// This determines the communication speed of the printer
-#define BAUDRATE 250000
-//#define BAUDRATE 115200
+//#define BAUDRATE 250000
+#define BAUDRATE 115200
//#define BAUDRATE 230400
#define EXTRUDERS 1
// MEGA/RAMPS up to 1.2 = 3,
// RAMPS 1.3 = 33
// Gen6 = 5,
-// Sanguinololu 1.2 and above = 62,
-// Ultimaker = 7,
+// Sanguinololu 1.2 and above = 62
// Gen7 = 77,
+// Ultimaker = 7,
// Teensylu = 8
-#define MOTHERBOARD 7
+#define MOTHERBOARD 77
//===========================================================================
//=============================Thermal Settings ============================
// 6 is EPCOS 100k
// 7 is 100k Honeywell thermistor 135-104LAG-J01
-//#define THERMISTORHEATER_0 3
+#define THERMISTORHEATER_0 1
//#define THERMISTORHEATER_1 1
//#define THERMISTORHEATER_2 1
-//#define HEATER_0_USES_THERMISTOR
+#define HEATER_0_USES_THERMISTOR
//#define HEATER_1_USES_THERMISTOR
//#define HEATER_2_USES_THERMISTOR
-#define HEATER_0_USES_AD595
+//#define HEATER_0_USES_AD595
//#define HEATER_1_USES_AD595
//#define HEATER_2_USES_AD595
// Select one of these only to define how the bed temp is read.
-//#define THERMISTORBED 1
-//#define BED_USES_THERMISTOR
+#define THERMISTORBED 1
+#define BED_USES_THERMISTOR
//#define BED_LIMIT_SWITCHING
#ifdef BED_LIMIT_SWITCHING
- #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
+#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
//#define BED_USES_AD595
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 30 // (seconds)
-#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one
+#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled
-#define HEATER_0_MINTEMP 5
+//#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5
//#define HEATER_2_MINTEMP 5
//#define BED_MINTEMP 5
#define PIDTEMP
#define PID_MAX 255 // limits current to nozzle; 255=full current
#ifdef PIDTEMP
- //#define PID_DEBUG // Sends debug data to the serial port.
- //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
- #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
- #define K1 0.95 //smoothing factor withing the PID
- #define PID_dT 0.128 //sampling period of the PID
-
- //To develop some PID settings for your machine, you can initiall follow
- // the Ziegler-Nichols method.
- // set Ki and Kd to zero.
- // heat with a defined Kp and see if the temperature stabilizes
- // ideally you do this graphically with repg.
- // the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
- // PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
- // usually further manual tunine is necessary.
-
- #define PID_CRITIAL_GAIN 50
- #define PID_SWING_AT_CRITIAL 47 //seconds
-
- //#define PID_PI //no differentail term
- #define PID_PID //normal PID
-
- #ifdef PID_PID
- //PID according to Ziegler-Nichols method
+//#define PID_DEBUG // Sends debug data to the serial port.
+//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
+#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
+#define K1 0.95 //smoothing factor withing the PID
+#define PID_dT 0.128 //sampling period of the PID
+
+//To develop some PID settings for your machine, you can initiall follow
+// the Ziegler-Nichols method.
+// set Ki and Kd to zero.
+// heat with a defined Kp and see if the temperature stabilizes
+// ideally you do this graphically with repg.
+// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
+// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
+// usually further manual tunine is necessary.
+
+#define PID_CRITIAL_GAIN 50
+#define PID_SWING_AT_CRITIAL 47 //seconds
+
+//#define PID_PI //no differentail term
+#define PID_PID //normal PID
+
+#ifdef PID_PID
+//PID according to Ziegler-Nichols method
// #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN)
// #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
// #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT)
// Ultitmaker
- #define DEFAULT_Kp 22.2
- #define DEFAULT_Ki (1.25*PID_dT)
- #define DEFAULT_Kd (99/PID_dT)
+#define DEFAULT_Kp 22.2
+#define DEFAULT_Ki (1.25*PID_dT)
+#define DEFAULT_Kd (99/PID_dT)
// Makergear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki (2.25*PID_dT)
// #define DEFAULT_Kd (440/PID_dT)
- #endif
-
- #ifdef PID_PI
- //PI according to Ziegler-Nichols method
- #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
- #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
- #define DEFAULT_Kd (0)
- #endif
-
- // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
- // if Kc is choosen well, the additional required power due to increased melting should be compensated.
- #define PID_ADD_EXTRUSION_RATE
- #ifdef PID_ADD_EXTRUSION_RATE
- #define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
- #endif
+#endif
+
+#ifdef PID_PI
+//PI according to Ziegler-Nichols method
+#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
+#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
+#define DEFAULT_Kd (0)
+#endif
+
+// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
+// if Kc is choosen well, the additional required power due to increased melting should be compensated.
+#define PID_ADD_EXTRUSION_RATE
+#ifdef PID_ADD_EXTRUSION_RATE
+#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
+#endif
#endif // PIDTEMP
// extruder run-out prevention.
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
-const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
-const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
-const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
+const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
+const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
+const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
//#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders
-#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
-#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
-// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
+// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while
+//printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec)
// this enables the watchdog interrupt.
//#define USE_WATCHDOG
//#ifdef USE_WATCHDOG
- // you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
+// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
//#define RESET_MANUAL
//#define WATCHDOG_TIMEOUT 4 //seconds
//#endif
//#define ADVANCE
#ifdef ADVANCE
- #define EXTRUDER_ADVANCE_K .0
+#define EXTRUDER_ADVANCE_K .0
- #define D_FILAMENT 2.85
- #define STEPS_MM_E 836
- #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
- #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
+#define D_FILAMENT 2.85
+#define STEPS_MM_E 836
+#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
+#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // no z because of layer shift.
-//#define ULTIPANEL
+#define ULTIPANEL
#ifdef ULTIPANEL
- //#define NEWPANEL //enable this if you have a click-encoder panel
- #define SDSUPPORT
- #define ULTRA_LCD
- #define LCD_WIDTH 20
- #define LCD_HEIGHT 4
+#define NEWPANEL //enable this if you have a click-encoder panel
+#define SDSUPPORT
+#define ULTRA_LCD
+#define LCD_WIDTH 20
+#define LCD_HEIGHT 4
#else //no panel but just lcd
- #ifdef ULTRA_LCD
- #define LCD_WIDTH 16
- #define LCD_HEIGHT 2
- #endif
+#ifdef ULTRA_LCD
+#define LCD_WIDTH 16
+#define LCD_HEIGHT 2
+#endif
#endif
// A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software.
// on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode
//#define AUTOTEMP
#ifdef AUTOTEMP
- #define AUTOTEMP_OLDWEIGHT 0.98
+#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
-#define EXTRUDE_MINTEMP 190
+#define EXTRUDE_MINTEMP 0
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT
- #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
- #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
#include "thermistortables.h"
#endif //__CONFIGURATION_H
+
+
MENUITEM( lcdprintPGM(" Main \003") , BLOCK;status=Main_Menu;beepshort(); ) ;
break;
case ItemAM_X:
- MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ;
+ // MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ;
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" X:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(current_position[X_AXIS]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=current_position[X_AXIS];
+ }
+ else
+ {
+ enquecommand("G1 F700 X"+encoderpos);
+ encoderpos=activeline*lcdslow;
+ beepshort();
+ }
+ BLOCK;
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>200) encoderpos=200;
+ lcd.setCursor(13,line);lcd.print(current_position[X_AXIS]);
+ }
+ }
break;
case ItemAM_Y:
- MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ;
+ //MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ;
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" Y:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Y_AXIS]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=current_position[Y_AXIS];
+ }
+ else
+ {
+ enquecommand("G1 F700 Y"+encoderpos);
+ encoderpos=activeline*lcdslow;
+ beepshort();
+ }
+ BLOCK;
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>200) encoderpos=200;
+ lcd.setCursor(13,line);lcd.print(current_position[Y_AXIS]);
+ }
+ }
break;
case ItemAM_Z:
- MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ;
+ //MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ;
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" Z:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Z_AXIS]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=current_position[Z_AXIS];
+ }
+ else
+ {
+ enquecommand("G1 F700 Z"+encoderpos);
+ encoderpos=activeline*lcdslow;
+ beepshort();
+ }
+ BLOCK;
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>170) encoderpos=170;
+ lcd.setCursor(13,line);lcd.print(current_position[Z_AXIS]);
+ }
+ }
break;
case ItemAM_E:
- MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E50");beepshort(); ) ;
+ MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E10");beepshort(); ) ;
break;
default:
break;
}
line++;
}
- updateActiveLines(ItemAM_Z,encoderpos);
+ updateActiveLines(ItemAM_E,encoderpos);
}
enum {ItemT_exit,ItemT_speed,ItemT_flow,ItemT_nozzle,
ItemCM_vmaxx, ItemCM_vmaxy, ItemCM_vmaxz, ItemCM_vmaxe,
ItemCM_vtravmin,ItemCM_vmin,
ItemCM_amaxx, ItemCM_amaxy, ItemCM_amaxz, ItemCM_amaxe,
- ItemCM_aret,ItemCM_esteps
+ ItemCM_aret, ItemCM_xsteps,ItemCM_ysteps, ItemCM_zsteps, ItemCM_esteps
};
}
}break;
+ case ItemCM_xsteps://axis_steps_per_unit[i] = code_value();
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" X steps/mm:");
+ lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[0]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)axis_steps_per_unit[0];
+ }
+ else
+ {
+ float factor=float(encoderpos)/float(axis_steps_per_unit[0]);
+ position[X_AXIS]=lround(position[X_AXIS]*factor);
+ //current_position[3]*=factor;
+ axis_steps_per_unit[X_AXIS]= encoderpos;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<5) encoderpos=5;
+ if(encoderpos>9999) encoderpos=9999;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
+ }
+
+ }break;
+ case ItemCM_ysteps://axis_steps_per_unit[i] = code_value();
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" Y steps/mm:");
+ lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[1]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)axis_steps_per_unit[1];
+ }
+ else
+ {
+ float factor=float(encoderpos)/float(axis_steps_per_unit[1]);
+ position[Y_AXIS]=lround(position[Y_AXIS]*factor);
+ //current_position[3]*=factor;
+ axis_steps_per_unit[Y_AXIS]= encoderpos;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<5) encoderpos=5;
+ if(encoderpos>9999) encoderpos=9999;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
+ }
+
+ }break;
+ case ItemCM_zsteps://axis_steps_per_unit[i] = code_value();
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcdprintPGM(" Z steps/mm:");
+ lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[2]));
+ }
+
+ if((activeline!=line) )
+ break;
+
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)axis_steps_per_unit[2];
+ }
+ else
+ {
+ float factor=float(encoderpos)/float(axis_steps_per_unit[2]);
+ position[Z_AXIS]=lround(position[Z_AXIS]*factor);
+ //current_position[3]*=factor;
+ axis_steps_per_unit[Z_AXIS]= encoderpos;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<5) encoderpos=5;
+ if(encoderpos>9999) encoderpos=9999;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
+ }
+
+ }break;
+
case ItemCM_esteps://axis_steps_per_unit[i] = code_value();
{
if(force_lcd_update)
{
- lcd.setCursor(0,line);lcdprintPGM(" Esteps/mm:");
+ lcd.setCursor(0,line);lcdprintPGM(" E steps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
}