:");
- Serial.println( tt );
- Serial.print("ok T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
- codenum = millis();
- }
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ float tt=degHotend0();
+ Serial.print("T:");
+ Serial.println( tt );
+ Serial.print("ok T:");
+ Serial.print( tt );
+ Serial.print(" B:");
+ Serial.println( degBed() );
+ codenum = millis();
+ }
manage_heater();
- }
+ }
#endif
break;
#if FAN_PIN > -1
inline void kill()
{
- #if TEMP_0_PIN > -1
- target_raw[0]=0;
- #if HEATER_0_PIN > -1
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #endif
- #if TEMP_1_PIN > -1
- target_raw[1]=0;
- #if HEATER_1_PIN > -1
- WRITE(HEATER_1_PIN,LOW);
- #endif
- #endif
- #if TEMP_2_PIN > -1
- target_raw[2]=0;
- #if HEATER_2_PIN > -1
- WRITE(HEATER_2_PIN,LOW);
- #endif
- #endif
+ disable_heater();
+
disable_x();
disable_y();
disable_z();
}
check_axes_activity();
}
-\r
+
#include "streaming.h"\r
#include "temperature.h"\r
\r
-int target_bed_raw = 0;\r
-int current_bed_raw = 0;\r
\r
int target_raw[3] = {0, 0, 0};\r
int current_raw[3] = {0, 0, 0};\r
-unsigned char temp_meas_ready = false;\r
+\r
+bool temp_meas_ready = false;\r
\r
unsigned long previous_millis_heater, previous_millis_bed_heater;\r
\r
#ifdef PIDTEMP\r
- double temp_iState = 0;\r
- double temp_dState = 0;\r
- double pTerm;\r
- double iTerm;\r
- double dTerm;\r
+ float temp_iState = 0;\r
+ float temp_dState = 0;\r
+ float pTerm;\r
+ float iTerm;\r
+ float dTerm;\r
//int output;\r
- double pid_error;\r
- double temp_iState_min;\r
- double temp_iState_max;\r
- double pid_setpoint = 0.0;\r
- double pid_input;\r
- double pid_output;\r
+ float pid_error;\r
+ float temp_iState_min;\r
+ float temp_iState_max;\r
+ float pid_setpoint = 0.0;\r
+ float pid_input;\r
+ float pid_output;\r
bool pid_reset;\r
float HeaterPower;\r
\r
float Kd=DEFAULT_Kd;\r
float Kc=DEFAULT_Kc;\r
#endif //PIDTEMP\r
+ \r
+#ifdef WATCHPERIOD\r
+ int watch_raw[3] = {-1000,-1000,-1000};\r
+ unsigned long watchmillis = 0;\r
+#endif //WATCHPERIOD\r
\r
#ifdef HEATER_0_MINTEMP\r
int minttemp_0 = temp2analog(HEATER_0_MINTEMP);\r
\r
void manage_heater()\r
{\r
-#ifdef USE_WATCHDOG\r
- wd_reset();\r
-#endif\r
+ #ifdef USE_WATCHDOG\r
+ wd_reset();\r
+ #endif\r
\r
float pid_input;\r
float pid_output;\r
\r
\r
\r
+void setWatch() \r
+{ \r
+#ifdef WATCHPERIOD\r
+ if(isHeatingHotend0())\r
+ {\r
+ watchmillis = max(1,millis());\r
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];\r
+ }\r
+ else\r
+ {\r
+ watchmillis = 0;\r
+ } \r
+#endif \r
+}\r
+\r
+\r
// Timer 0 is shared with millies\r
ISR(TIMER0_COMPB_vect)\r
{\r
#endif\r
#endif\r
}\r
-}\r\r
+}\r
+\r
#define temperature_h \r
\r
#include "Marlin.h"\r
+#include "fastio.h"\r
#ifdef PID_ADD_EXTRUSION_RATE\r
#include "stepper.h"\r
#endif\r
-void tp_init();\r
-void manage_heater();\r
-//int temp2analogu(int celsius, const short table[][2], int numtemps);\r
-//float analog2tempu(int raw, const short table[][2], int numtemps);\r
+\r
+void tp_init(); //initialise the heating\r
+void manage_heater(); //it is critical that this is called periodically.\r
+\r
+enum TempSensor {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};\r
+\r
+//low leven conversion routines\r
+// do not use this routines and variables outsie of temperature.cpp\r
int temp2analog(int celsius);\r
int temp2analogBed(int celsius);\r
float analog2temp(int raw);\r
float analog2tempBed(int raw);\r
+extern int target_raw[3]; \r
+extern int current_raw[3];\r
+extern float Kp,Ki,Kd,Kc;\r
+#ifdef PIDTEMP\r
+ float pid_setpoint = 0.0;\r
+#endif\r
+#ifdef WATCHPERIOD\r
+ extern int watch_raw[3] ;\r
+ extern unsigned long watchmillis;\r
+#endif\r
+\r
+\r
+\r
+//high level conversion routines, for use outside of temperature.cpp\r
+//inline so that there is no performance decrease.\r
+//deg=degreeCelsius\r
\r
+inline float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};\r
+inline float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};\r
+inline float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};\r
+\r
+inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};\r
+inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};\r
+inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};\r
+\r
+inline void setTargetHotend0(float celsius) \r
+{ \r
+ target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);\r
+ #ifdef PIDTEMP\r
+ pid_setpoint = celsius;\r
+ #endif //PIDTEMP\r
+};\r
+inline void setTargetHotend1(float celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};\r
+inline void setTargetBed(float celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};\r
+\r
+inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};\r
+inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};\r
+inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};\r
+\r
+inline bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};\r
+inline bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};\r
+inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};\r
+\r
+inline void disable_heater()\r
+{\r
+ #if TEMP_0_PIN > -1\r
+ target_raw[0]=0;\r
+ #if HEATER_0_PIN > -1 \r
+ WRITE(HEATER_0_PIN,LOW);\r
+ #endif\r
+ #endif\r
+ #if TEMP_1_PIN > -1\r
+ target_raw[1]=0;\r
+ #if HEATER_1_PIN > -1 \r
+ WRITE(HEATER_1_PIN,LOW);\r
+ #endif\r
+ #endif\r
+ #if TEMP_2_PIN > -1\r
+ target_raw[2]=0;\r
+ #if HEATER_2_PIN > -1 \r
+ WRITE(HEATER_2_PIN,LOW);\r
+ #endif\r
+ #endif \r
+}\r
+void setWatch() { \r
+ if(isHeatingHotend0())\r
+ {\r
+ watchmillis = max(1,millis());\r
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];\r
+ }\r
+ else\r
+ {\r
+ watchmillis = 0;\r
+ } \r
+}\r
#ifdef HEATER_0_USES_THERMISTOR\r
#define HEATERSOURCE 1\r
#endif\r
#define BEDSOURCE 1\r
#endif\r
\r
-//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)\r
-//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS\r
\r
\r
-extern float Kp;\r
-extern float Ki;\r
-extern float Kd;\r
-extern float Kc;\r
\r
-enum {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};\r
-extern int target_raw[3];\r
-extern int current_raw[3];\r
-extern double pid_setpoint;\r
\r
-#endif\r\r
+#endif\r
+\r
\r
unsigned long previous_millis_lcd=0;\r
\r
-\r
+inline int intround(const float &x){return int(0.5+x);}\r
\r
volatile char buttons=0; //the last checked buttons in a bit array.\r
int encoderpos=0;\r
strncpy(messagetext,message,LCD_WIDTH);\r
}\r
\r
-void clear()\r
+inline void clear()\r
{\r
- //lcd.setCursor(0,0);\r
+ \r
lcd.clear();\r
- //delay(1);\r
- // lcd.begin(LCD_WIDTH,LCD_HEIGHT);\r
- //lcd_init();\r
}\r
long previous_millis_buttons=0;\r
\r
void beep()\r
{\r
//return;\r
-#ifdef ULTIPANEL\r
- pinMode(BEEPER,OUTPUT);\r
- for(int i=0;i<20;i++){\r
- WRITE(BEEPER,HIGH);\r
- delay(5);\r
- WRITE(BEEPER,LOW);\r
- delay(5);\r
- }\r
-#endif\r
+ #ifdef ULTIPANEL\r
+ pinMode(BEEPER,OUTPUT);\r
+ for(int i=0;i<20;i++){\r
+ WRITE(BEEPER,HIGH);\r
+ delay(5);\r
+ WRITE(BEEPER,LOW);\r
+ delay(5);\r
+ }\r
+ #endif\r
}\r
\r
void beepshort()\r
{\r
//return;\r
-#ifdef ULTIPANEL\r
- pinMode(BEEPER,OUTPUT);\r
- for(int i=0;i<10;i++){\r
- WRITE(BEEPER,HIGH);\r
- delay(3);\r
- WRITE(BEEPER,LOW);\r
- delay(3);\r
- }\r
-#endif \r
+ #ifdef ULTIPANEL\r
+ pinMode(BEEPER,OUTPUT);\r
+ for(int i=0;i<10;i++){\r
+ WRITE(BEEPER,HIGH);\r
+ delay(3);\r
+ WRITE(BEEPER,LOW);\r
+ delay(3);\r
+ }\r
+ #endif \r
}\r
+\r
void lcd_status()\r
{\r
-#ifdef ULTIPANEL\r
- static uint8_t oldbuttons=0;\r
- static long previous_millis_buttons=0;\r
- static long previous_lcdinit=0;\r
-// buttons_check(); // Done in temperature interrupt\r
- //previous_millis_buttons=millis();\r
- \r
- if((buttons==oldbuttons) && ((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )\r
- return;\r
- oldbuttons=buttons;\r
-#else\r
+ #ifdef ULTIPANEL\r
+ static uint8_t oldbuttons=0;\r
+ static long previous_millis_buttons=0;\r
+ static long previous_lcdinit=0;\r
+ // buttons_check(); // Done in temperature interrupt\r
+ //previous_millis_buttons=millis();\r
+ \r
+ if((buttons==oldbuttons) && ((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )\r
+ return;\r
+ oldbuttons=buttons;\r
+ #else\r
\r
- if(((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )\r
- return;\r
-#endif\r
+ if(((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )\r
+ return;\r
+ #endif\r
\r
previous_millis_lcd=millis();\r
menu.update();\r
if((blocking<millis()) &&(READ(BTN_ENC)==0))\r
newbutton|=EN_C;\r
buttons=newbutton;\r
-#else\r
- //read it from the shift register\r
+#else //read it from the shift register\r
uint8_t newbutton=0;\r
WRITE(SHIFT_LD,LOW);\r
WRITE(SHIFT_LD,HIGH);\r
void MainMenu::showStatus()\r
{ \r
#if LCD_HEIGHT==4\r
- static int oldcurrentraw=-1;\r
- static int oldtargetraw=-1;\r
+ static int olddegHotEnd0=-1;\r
+ static int oldtargetHotEnd0=-1;\r
//force_lcd_update=true;\r
if(force_lcd_update||feedmultiplychanged) //initial display of content\r
{\r
encoderpos=feedmultiply;\r
clear();\r
lcd.setCursor(0,0);lcd.print("\002123/567\001 ");\r
-#if defined BED_USES_THERMISTOR || defined BED_USES_AD595 \r
- lcd.setCursor(10,0);lcd.print("B123/567\001 ");\r
-#endif\r
+ #if defined BED_USES_THERMISTOR || defined BED_USES_AD595 \r
+ lcd.setCursor(10,0);lcd.print("B123/567\001 ");\r
+ #endif\r
}\r
\r
-\r
- if((abs(current_raw[TEMPSENSOR_HOTEND_0]-oldcurrentraw)>3)||force_lcd_update)\r
+ int tHotEnd0=intround(degHotend0());\r
+ if((abs(tHotEnd0-olddegHotEnd0)>1)||force_lcd_update) //>1 because otherwise the lcd is refreshed to often.\r
{\r
lcd.setCursor(1,0);\r
- lcd.print(ftostr3(analog2temp(current_raw[TEMPSENSOR_HOTEND_0])));\r
- oldcurrentraw=current_raw[TEMPSENSOR_HOTEND_0];\r
+ lcd.print(ftostr3(tHotEnd0));\r
+ olddegHotEnd0=tHotEnd0;\r
}\r
- if((target_raw[TEMPSENSOR_HOTEND_0]!=oldtargetraw)||force_lcd_update)\r
+ int ttHotEnd0=intround(degTargetHotend0());\r
+ if((ttHotEnd0!=oldtargetHotEnd0)||force_lcd_update)\r
{\r
lcd.setCursor(5,0);\r
- lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND_0])));\r
- oldtargetraw=target_raw[TEMPSENSOR_HOTEND_0];\r
+ lcd.print(ftostr3(ttHotEnd0));\r
+ oldtargetHotEnd0=ttHotEnd0;\r
}\r
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595 \r
- static int oldcurrentbedraw=-1;\r
- static int oldtargetbedraw=-1; \r
- if((current_bed_raw!=oldcurrentbedraw)||force_lcd_update)\r
+ static int oldtBed=-1;\r
+ static int oldtargetBed=-1; \r
+ int tBed=intround(degBed());\r
+ if((tBed!=oldtBed)||force_lcd_update)\r
{\r
lcd.setCursor(1,0);\r
- lcd.print(ftostr3(analog2temp(current_bed_raw)));\r
- oldcurrentraw=current_raw[TEMPSENSOR_BED];\r
+ lcd.print(ftostr3(tBed));\r
+ olddegHotEnd0=tBed;\r
}\r
- if((target_bed_raw!=oldtargebedtraw)||force_lcd_update)\r
+ int targetBed=intround(degTargetBed());\r
+ if((targetBed!=oldtargetBed)||force_lcd_update)\r
{\r
lcd.setCursor(5,0);\r
- lcd.print(ftostr3(analog2temp(target_bed_raw)));\r
- oldtargetraw=target_bed_raw;\r
+ lcd.print(ftostr3(targetBed));\r
+ oldtargetBed=targetBed;\r
}\r
#endif\r
//starttime=2;\r
messagetext[0]='\0';\r
}\r
#else //smaller LCDS----------------------------------\r
- static int oldcurrentraw=-1;\r
- static int oldtargetraw=-1;\r
+ static int olddegHotEnd0=-1;\r
+ static int oldtargetHotEnd0=-1;\r
if(force_lcd_update) //initial display of content\r
{\r
encoderpos=feedmultiply;\r
#endif\r
}\r
\r
+ int tHotEnd0=intround(degHotend0());\r
+ int ttHotEnd0=intround(degTargetHotend0());\r
\r
- if((abs(current_raw[TEMPSENSOR_HOTEND]-oldcurrentraw)>3)||force_lcd_update)\r
+\r
+ if((abs(tHotEnd0-olddegHotEnd0)>1)||force_lcd_update)\r
{\r
lcd.setCursor(1,0);\r
- lcd.print(ftostr3(analog2temp(current_raw[TEMPSENSOR_HOTEND])));\r
- oldcurrentraw=current_raw[TEMPSENSOR_HOTEND];\r
+ lcd.print(ftostr3(tHotEnd0));\r
+ olddegHotEnd0=tHotEnd0;\r
}\r
- if((target_raw[TEMPSENSOR_HOTEND]!=oldtargetraw)||force_lcd_update)\r
+ if((ttHotEnd0!=oldtargetHotEnd0)||force_lcd_update)\r
{\r
lcd.setCursor(5,0);\r
- lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND])));\r
- oldtargetraw=target_raw[TEMPSENSOR_HOTEND];\r
+ lcd.print(ftostr3(ttHotEnd0));\r
+ oldtargetHotEnd0=ttHotEnd0;\r
}\r
\r
if(messagetext[0]!='\0')\r
if((activeline==line) && CLICKED)\r
{\r
BLOCK\r
- target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(170);\r
+ setTargetHotend0(170);\r
beepshort();\r
}\r
}break;\r
if(force_lcd_update)\r
{\r
lcd.setCursor(0,line);lcd.print(" \002Nozzle:");\r
- lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND_0])));\r
+ lcd.setCursor(13,line);lcd.print(ftostr3(intround(degHotend0())));\r
}\r
\r
if((activeline==line) )\r
linechanging=!linechanging;\r
if(linechanging)\r
{\r
- encoderpos=(int)analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);\r
+ encoderpos=intround(degHotend0());\r
}\r
else\r
{\r
- target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(encoderpos);\r
+ setTargetHotend0(encoderpos);\r
encoderpos=activeline*lcdslow;\r
beepshort();\r
}\r
#else\r
inline void lcd_status() {};\r
#endif\r
-\r\r
+\r
+\r