#ifndef CONFIGURATION_H
#define CONFIGURATION_H
+//#define DEBUG_STEPS
+
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup
-// Gen6 = 5,
-#define MOTHERBOARD 5
+// MEGA/RAMPS up to 1.2 = 3,
+// RAMPS 1.3 = 33
+// Gen6 = 5,
+// Sanguinololu 1.2 and above = 62
+// Ultimaker = 7,
+#define MOTHERBOARD 7
+//#define MOTHERBOARD 5
//// Thermistor settings:
// 1 is 100k thermistor
// 2 is 200k thermistor
// 3 is mendel-parts thermistor
#define THERMISTORHEATER 3
+// Select one of these only to define how the nozzle temp is read.
+//#define HEATER_USES_THERMISTOR
+#define HEATER_USES_AD595
+
+// Select one of these only to define how the bed temp is read.
+//#define BED_USES_THERMISTOR
+//#define BED_USES_AD595
+#define HEATER_CHECK_INTERVAL 50
+#define BED_CHECK_INTERVAL 5000
+#define BNUMTEMPS NUMTEMPS
+#define bedtemptable temptable
-//// Calibration variables
-// X, Y, Z, E steps per unit - Metric Mendel / Orca with V9 extruder:
-float axis_steps_per_unit[] = {40, 40, 3333.92, 67};
-// For E steps per unit = 67 for v9 with direct drive (needs finetuning) for other extruders this needs to be changed
-// Metric Prusa Mendel with Makergear geared stepper extruder:
-//float axis_steps_per_unit[] = {80,80,3200/1.25,1380};
//// Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
-const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
+const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
// This determines the communication speed of the printer
-#define BAUDRATE 250000
+//#define BAUDRATE 250000
+#define BAUDRATE 115200
+//#define BAUDRATE 230400
// Comment out (using // at the start of the line) to disable SD support:
-//#define SDSUPPORT
+
+// #define ULTRA_LCD //any lcd
+#define LCD_WIDTH 16
+#define LCD_HEIGHT 2
+
+#define ULTIPANEL
+#ifdef ULTIPANEL
+ //#define NEWPANEL //enable this if you have a click-encoder panel
+ #define SDSUPPORT
+ #define ULTRA_LCD
+ #define LCD_WIDTH 20
+#define LCD_HEIGHT 4
+#endif
+
+
+//#define SDSUPPORT // Enable SD Card Support in Hardware Console
+
+const int dropsegments=5; //everything with this number of steps will be ignored as move
+
//// ADVANCED SETTINGS - to tweak parameters
#include "thermistortables.h"
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
-#define DISABLE_Z true
+#define DISABLE_Z false
#define DISABLE_E false
// Inverting axis direction
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
-#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
+#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
//// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define Z_HOME_DIR -1
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
-#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below.
-#define X_MAX_LENGTH 200
-#define Y_MAX_LENGTH 200
-#define Z_MAX_LENGTH 100
+#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
+#define X_MAX_LENGTH 210
+#define Y_MAX_LENGTH 210
+#define Z_MAX_LENGTH 210
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
-float max_feedrate[] = {60000, 60000, 100, 500000}; // set the max speeds
-float homing_feedrate[] = {2400, 2400, 80, 0}; // set the homing speeds
-bool axis_relative_modes[] = {false, false, false, false};
-
-//// Acceleration settings
-// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
-float acceleration = 2000; // Normal acceleration mm/s^2
-float retract_acceleration = 7000; // Normal acceleration mm/s^2
-float max_xy_jerk = 20.0*60;
-float max_z_jerk = 0.4*60;
-long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
+//note: on bernhards ultimaker 200 200 12 are working well.
+#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
+//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
+//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
+// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
+#define TRAVELING_AT_MAXSPEED
+#define AXIS_RELATIVE_MODES {false, false, false, false}
+
+#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
+
+// default settings
+
+#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
+#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
+#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+
+#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
+#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
+
+#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
+#define DEFAULT_MINTRAVELFEEDRATE 10
+
+// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
+#define DEFAULT_MINSEGMENTTIME 20000
+#define DEFAULT_XYJERK 30.0*60
+#define DEFAULT_ZJERK 10.0*60
+
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+//this enables the watchdog interrupt.
+#define USE_WATCHDOG
+//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
+#define RESET_MANUAL
+
+#define WATCHDOG_TIMEOUT 4
+
+
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
//#define WATCHPERIOD 5000 //5 seconds
//// The minimal temperature defines the temperature below which the heater will not be enabled
#define MINTEMP 5
+#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define MAXTEMP 275
-
+#define BED_MAXTEMP 150
/// PID settings:
// Uncomment the following line to enable PID support.
-//#define PIDTEMP
+//#define SMOOTHING
+//#define SMOOTHFACTOR 5.0
+//float current_raw_average=0;
+
+#define PIDTEMP
#ifdef PIDTEMP
-//#define PID_DEBUG 1 // Sends debug data to the serial port.
+//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
-#define PID_MAX 156 // limits current to nozzle
-#define PID_INTEGRAL_DRIVE_MAX 156.0
-#define PID_dT 0.16
-double Kp = 20.0;
-double Ki = 1.5*PID_dT;
-double Kd = 80/PID_dT;
+#define PID_MAX 255 // limits current to nozzle
+#define PID_INTEGRAL_DRIVE_MAX 255
+#define PID_dT 0.10 // 100ms sample time
+#define DEFAULT_Kp 20.0
+#define DEFAULT_Ki 1.5*PID_dT
+#define DEFAULT_Kd 80/PID_dT
+#define DEFAULT_Kc 0
#endif // PIDTEMP
//#define ADVANCE
#ifdef ADVANCE
-#define EXTRUDER_ADVANCE_K 0.02
+#define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7
#define STEPS_MM_E 65
#endif // ADVANCE
+#if defined SDSUPPORT
+// The number of linear motions that can be in the plan at any give time.
+ #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+#else
+ #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+#endif
+
+#ifdef SIMPLE_LCD
+ #define BLOCK_BUFFER_SIZE 16 // A little less buffer for just a simple LCD
+#endif
+
#endif
--- /dev/null
+
+#include "planner.h"
+#include "temperature.h"
+
+//======================================================================================
+template <class T> int EEPROM_writeAnything(int &ee, const T& value)
+{
+ const byte* p = (const byte*)(const void*)&value;
+ int i;
+ for (i = 0; i < sizeof(value); i++)
+ EEPROM.write(ee++, *p++);
+ return i;
+}
+//======================================================================================
+template <class T> int EEPROM_readAnything(int &ee, T& value)
+{
+ byte* p = (byte*)(void*)&value;
+ int i;
+ for (i = 0; i < sizeof(value); i++)
+ *p++ = EEPROM.read(ee++);
+ return i;
+}
+//======================================================================================
+
+#define EEPROM_OFFSET 100
+
+#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
+ // in the functions below, also increment the version number. This makes sure that
+ // the default values are used whenever there is a change to the data, to prevent
+ // wrong data being written to the variables.
+ // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
+void StoreSettings() {
+ char ver[4]= "000";
+ int i=EEPROM_OFFSET;
+ EEPROM_writeAnything(i,ver); // invalidate data first
+ EEPROM_writeAnything(i,axis_steps_per_unit);
+ EEPROM_writeAnything(i,max_feedrate);
+ EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);
+ EEPROM_writeAnything(i,acceleration);
+ EEPROM_writeAnything(i,retract_acceleration);
+ EEPROM_writeAnything(i,minimumfeedrate);
+ EEPROM_writeAnything(i,mintravelfeedrate);
+ EEPROM_writeAnything(i,minsegmenttime);
+ EEPROM_writeAnything(i,max_xy_jerk);
+ EEPROM_writeAnything(i,max_z_jerk);
+ #ifdef PIDTEMP
+ EEPROM_writeAnything(i,Kp);
+ EEPROM_writeAnything(i,Ki);
+ EEPROM_writeAnything(i,Kd);
+#else
+ EEPROM_writeAnything(i,3000);
+ EEPROM_writeAnything(i,0);
+ EEPROM_writeAnything(i,0);
+#endif
+ char ver2[4]=EEPROM_VERSION;
+ i=EEPROM_OFFSET;
+ EEPROM_writeAnything(i,ver2); // validate data
+ ECHOLN("Settings Stored");
+
+}
+
+void RetrieveSettings(bool def=false){ // if def=true, the default values will be used
+ int i=EEPROM_OFFSET;
+ char stored_ver[4];
+ char ver[4]=EEPROM_VERSION;
+ EEPROM_readAnything(i,stored_ver); //read stored version
+// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
+ if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match
+ EEPROM_readAnything(i,axis_steps_per_unit);
+ EEPROM_readAnything(i,max_feedrate);
+ EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
+ EEPROM_readAnything(i,acceleration);
+ EEPROM_readAnything(i,retract_acceleration);
+ EEPROM_readAnything(i,minimumfeedrate);
+ EEPROM_readAnything(i,mintravelfeedrate);
+ EEPROM_readAnything(i,minsegmenttime);
+ EEPROM_readAnything(i,max_xy_jerk);
+ EEPROM_readAnything(i,max_z_jerk);
+#ifndef PIDTEMP
+ float Kp,Ki,Kd;
+#endif
+ EEPROM_readAnything(i,Kp);
+ EEPROM_readAnything(i,Ki);
+ EEPROM_readAnything(i,Kd);
+
+ ECHOLN("Stored settings retreived:");
+ }
+ else {
+ float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
+ float tmp2[]=DEFAULT_MAX_FEEDRATE;
+ long tmp3[]=DEFAULT_MAX_ACCELERATION;
+ for (int i=0;i<4;i++) {
+ axis_steps_per_unit[i]=tmp1[i];
+ max_feedrate[i]=tmp2[i];
+ max_acceleration_units_per_sq_second[i]=tmp3[i];
+ }
+ acceleration=DEFAULT_ACCELERATION;
+ retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
+ minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
+ minsegmenttime=DEFAULT_MINSEGMENTTIME;
+ mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
+ max_xy_jerk=DEFAULT_XYJERK;
+ max_z_jerk=DEFAULT_ZJERK;
+ ECHOLN("Using Default settings:");
+ }
+ ECHOLN("Steps per unit:");
+ ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));
+ ECHOLN("Maximum feedrates (mm/s):");
+ ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));
+ ECHOLN("Maximum Acceleration (mm/s2):");
+ ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));
+ ECHOLN("Acceleration: S=acceleration, T=retract acceleration");
+ ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
+ ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
+ ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
+#ifdef PIDTEMP
+ ECHOLN("PID settings:");
+ ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
+#endif
+
+}
+
+
-# Marlin Arduino Project Makefile
-#
-# Makefile Based on:
-# Arduino 0011 Makefile
-# Arduino adaptation by mellis, eighthave, oli.keller
#
-# This has been tested with Arduino 0022.
-#
-# This makefile allows you to build sketches from the command line
-# without the Arduino environment (or Java).
+# Arduino 0022 Makefile
+# Uno with DOGS102 Shield
#
-# Detailed instructions for using the makefile:
+# written by olikraus@gmail.com
#
-# 1. Modify the line containg "INSTALL_DIR" to point to the directory that
-# contains the Arduino installation (for example, under Mac OS X, this
-# might be /Applications/arduino-0012).
+# Features:
+# - boards.txt is used to derive parameters
+# - All intermediate files are put into a separate directory (TMPDIRNAME)
+# - Simple use: Copy Makefile into the same directory of the .pde file
#
-# 2. Modify the line containing "PORT" to refer to the filename
-# representing the USB or serial connection to your Arduino board
-# (e.g. PORT = /dev/tty.USB0). If the exact name of this file
-# changes, you can use * as a wildcard (e.g. PORT = /dev/tty.usb*).
+# Limitations:
+# - requires UNIX environment
+# - TMPDIRNAME must be subdirectory of the current directory.
#
-# 3. Set the line containing "MCU" to match your board's processor.
-# Older one's are atmega8 based, newer ones like Arduino Mini, Bluetooth
-# or Diecimila have the atmega168. If you're using a LilyPad Arduino,
-# change F_CPU to 8000000.
+# Targets
+# all build everything
+# upload build and upload to arduino
+# clean remove all temporary files (includes final hex file)
#
-# 4. Type "make" and press enter to compile/verify your program.
+# History
+# 001 28 Apr 2010 first release
+# 002 05 Oct 2010 added 'uno'
#
-# 5. Type "make upload", reset your Arduino board, and press enter to
-# upload your program to the Arduino board.
-#
-# $Id$
-
-TARGET = Marlin
-INSTALL_DIR = ../../Desktop/arduino-0018/
-UPLOAD_RATE = 38400
-AVRDUDE_PROGRAMMER = stk500v1
-PORT = /dev/ttyUSB0
-#MCU = atmega2560
-#For "old" Arduino Mega
-#MCU = atmega1280
-#For Sanguinololu
-MCU = atmega644p
-F_CPU = 16000000
-
-
-############################################################################
-# Below here nothing should be changed...
-
-ARDUINO = $(INSTALL_DIR)/hardware/Sanguino/cores/arduino
-AVR_TOOLS_PATH = $(INSTALL_DIR)/hardware/tools/avr/bin
-SRC = $(ARDUINO)/pins_arduino.c wiring.c wiring_serial.c \
-$(ARDUINO)/wiring_analog.c $(ARDUINO)/wiring_digital.c \
-$(ARDUINO)/wiring_pulse.c \
-$(ARDUINO)/wiring_shift.c $(ARDUINO)/WInterrupts.c
-CXXSRC = $(ARDUINO)/HardwareSerial.cpp $(ARDUINO)/WMath.cpp \
-$(ARDUINO)/Print.cpp ./SdFile.cpp ./SdVolume.cpp ./Sd2Card.cpp
-FORMAT = ihex
-
-
-# Name of this Makefile (used for "make depend").
-MAKEFILE = Makefile
-
-# Debugging format.
-# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
-# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
-DEBUG = stabs
-
-OPT = s
-
-# Place -D or -U options here
-CDEFS = -DF_CPU=$(F_CPU)
-CXXDEFS = -DF_CPU=$(F_CPU)
-
-# Place -I options here
-CINCS = -I$(ARDUINO)
-CXXINCS = -I$(ARDUINO)
-
-# Compiler flag to set the C Standard level.
-# c89 - "ANSI" C
-# gnu89 - c89 plus GCC extensions
-# c99 - ISO C99 standard (not yet fully implemented)
-# gnu99 - c99 plus GCC extensions
-#CSTANDARD = -std=gnu99
-CDEBUG = -g$(DEBUG)
-CWARN = -Wall -Wunused-variable
-CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -w -ffunction-sections -fdata-sections -DARDUINO=22
-#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
-
-CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CEXTRA) $(CTUNING)
-CXXFLAGS = $(CDEFS) $(CINCS) -O$(OPT) -Wall $(CEXTRA) $(CTUNING)
-#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
-LDFLAGS = -lm
-
-
-# Programming support using avrdude. Settings and variables.
-AVRDUDE_PORT = $(PORT)
-AVRDUDE_WRITE_FLASH = -U flash:w:applet/$(TARGET).hex:i
-AVRDUDE_FLAGS = -D -C $(INSTALL_DIR)/hardware/tools/avrdude.conf \
--p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
--b $(UPLOAD_RATE)
-
-# Program settings
-CC = $(AVR_TOOLS_PATH)/avr-gcc
-CXX = $(AVR_TOOLS_PATH)/avr-g++
-OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
-OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
-AR = $(AVR_TOOLS_PATH)/avr-ar
-SIZE = $(AVR_TOOLS_PATH)/avr-size
-NM = $(AVR_TOOLS_PATH)/avr-nm
-AVRDUDE = $(INSTALL_DIR)/hardware/tools/avrdude
-REMOVE = rm -f
-MV = mv -f
-
-# Define all object files.
-OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
-
-# Define all listing files.
-LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
-
-# Combine all necessary flags and optional flags.
-# Add target processor to flags.
-ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
-ALL_CXXFLAGS = -mmcu=$(MCU) -I. $(CXXFLAGS)
-ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
-
-
-# Default target.
-all: applet_files_ez build sizeafter
-
-build: elf hex
-
-applet_files_ez: $(TARGET).pde
- # Here is the "preprocessing".
- # It creates a .cpp file based with the same name as the .pde file.
- # On top of the new .cpp file comes the WProgram.h header.
- # At the end there is a generic main() function attached.
- # Then the .cpp file will be compiled. Errors during compile will
- # refer to this new, automatically generated, file.
- # Not the original .pde file you actually edit...
- test -d applet || mkdir applet
- echo '#include "WProgram.h"' > applet/$(TARGET).cpp
- cat $(TARGET).pde >> applet/$(TARGET).cpp
- cat $(ARDUINO)/main.cpp >> applet/$(TARGET).cpp
-
-elf: applet/$(TARGET).elf
-hex: applet/$(TARGET).hex
-eep: applet/$(TARGET).eep
-lss: applet/$(TARGET).lss
-sym: applet/$(TARGET).sym
-# Program the device.
-upload: applet/$(TARGET).hex
- $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
+#=== user configuration ===
+# All ...PATH variables must have a '/' at the end
+# Board (and prozessor) information: see $(ARDUINO_PATH)hardware/arduino/boards.txt
+# Some examples:
+# BOARD DESCRIPTION
+# uno Arduino Uno
+# atmega328 Arduino Duemilanove or Nano w/ ATmega328
+# diecimila Arduino Diecimila, Duemilanove, or Nano w/ ATmega168
+# mega Arduino Mega
+# mini Arduino Mini
+# lilypad328 LilyPad Arduino w/ ATmega328
+BOARD:=mega
- # Display size of file.
-HEXSIZE = $(SIZE) --target=$(FORMAT) applet/$(TARGET).hex
-ELFSIZE = $(SIZE) applet/$(TARGET).elf
-sizebefore:
- @if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(HEXSIZE); echo; fi
+# additional (comma separated) defines
+# -DDOGM128_HW board is connected to DOGM128 display
+# -DDOGM132_HW board is connected to DOGM132 display
+# -DDOGS102_HW board is connected to DOGS102 display
+# -DDOG_REVERSE 180 degree rotation
+# -DDOG_SPI_SW_ARDUINO force SW shiftOut
+DEFS=-DDOGS102_HW -DDOG_DOUBLE_MEMORY -DDOG_SPI_SW_ARDUINO
-sizeafter:
- @if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_AFTER); $(HEXSIZE); echo; fi
+# The location where the avr tools (e.g. avr-gcc) are located. Requires a '/' at the end.
+# Can be empty if all tools are accessable through the search path
+AVR_TOOLS_PATH:=/usr/bin/
+
+# Install path of the arduino software. Requires a '/' at the end.
+ARDUINO_PATH:=/home/bkubicek/software/arduino-0022/
+
+# Install path for avrdude. Requires a '/' at the end. Can be empty if avrdude is in the search path.
+AVRDUDE_PATH:=
+
+# The unix device where we can reach the arduino board
+# Uno: /dev/ttyACM0
+# Duemilanove: /dev/ttyUSB0
+AVRDUDE_PORT:=/dev/ttyACM0
+
+# List of all libaries which should be included.
+#EXTRA_DIRS=$(ARDUINO_PATH)libraries/LiquidCrystal/
+#EXTRA_DIRS+=$(ARDUINO_PATH)libraries/Dogm/
+#EXTRA_DIRS+=/home/kraus/src/arduino/dogm128/hg/libraries/Dogm/
+
+#=== fetch parameter from boards.txt processor parameter ===
+# the basic idea is to get most of the information from boards.txt
+BOARDS_TXT:=$(ARDUINO_PATH)hardware/arduino/boards.txt
+
+# get the MCU value from the $(BOARD).build.mcu variable. For the atmega328 board this is atmega328p
+MCU:=$(shell sed -n -e "s/$(BOARD).build.mcu=\(.*\)/\1/p" $(BOARDS_TXT))
+# get the F_CPU value from the $(BOARD).build.f_cpu variable. For the atmega328 board this is 16000000
+F_CPU:=$(shell sed -n -e "s/$(BOARD).build.f_cpu=\(.*\)/\1/p" $(BOARDS_TXT))
-# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
-COFFCONVERT=$(OBJCOPY) --debugging \
---change-section-address .data-0x800000 \
---change-section-address .bss-0x800000 \
---change-section-address .noinit-0x800000 \
---change-section-address .eeprom-0x810000
+# avrdude
+# get the AVRDUDE_UPLOAD_RATE value from the $(BOARD).upload.speed variable. For the atmega328 board this is 57600
+AVRDUDE_UPLOAD_RATE:=$(shell sed -n -e "s/$(BOARD).upload.speed=\(.*\)/\1/p" $(BOARDS_TXT))
+# get the AVRDUDE_PROGRAMMER value from the $(BOARD).upload.protocol variable. For the atmega328 board this is stk500
+# AVRDUDE_PROGRAMMER:=$(shell sed -n -e "s/$(BOARD).upload.protocol=\(.*\)/\1/p" $(BOARDS_TXT))
+# use stk500v1, because stk500 will default to stk500v2
+AVRDUDE_PROGRAMMER:=stk500v1
+#=== identify user files ===
+PDESRC:=$(shell ls *.pde)
+TARGETNAME=$(basename $(PDESRC))
-coff: applet/$(TARGET).elf
- $(COFFCONVERT) -O coff-avr applet/$(TARGET).elf $(TARGET).cof
+CDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
+CDIRS:=*.c utility/*.c $(addsuffix *.c,$(CDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.c
+CSRC:=$(shell ls $(CDIRS) 2>/dev/null)
+CCSRC:=$(shell ls *.cc 2>/dev/null)
-extcoff: $(TARGET).elf
- $(COFFCONVERT) -O coff-ext-avr applet/$(TARGET).elf $(TARGET).cof
+CPPDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
+CPPDIRS:=*.cpp utility/*.cpp $(addsuffix *.cpp,$(CPPDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.cpp
+CPPSRC:=$(shell ls $(CPPDIRS) 2>/dev/null)
+#=== build internal variables ===
-.SUFFIXES: .elf .hex .eep .lss .sym
+# the name of the subdirectory where everything is stored
+TMPDIRNAME:=tmp
+TMPDIRPATH:=$(TMPDIRNAME)/
+
+AVRTOOLSPATH:=$(AVR_TOOLS_PATH)
+
+OBJCOPY:=$(AVRTOOLSPATH)avr-objcopy
+OBJDUMP:=$(AVRTOOLSPATH)avr-objdump
+SIZE:=$(AVRTOOLSPATH)avr-size
+
+CPPSRC:=$(addprefix $(TMPDIRPATH),$(PDESRC:.pde=.cpp)) $(CPPSRC)
+
+COBJ:=$(CSRC:.c=.o)
+CCOBJ:=$(CCSRC:.cc=.o)
+CPPOBJ:=$(CPPSRC:.cpp=.o)
+
+OBJFILES:=$(COBJ) $(CCOBJ) $(CPPOBJ)
+DIRS:= $(dir $(OBJFILES))
+
+DEPFILES:=$(OBJFILES:.o=.d)
+# assembler files from avr-gcc -S
+ASSFILES:=$(OBJFILES:.o=.s)
+# disassembled object files with avr-objdump -S
+DISFILES:=$(OBJFILES:.o=.dis)
-.elf.hex:
- $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
-.elf.eep:
- -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
- --change-section-lma .eeprom=0 -O $(FORMAT) $< $@
+LIBNAME:=$(TMPDIRPATH)$(TARGETNAME).a
+ELFNAME:=$(TMPDIRPATH)$(TARGETNAME).elf
+HEXNAME:=$(TMPDIRPATH)$(TARGETNAME).hex
-# Create extended listing file from ELF output file.
-.elf.lss:
- $(OBJDUMP) -h -S $< > $@
+AVRDUDE_FLAGS = -V -F
+AVRDUDE_FLAGS += -C $(ARDUINO_PATH)/hardware/tools/avrdude.conf
+AVRDUDE_FLAGS += -p $(MCU)
+AVRDUDE_FLAGS += -P $(AVRDUDE_PORT)
+AVRDUDE_FLAGS += -c $(AVRDUDE_PROGRAMMER)
+AVRDUDE_FLAGS += -b $(AVRDUDE_UPLOAD_RATE)
+AVRDUDE_FLAGS += -U flash:w:$(HEXNAME)
-# Create a symbol table from ELF output file.
-.elf.sym:
- $(NM) -n $< > $@
+AVRDUDE = avrdude
- # Link: create ELF output file from library.
-applet/$(TARGET).elf: $(TARGET).pde applet/core.a
- $(CC) $(ALL_CFLAGS) -Wl,--gc-sections -o $@ applet/$(TARGET).cpp -L. applet/core.a $(LDFLAGS)
+#=== predefined variable override ===
+# use "make -p -f/dev/null" to see the default rules and definitions
-applet/core.a: $(OBJ)
- @for i in $(OBJ); do echo $(AR) rcs applet/core.a $$i; $(AR) rcs applet/core.a $$i; done
+# Build C and C++ flags. Include path information must be placed here
+COMMON_FLAGS = -DF_CPU=$(F_CPU) -mmcu=$(MCU) $(DEFS)
+# COMMON_FLAGS += -gdwarf-2
+COMMON_FLAGS += -Os
+COMMON_FLAGS += -Wall -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
+COMMON_FLAGS += -I.
+COMMON_FLAGS += -I$(ARDUINO_PATH)hardware/arduino/cores/arduino
+COMMON_FLAGS += $(addprefix -I,$(EXTRA_DIRS))
+COMMON_FLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections
+COMMON_FLAGS += -Wl,--relax
+COMMON_FLAGS += -mcall-prologues
+CFLAGS = $(COMMON_FLAGS) -std=gnu99 -Wstrict-prototypes
+CXXFLAGS = $(COMMON_FLAGS)
+# Replace standard build tools by avr tools
+CC = $(AVRTOOLSPATH)avr-gcc
+CXX = $(AVRTOOLSPATH)avr-g++
+AR = @$(AVRTOOLSPATH)avr-ar
-# Compile: create object files from C++ source files.
-.cpp.o:
- $(CXX) -c $(ALL_CXXFLAGS) $< -o $@
-# Compile: create object files from C source files.
-.c.o:
- $(CC) -c $(ALL_CFLAGS) $< -o $@
+# "rm" must be able to delete a directory tree
+RM = rm -rf
+#=== rules ===
-# Compile: create assembler files from C source files.
-.c.s:
- $(CC) -S $(ALL_CFLAGS) $< -o $@
+# add rules for the C/C++ files where the .o file is placed in the TMPDIRPATH
+# reuse existing variables as far as possible
+$(TMPDIRPATH)%.o: %.c
+ @echo compile $<
+ @$(COMPILE.c) $(OUTPUT_OPTION) $<
+
+$(TMPDIRPATH)%.o: %.cc
+ @echo compile $<
+ @$(COMPILE.cc) $(OUTPUT_OPTION) $<
+
+$(TMPDIRPATH)%.o: %.cpp
+ @echo compile $<
+ @$(COMPILE.cpp) $(OUTPUT_OPTION) $<
+
+$(TMPDIRPATH)%.s: %.c
+ @$(COMPILE.c) $(OUTPUT_OPTION) -S $<
+
+$(TMPDIRPATH)%.s: %.cc
+ @$(COMPILE.cc) $(OUTPUT_OPTION) -S $<
+
+$(TMPDIRPATH)%.s: %.cpp
+ @$(COMPILE.cpp) $(OUTPUT_OPTION) -S $<
+
+$(TMPDIRPATH)%.dis: $(TMPDIRPATH)%.o
+ @$(OBJDUMP) -S $< > $@
+
+.SUFFIXES: .elf .hex .pde
+
+.elf.hex:
+ @$(OBJCOPY) -O ihex -R .eeprom $< $@
+
+$(TMPDIRPATH)%.cpp: %.pde
+ @cat $(ARDUINO_PATH)hardware/arduino/cores/arduino/main.cpp > $@
+ @cat $< >> $@
+ @echo >> $@
+ @echo 'extern "C" void __cxa_pure_virtual() { while (1); }' >> $@
-# Assemble: create object files from assembler source files.
-.S.o:
- $(CC) -c $(ALL_ASFLAGS) $< -o $@
+.PHONY: all
+all: tmpdir $(HEXNAME) assemblersource showsize
+ ls -al $(HEXNAME) $(ELFNAME)
+$(ELFNAME): $(LIBNAME)($(addprefix $(TMPDIRPATH),$(OBJFILES)))
+ $(LINK.o) $(COMMON_FLAGS) $(LIBNAME) $(LOADLIBES) $(LDLIBS) -o $@
-# Target: clean project.
+$(LIBNAME)(): $(addprefix $(TMPDIRPATH),$(OBJFILES))
+
+#=== create temp directory ===
+# not really required, because it will be also created during the dependency handling
+.PHONY: tmpdir
+tmpdir:
+ @test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH)
+
+#=== create assembler files for each C/C++ file ===
+.PHONY: assemblersource
+assemblersource: $(addprefix $(TMPDIRPATH),$(ASSFILES)) $(addprefix $(TMPDIRPATH),$(DISFILES))
+
+
+#=== show the section sizes of the ELF file ===
+.PHONY: showsize
+showsize: $(ELFNAME)
+ $(SIZE) $<
+
+#=== clean up target ===
+# this is simple: the TMPDIRPATH is removed
+.PHONY: clean
clean:
- $(REMOVE) applet/$(TARGET).hex applet/$(TARGET).eep applet/$(TARGET).cof applet/$(TARGET).elf \
- applet/$(TARGET).map applet/$(TARGET).sym applet/$(TARGET).lss applet/core.a \
- $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
-
-depend:
- if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
- then \
- sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
- $(MAKEFILE).$$$$ && \
- $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
- fi
- echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
- >> $(MAKEFILE); \
- $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)
-
-.PHONY: all build elf hex eep lss sym program coff extcoff clean depend applet_files sizebefore sizeafter
+ $(RM) $(TMPDIRPATH)
+
+# Program the device.
+# step 1: reset the arduino board with the stty command
+# step 2: user avrdude to upload the software
+.PHONY: upload
+upload: $(HEXNAME)
+ stty -F $(AVRDUDE_PORT) hupcl
+ $(AVRDUDE) $(AVRDUDE_FLAGS)
+
+
+# === dependency handling ===
+# From the gnu make manual (section 4.14, Generating Prerequisites Automatically)
+# Additionally (because this will be the first executed rule) TMPDIRPATH is created here.
+# Instead of "sed" the "echo" command is used
+# cd $(TMPDIRPATH); mkdir -p $(DIRS) 2> /dev/null; cd ..
+DEPACTION=test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH);\
+mkdir -p $(addprefix $(TMPDIRPATH),$(DIRS));\
+set -e; echo -n $@ $(dir $@) > $@; $(CC) -MM $(COMMON_FLAGS) $< >> $@
+
+
+$(TMPDIRPATH)%.d: %.c
+ @$(DEPACTION)
+
+$(TMPDIRPATH)%.d: %.cc
+ @$(DEPACTION)
+
+
+$(TMPDIRPATH)%.d: %.cpp
+ @$(DEPACTION)
+
+# Include dependency files. If a .d file is missing, a warning is created and the .d file is created
+# This warning is not a problem (gnu make manual, section 3.3 Including Other Makefiles)
+-include $(addprefix $(TMPDIRPATH),$(DEPFILES))
+
+
+#ifndef __MARLINH
+#define __MARLINH
+
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL
#include <WProgram.h>
#include "fastio.h"
-extern "C" void __cxa_pure_virtual();
-void __cxa_pure_virtual(){};
+
+
+#define ECHO(x) Serial << "echo: " << x;
+#define ECHOLN(x) Serial << "echo: "<<x<<endl;
+
void get_command();
void process_commands();
void manage_inactivity(byte debug);
-void manage_heater();
-int temp2analogu(int celsius, const short table[][2], int numtemps);
-float analog2tempu(int raw, const short table[][2], int numtemps);
-#ifdef HEATER_USES_THERMISTOR
- #define HEATERSOURCE 1
-#endif
-#ifdef BED_USES_THERMISTOR
- #define BEDSOURCE 1
-#endif
-
-#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
-#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS)
-
#if X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
#define enable_z() ;
#define disable_z() ;
#endif
+
#if E_ENABLE_PIN > -1
-#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
-#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
+
+ #define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
+ #define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
+
#else
#define enable_e() ;
#define disable_e() ;
void get_coordinates();
void prepare_move();
-void linear_move(unsigned long steps_remaining[]);
-void do_step(int axis);
void kill(byte debug);
-// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
-// the source g-code and may never actually be reached if acceleration management is active.
-typedef struct {
- // Fields used by the bresenham algorithm for tracing the line
- long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
- long step_event_count; // The number of step events required to complete this block
- volatile long accelerate_until; // The index of the step event on which to stop acceleration
- volatile long decelerate_after; // The index of the step event on which to start decelerating
- volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
- unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
-
- long advance_rate;
- volatile long initial_advance;
- volatile long final_advance;
- float advance;
-
- // Fields used by the motion planner to manage acceleration
- float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
- float nominal_speed; // The nominal speed for this block in mm/min
- float millimeters; // The total travel of this block in mm
- float entry_speed;
- float acceleration; // acceleration mm/sec^2
-
- // Settings for the trapezoid generator
- long nominal_rate; // The nominal step rate for this block in step_events/sec
- volatile long initial_rate; // The jerk-adjusted step rate at start of block
- volatile long final_rate; // The minimal rate at exit
- long acceleration_st; // acceleration steps/sec^2
- volatile char busy;
-} block_t;
-
-void check_axes_activity();
-void plan_init();
-void st_init();
-void tp_init();
-void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
-void plan_set_position(float x, float y, float z, float e);
-void st_wake_up();
-void st_synchronize();
+//void check_axes_activity();
+//void plan_init();
+//void st_init();
+//void tp_init();
+//void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
+//void plan_set_position(float x, float y, float z, float e);
+//void st_wake_up();
+//void st_synchronize();
+void enquecommand(const char *cmd);
+void wd_reset();
+
+#ifndef CRITICAL_SECTION_START
+#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
+#define CRITICAL_SECTION_END SREG = _sreg;
+#endif //CRITICAL_SECTION_START
+extern float homing_feedrate[];
+extern bool axis_relative_modes[];
+
+void manage_inactivity(byte debug);
+
+#endif
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
-
- This firmware is optimized for gen6 electronics.
*/
+#include <EEPROM.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
-#include "speed_lookuptable.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+
+#ifdef SIMPLE_LCD
+ #include "Simplelcd.h"
+#endif
-char version_string[] = "0.9.10";
+char version_string[] = "1.0.0 Alpha 1";
#ifdef SDSUPPORT
#include "SdFat.h"
#endif //SDSUPPORT
-#ifndef CRITICAL_SECTION_START
-#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
-#define CRITICAL_SECTION_END SREG = _sreg
-#endif //CRITICAL_SECTION_START
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
+// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D
+// M500 - stores paramters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables
float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
bool home_all_axis = true;
-long feedrate = 1500, next_feedrate, saved_feedrate;
+float feedrate = 1500.0, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+uint8_t fanpwm=0;
+
+volatile int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
// comm variables
#define MAX_CMD_SIZE 96
-#define BUFSIZE 8
+#define BUFSIZE 4
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
+extern float HeaterPower;
-// Manage heater variables.
-
-int target_raw = 0;
-int current_raw = 0;
-unsigned char temp_meas_ready = false;
-
-#ifdef PIDTEMP
- double temp_iState = 0;
- double temp_dState = 0;
- double pTerm;
- double iTerm;
- double dTerm;
- //int output;
- double pid_error;
- double temp_iState_min;
- double temp_iState_max;
- double pid_setpoint = 0.0;
- double pid_input;
- double pid_output;
- bool pid_reset;
-#endif //PIDTEMP
+#include "EEPROM.h"
+float tt = 0, bt = 0;
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif //WATCHPERIOD
-#ifdef MINTEMP
-int minttemp = temp2analogh(MINTEMP);
-#endif //MINTEMP
-#ifdef MAXTEMP
-int maxttemp = temp2analogh(MAXTEMP);
-#endif //MAXTEMP
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
+unsigned long starttime=0;
+unsigned long stoptime=0;
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
bool sdactive = false;
bool savetosd = false;
int16_t n;
+long autostart_atmillis=0;
void initsd(){
sdactive = false;
else if (!root.openRoot(&volume))
Serial.println("openRoot failed");
else
+ {
sdactive = true;
+ Serial.println("SD card ok");
+ }
#endif //SDSS
}
+void quickinitsd(){
+ sdactive=false;
+ autostart_atmillis=millis()+5000;
+}
+
inline void write_command(char *buf){
char* begin = buf;
char* npos = 0;
#endif //SDSUPPORT
+///adds an command to the main command buffer
+void enquecommand(const char *cmd)
+{
+ if(buflen < BUFSIZE)
+ {
+ //this is dangerous if a mixing of serial and this happsens
+ strcpy(&(cmdbuffer[bufindw][0]),cmd);
+ Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
+ bufindw= (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+ }
+}
+
void setup()
{
+
Serial.begin(BAUDRATE);
- Serial.print("Marlin ");
- Serial.println(version_string);
+ ECHOLN("Marlin "<<version_string);
Serial.println("start");
-
+#if defined FANCY_LCD || defined SIMPLE_LCD
+ lcd_init();
+#endif
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
+
+ RetrieveSettings(); // loads data from EEPROM if available
- //Initialize Dir Pins
-#if X_DIR_PIN > -1
- SET_OUTPUT(X_DIR_PIN);
-#endif
-#if Y_DIR_PIN > -1
- SET_OUTPUT(Y_DIR_PIN);
-#endif
-#if Z_DIR_PIN > -1
- SET_OUTPUT(Z_DIR_PIN);
-#endif
-#if E_DIR_PIN > -1
- SET_OUTPUT(E_DIR_PIN);
-#endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
-#if (X_ENABLE_PIN > -1)
- SET_OUTPUT(X_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
-#endif
-#if (Y_ENABLE_PIN > -1)
- SET_OUTPUT(Y_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
-#endif
-#if (Z_ENABLE_PIN > -1)
- SET_OUTPUT(Z_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
-#endif
-#if (E_ENABLE_PIN > -1)
- SET_OUTPUT(E_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
-#endif
- //endstops and pullups
-#ifdef ENDSTOPPULLUPS
-#if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- WRITE(X_MIN_PIN,HIGH);
-#endif
-#if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- WRITE(X_MAX_PIN,HIGH);
-#endif
-#if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- WRITE(Y_MIN_PIN,HIGH);
-#endif
-#if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- WRITE(Y_MAX_PIN,HIGH);
-#endif
-#if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- WRITE(Z_MIN_PIN,HIGH);
-#endif
-#if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- WRITE(Z_MAX_PIN,HIGH);
-#endif
-#else //ENDSTOPPULLUPS
-#if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
-#endif
-#if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
-#endif
-#if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
-#endif
-#if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
-#endif
-#if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
-#endif
-#if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
-#endif
-#endif //ENDSTOPPULLUPS
-
-#if (HEATER_0_PIN > -1)
- SET_OUTPUT(HEATER_0_PIN);
-#endif
-#if (HEATER_1_PIN > -1)
- SET_OUTPUT(HEATER_1_PIN);
-#endif
-
- //Initialize Step Pins
-#if (X_STEP_PIN > -1)
- SET_OUTPUT(X_STEP_PIN);
-#endif
-#if (Y_STEP_PIN > -1)
- SET_OUTPUT(Y_STEP_PIN);
-#endif
-#if (Z_STEP_PIN > -1)
- SET_OUTPUT(Z_STEP_PIN);
-#endif
-#if (E_STEP_PIN > -1)
- SET_OUTPUT(E_STEP_PIN);
-#endif
for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
-#ifdef PIDTEMP
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
-#endif //PIDTEMP
-
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif //SDPOWER
- initsd();
+ quickinitsd();
#endif //SDSUPPORT
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
+ //checkautostart();
}
+#ifdef SDSUPPORT
+bool autostart_stilltocheck=true;
+
+
+void checkautostart(bool force)
+{
+ //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
+ if(!force)
+ {
+ if(!autostart_stilltocheck)
+ return;
+ if(autostart_atmillis<millis())
+ return;
+ }
+ autostart_stilltocheck=false;
+ if(!sdactive)
+ {
+ initsd();
+ if(!sdactive) //fail
+ return;
+ }
+ static int lastnr=0;
+ char autoname[30];
+ sprintf(autoname,"auto%i.g",lastnr);
+ for(int i=0;i<strlen(autoname);i++)
+ autoname[i]=tolower(autoname[i]);
+ dir_t p;
+
+ root.rewind();
+ char filename[11];
+ int cnt=0;
+
+ bool found=false;
+ while (root.readDir(p) > 0)
+ {
+ for(int i=0;i<strlen((char*)p.name);i++)
+ p.name[i]=tolower(p.name[i]);
+ //Serial.print((char*)p.name);
+ //Serial.print(" ");
+ //Serial.println(autoname);
+ if(p.name[9]!='~') //skip safety copies
+ if(strncmp((char*)p.name,autoname,5)==0)
+ {
+ char cmd[30];
+
+ sprintf(cmd,"M23 %s",autoname);
+ //sprintf(cmd,"M115");
+ //enquecommand("G92 Z0");
+ //enquecommand("G1 Z10 F2000");
+ //enquecommand("G28 X-105 Y-105");
+ enquecommand(cmd);
+ enquecommand("M24");
+ found=true;
+
+ }
+ }
+ if(!found)
+ lastnr=-1;
+ else
+ lastnr++;
+
+}
+#else
+
+inline void checkautostart(bool x)
+{
+}
+#endif
+
void loop()
{
if(buflen<3)
get_command();
-
- if(buflen){
+ checkautostart(false);
+ if(buflen)
+ {
#ifdef SDSUPPORT
if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
+ LCD_STATUS;
}
if(sdpos >= filesize){
sdmode = false;
Serial.println("Done printing file");
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
+ checkautostart(true);
}
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+
for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
- feedrate = 0;
+ feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
- st_synchronize();
+// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
prepare_move();
-
- st_synchronize();
+
+// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
-
- st_synchronize();
+
+// st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
- st_synchronize();
-
+
+// st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
- feedrate = 0;
+ feedrate = 0.0;
}
}
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS];
prepare_move();
- st_synchronize();
+// st_synchronize();
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
- st_synchronize();
+// st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
- st_synchronize();
+// st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS];
- feedrate = 0;
+ feedrate = 0.0;
}
}
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS];
prepare_move();
- st_synchronize();
+// st_synchronize();
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
- st_synchronize();
+// st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
- st_synchronize();
+// st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
- feedrate = 0;
+ feedrate = 0.0;
}
}
feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
break;
case 90: // G90
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
-
}
}
case 24: //M24 - Start SD print
if(sdactive){
sdmode = true;
+ starttime=millis();
}
break;
case 25: //M25 - Pause SD print
//processed in write to file routine above
//savetosd = false;
break;
+ case 30:
+ {
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
+ }
+ break;
#endif //SDSUPPORT
- case 104: // M104
-#ifdef PID_OPENLOOP
- if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
- if(pid_output > PID_MAX) pid_output = PID_MAX;
- if(pid_output < 0) pid_output = 0;
-#else //PID_OPENLOOP
- if (code_seen('S')) {
- target_raw = temp2analogh(code_value());
+ case 104: // M104
+ if (code_seen('S')) target_raw[0] = temp2analog(code_value());
#ifdef PIDTEMP
- pid_setpoint = code_value();
-#endif //PIDTEMP
- }
-#ifdef WATCHPERIOD
- if(target_raw > current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else{
- watchmillis = 0;
- }
-#endif //WATCHPERIOD
-#endif //PID_OPENLOOP
- break;
- case 105: // M105
- Serial.print("ok T:");
- Serial.println(analog2temp(current_raw));
- return;
- //break;
- case 109: // M109 - Wait for extruder heater to reach target.
- if (code_seen('S')) {
- target_raw = temp2analogh(code_value());
+ pid_setpoint = code_value();
+#endif //PIDTEM
+ #ifdef WATCHPERIOD
+ if(target_raw[0] > current_raw[0]){
+ watchmillis = max(1,millis());
+ watch_raw[0] = current_raw[0];
+ }else{
+ watchmillis = 0;
+ }
+ #endif
+ break;
+ case 140: // M140 set bed temp
+ if (code_seen('S')) target_raw[1] = temp2analogBed(code_value());
+ break;
+ case 105: // M105
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+ tt = analog2temp(current_raw[0]);
+ #endif
+ #if TEMP_1_PIN > -1
+ bt = analog2tempBed(current_raw[1]);
+ #endif
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+ Serial.print("ok T:");
+ Serial.print(tt);
+// Serial.print(", raw:");
+// Serial.print(current_raw);
+ #if TEMP_1_PIN > -1
#ifdef PIDTEMP
- pid_setpoint = code_value();
-#endif //PIDTEMP
- }
-#ifdef WATCHPERIOD
- if(target_raw>current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else{
- watchmillis = 0;
- }
-#endif //WATCHERPERIOD
- codenum = millis();
- while(current_raw < target_raw) {
- if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- Serial.print("T:");
- Serial.println( analog2temp(current_raw));
+ Serial.print(" B:");
+ #if TEMP_1_PIN > -1
+ Serial.println(bt);
+ #else
+ Serial.println(HeaterPower);
+ #endif
+#else
+ Serial.println();
+#endif
+ #else
+ Serial.println();
+ #endif
+ #else
+ Serial.println("No thermistors - no temp");
+ #endif
+ return;
+ //break;
+ case 109: // M109 - Wait for extruder heater to reach target.
+ LCD_MESSAGE("Heating...");
+ if (code_seen('S')) target_raw[0] = temp2analog(code_value());
+#ifdef PIDTEMP
+ pid_setpoint = code_value();
+#endif //PIDTEM
+ #ifdef WATCHPERIOD
+ if(target_raw[0]>current_raw[0]){
+ watchmillis = max(1,millis());
+ watch_raw[0] = current_raw[0];
+ }else{
+ watchmillis = 0;
+ }
+ #endif
codenum = millis();
+ starttime=millis();
+ while(current_raw[0] < target_raw[0]) {
+ if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up.
+ Serial.print("T:");
+ Serial.println( analog2temp(current_raw[0]) );
+ codenum = millis();
+ }
+ LCD_STATUS;
+ manage_heater();
+ }
+ LCD_MESSAGE("UltiMarlin ready.");
+ break;
+ case 190: // M190 - Wait bed for heater to reach target.
+ #if TEMP_1_PIN > -1
+ if (code_seen('S')) target_raw[1] = temp2analog(code_value());
+ codenum = millis();
+ while(current_raw[1] < target_raw[1])
+ {
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ float tt=analog2temp(current_raw[0]);
+ Serial.print("T:");
+ Serial.println( tt );
+ Serial.print("ok T:");
+ Serial.print( tt );
+ Serial.print(" B:");
+ Serial.println( analog2temp(current_raw[1]) );
+ codenum = millis();
+ }
+ manage_heater();
}
- manage_heater();
- }
- break;
- case 190:
+ #endif
break;
+#if FAN_PIN > -1
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=constrain(code_value(),0,255);
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ else {
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=255;
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ break;
+ case 107: //M107 Fan Off
+ WRITE(FAN_PIN,LOW);
+ analogWrite(FAN_PIN, 0);
+ break;
+#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
+ case 18:
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
Serial.print(current_position[Y_AXIS]);
Serial.print("Z:");
Serial.print(current_position[Z_AXIS]);
- Serial.print("E:");
- Serial.println(current_position[E_AXIS]);
+ Serial.print("E:");
+ Serial.print(current_position[E_AXIS]);
+ #ifdef DEBUG_STEPS
+ Serial.print(" Count X:");
+ Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
+ Serial.print("Y:");
+ Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
+ Serial.print("Z:");
+ Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
+ #endif
+ Serial.println("");
break;
case 119: // M119
#if (X_MIN_PIN > -1)
}
break;
#endif
+ case 203: // M203 max feedrate mm/sec
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
+ }
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ {
+ if(code_seen('S')) acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ }
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ {
+ if(code_seen('S')) minimumfeedrate = code_value()*60 ;
+ if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
+ if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_xy_jerk = code_value()*60 ;
+ if(code_seen('Z')) max_z_jerk = code_value()*60 ;
+ }
+ break;
+ case 220: // M220 S<factor in percent>- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ feedmultiplychanged=true;
+ }
+ }
+ break;
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
- Serial.print("Kp ");Serial.println(Kp);
- Serial.print("Ki ");Serial.println(Ki/PID_dT);
- Serial.print("Kd ");Serial.println(Kd*PID_dT);
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
+// ECHOLN("Kp "<<_FLOAT(Kp,2));
+// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
+// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
+
+// temp_iState_min = 0.0;
+// if (Ki!=0) {
+// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
+// }
+// else temp_iState_max = 1.0e10;
break;
#endif //PIDTEMP
+ case 500: // Store settings in EEPROM
+ {
+ StoreSettings();
+ }
+ break;
+ case 501: // Read settings from EEPROM
+ {
+ RetrieveSettings();
+ }
+ break;
+ case 502: // Revert to default settings
+ {
+ RetrieveSettings(true);
+ }
+ break;
+
}
}
else{
void prepare_move()
{
- if (min_software_endstops) {
- if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
- if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
- if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
- }
-
- if (max_software_endstops) {
- if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
- if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
- if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
- }
-
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60.0);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
-void manage_heater()
-{
- float pid_input;
- float pid_output;
- if(temp_meas_ready != true)
- return;
-
-CRITICAL_SECTION_START;
- temp_meas_ready = false;
-CRITICAL_SECTION_END;
-#ifdef PIDTEMP
- pid_input = analog2temp(current_raw);
-#ifndef PID_OPENLOOP
- pid_error = pid_setpoint - pid_input;
- if(pid_error > 10){
- pid_output = PID_MAX;
- pid_reset = true;
- }
- else if(pid_error < -10) {
- pid_output = 0;
- pid_reset = true;
- }
- else {
- if(pid_reset == true) {
- temp_iState = 0.0;
- pid_reset = false;
- }
- pTerm = Kp * pid_error;
- temp_iState += pid_error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = Ki * temp_iState;
- #define K1 0.8
- #define K2 (1.0-K1)
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
- temp_dState = pid_input;
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
- }
-#endif //PID_OPENLOOP
-#ifdef PID_DEBUG
- Serial.print(" Input ");
- Serial.print(pid_input);
- Serial.print(" Output ");
- Serial.print(pid_output);
- Serial.print(" pTerm ");
- Serial.print(pTerm);
- Serial.print(" iTerm ");
- Serial.print(iTerm);
- Serial.print(" dTerm ");
- Serial.print(dTerm);
- Serial.println();
-#endif //PID_DEBUG
- OCR2B = pid_output;
-#endif //PIDTEMP
-}
+#ifdef USE_WATCHDOG
+#include <avr/wdt.h>
+#include <avr/interrupt.h>
-int temp2analogu(int celsius, const short table[][2], int numtemps) {
- int raw = 0;
- byte i;
+volatile uint8_t timeout_seconds=0;
- for (i=1; i<numtemps; i++) {
- if (table[i][1] < celsius) {
- raw = table[i-1][0] +
- (celsius - table[i-1][1]) *
- (table[i][0] - table[i-1][0]) /
- (table[i][1] - table[i-1][1]);
+void(* ctrlaltdelete) (void) = 0;
- break;
- }
+ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
+ if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
+ {
+ kill();
+#ifdef RESET_MANUAL
+ LCD_MESSAGE("Please Reset!");
+ ECHOLN("echo_: Something is wrong, please turn off the printer.");
+#else
+ LCD_MESSAGE("Timeout, resetting!");
+#endif
+ //disable watchdog, it will survife reboot.
+ WDTCSR |= (1<<WDCE) | (1<<WDE);
+ WDTCSR = 0;
+#ifdef RESET_MANUAL
+ while(1); //wait for user or serial reset
+#else
+ ctrlaltdelete();
+#endif
}
- // Overflow: Set to last value in the table
- if (i == numtemps) raw = table[i-1][0];
-
- return 16383 - raw;
}
-float analog2tempu(int raw,const short table[][2], int numtemps) {
- float celsius = 0.0;
- byte i;
-
- raw = 16383 - raw;
- for (i=1; i<numtemps; i++) {
- if (table[i][0] > raw) {
- celsius = (float)table[i-1][1] +
- (float)(raw - table[i-1][0]) *
- (float)(table[i][1] - table[i-1][1]) /
- (float)(table[i][0] - table[i-1][0]);
-
- break;
- }
- }
- // Overflow: Set to last value in the table
- if (i == numtemps) celsius = table[i-1][1];
+/// intialise watch dog with a 1 sec interrupt time
+void wd_init() {
+ WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
+ WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
+}
- return celsius;
+/// reset watchdog. MUST be called every 1s after init or avr will reset.
+void wd_reset() {
+ wdt_reset();
+ timeout_seconds=0; //reset counter for resets
}
+#endif /* USE_WATCHDOG */
inline void kill()
{
- target_raw=0;
-#ifdef PIDTEMP
- pid_setpoint = 0.0;
-#endif //PIDTEMP
- OCR2B = 0;
- WRITE(HEATER_0_PIN,LOW);
-
+ #if TEMP_0_PIN > -1
+ target_raw[0]=0;
+ #if HEATER_0_PIN > -1
+ WRITE(HEATER_0_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_1_PIN > -1
+ target_raw[1]=0;
+ #if HEATER_1_PIN > -1
+ WRITE(HEATER_1_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_2_PIN > -1
+ target_raw[2]=0;
+ #if HEATER_2_PIN > -1
+ WRITE(HEATER_2_PIN,LOW);
+ #endif
+ #endif
disable_x();
disable_y();
disable_z();
disable_e();
-
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+ Serial.println("!! Printer halted. kill() called!!");
+ while(1); // Wait for reset
}
-inline void manage_inactivity(byte debug) {
+void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x();
}
check_axes_activity();
}
-
-// Planner
-
-/*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
-
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- */
-
-
-// The number of linear motions that can be in the plan at any give time
-#define BLOCK_BUFFER_SIZE 16
-#define BLOCK_BUFFER_MASK 0x0f
-
-static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
-static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
-static volatile unsigned char block_buffer_tail; // Index of the block to process now
-
-// The current position of the tool in absolute steps
-static long position[4];
-
-#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
-
-// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
-// given acceleration:
-inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
- return(
- (target_rate*target_rate-initial_rate*initial_rate)/
- (2L*acceleration)
- );
-}
-
-// This function gives you the point at which you must start braking (at the rate of -acceleration) if
-// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
-// a total travel of distance. This can be used to compute the intersection point between acceleration and
-// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-
-inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
- return(
- (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4*acceleration)
- );
-}
-
-// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-
-void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
- if(block->busy == true) return; // If block is busy then bail out.
- float entry_factor = entry_speed / block->nominal_speed;
- float exit_factor = exit_speed / block->nominal_speed;
- long initial_rate = ceil(block->nominal_rate*entry_factor);
- long final_rate = ceil(block->nominal_rate*exit_factor);
-
-#ifdef ADVANCE
- long initial_advance = block->advance*entry_factor*entry_factor;
- long final_advance = block->advance*exit_factor*exit_factor;
-#endif // ADVANCE
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- if(initial_rate <120) initial_rate=120;
- if(final_rate < 120) final_rate=120;
-
- // Calculate the acceleration steps
- long acceleration = block->acceleration_st;
- long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
- long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
- // Calculate the size of Plateau of Nominal Rate.
- long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
- plateau_steps = 0;
- }
-
- long decelerate_after = accelerate_steps+plateau_steps;
- long acceleration_rate = (long)((float)acceleration * 8.388608);
-
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if(block->busy == false) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = decelerate_after;
- block->acceleration_rate = acceleration_rate;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
-#ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
-#endif ADVANCE
- }
- CRITICAL_SECTION_END;
-}
-
-// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
-// acceleration within the allotted distance.
-inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
- return(
- sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
- );
-}
-
-// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
-// This method will calculate the junction jerk as the euclidean distance between the nominal
-// velocities of the respective blocks.
-inline float junction_jerk(block_t *before, block_t *after) {
- return(sqrt(
- pow((before->speed_x-after->speed_x), 2)+
- pow((before->speed_y-after->speed_y), 2)));
-}
-
-// Return the safe speed which is max_jerk/2, e.g. the
-// speed under which you cannot exceed max_jerk no matter what you do.
-float safe_speed(block_t *block) {
- float safe_speed;
- safe_speed = max_xy_jerk/2;
- if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
- if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
- return safe_speed;
-}
-
-// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
-void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
-
- float entry_speed = current->nominal_speed;
- float exit_factor;
- float exit_speed;
- if (next) {
- exit_speed = next->entry_speed;
- }
- else {
- exit_speed = safe_speed(current);
- }
-
- // Calculate the entry_factor for the current block.
- if (previous) {
- // Reduce speed so that junction_jerk is within the maximum allowed
- float jerk = junction_jerk(previous, current);
- if((previous->steps_x == 0) && (previous->steps_y == 0)) {
- entry_speed = safe_speed(current);
- }
- else if (jerk > max_xy_jerk) {
- entry_speed = (max_xy_jerk/jerk) * entry_speed;
- }
- if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
- entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
- }
- // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
- if (entry_speed > exit_speed) {
- float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
- if (max_entry_speed < entry_speed) {
- entry_speed = max_entry_speed;
- }
- }
- }
- else {
- entry_speed = safe_speed(current);
- }
- // Store result
- current->entry_speed = entry_speed;
-}
-
-// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
-// implements the reverse pass.
-void planner_reverse_pass() {
- char block_index = block_buffer_head;
- block_index--;
- block_t *block[3] = { NULL, NULL, NULL };
- while(block_index != block_buffer_tail) {
- block_index--;
- if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
- block[2]= block[1];
- block[1]= block[0];
- block[0] = &block_buffer[block_index];
- planner_reverse_pass_kernel(block[0], block[1], block[2]);
- }
- planner_reverse_pass_kernel(NULL, block[0], block[1]);
-}
-
-// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
-void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
- if(previous) {
- // If the previous block is an acceleration block, but it is not long enough to
- // complete the full speed change within the block, we need to adjust out entry
- // speed accordingly. Remember current->entry_factor equals the exit factor of
- // the previous block.
- if(previous->entry_speed < current->entry_speed) {
- float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
- if (max_entry_speed < current->entry_speed) {
- current->entry_speed = max_entry_speed;
- }
- }
- }
-}
-
-// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
-// implements the forward pass.
-void planner_forward_pass() {
- char block_index = block_buffer_tail;
- block_t *block[3] = {
- NULL, NULL, NULL };
-
- while(block_index != block_buffer_head) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[block_index];
- planner_forward_pass_kernel(block[0],block[1],block[2]);
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- planner_forward_pass_kernel(block[1], block[2], NULL);
-}
-
-// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
-// entry_factor for each junction. Must be called by planner_recalculate() after
-// updating the blocks.
-void planner_recalculate_trapezoids() {
- char block_index = block_buffer_tail;
- block_t *current;
- block_t *next = NULL;
- while(block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
- }
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
-}
-
-// Recalculates the motion plan according to the following algorithm:
-//
-// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
-// so that:
-// a. The junction jerk is within the set limit
-// b. No speed reduction within one block requires faster deceleration than the one, true constant
-// acceleration.
-// 2. Go over every block in chronological order and dial down junction speed reduction values if
-// a. The speed increase within one block would require faster accelleration than the one, true
-// constant acceleration.
-//
-// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
-// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
-// the set limit. Finally it will:
-//
-// 3. Recalculate trapezoids for all blocks.
-
-void planner_recalculate() {
- planner_reverse_pass();
- planner_forward_pass();
- planner_recalculate_trapezoids();
-}
-
-void plan_init() {
- block_buffer_head = 0;
- block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
-}
-
-
-inline void plan_discard_current_block() {
- if (block_buffer_head != block_buffer_tail) {
- block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
- }
-}
-
-inline block_t *plan_get_current_block() {
- if (block_buffer_head == block_buffer_tail) {
- return(NULL);
- }
- block_t *block = &block_buffer[block_buffer_tail];
- block->busy = true;
- return(block);
-}
-
-void check_axes_activity() {
- unsigned char x_active = 0;
- unsigned char y_active = 0;
- unsigned char z_active = 0;
- unsigned char e_active = 0;
- block_t *block;
-
- if(block_buffer_tail != block_buffer_head) {
- char block_index = block_buffer_tail;
- while(block_index != block_buffer_head) {
- block = &block_buffer[block_index];
- if(block->steps_x != 0) x_active++;
- if(block->steps_y != 0) y_active++;
- if(block->steps_z != 0) z_active++;
- if(block->steps_e != 0) e_active++;
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- }
- if((DISABLE_X) && (x_active == 0)) disable_x();
- if((DISABLE_Y) && (y_active == 0)) disable_y();
- if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0)) disable_e();
-}
-
-// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
-// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
-// calculation the caller must also provide the physical length of the line in millimeters.
-void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- long target[4];
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- // Calculate the buffer head after we push this byte
- int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while(block_buffer_tail == next_buffer_head) {
- manage_heater();
- manage_inactivity(1);
- }
-
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
-
- // Number of steps for each axis
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
-
- // Bail if this is a zero-length block
- if (block->step_event_count == 0) {
- return;
- };
-
- //enable active axes
- if(block->steps_x != 0) enable_x();
- if(block->steps_y != 0) enable_y();
- if(block->steps_z != 0) enable_z();
- if(block->steps_e != 0) enable_e();
-
- float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
- float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
- block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
-
- unsigned long microseconds;
- microseconds = lround((block->millimeters/feed_rate)*1000000);
-
- // Calculate speed in mm/minute for each axis
- float multiplier = 60.0*1000000.0/microseconds;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
-
- // Limit speed per axis
- float speed_factor = 1;
- float tmp_speed_factor;
- if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
- speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
- }
- if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
- tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
- tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_e) > max_feedrate[E_AXIS]){
- tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- multiplier = multiplier * speed_factor;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
- block->nominal_speed = block->millimeters * multiplier;
- block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
-
- if(block->nominal_rate < 120) block->nominal_rate = 120;
- block->entry_speed = safe_speed(block);
-
- // Compute the acceleration rate for the trapezoid generator.
- float travel_per_step = block->millimeters/block->step_event_count;
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
- block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- }
- else {
- block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- // Limit acceleration per axis
- if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- }
- block->acceleration = block->acceleration_st * travel_per_step;
-
-#ifdef ADVANCE
- // Calculate advance rate
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
- (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
- block->advance = advance;
- if(acc_dist == 0) {
- block->advance_rate = 0;
- }
- else {
- block->advance_rate = advance / (float)acc_dist;
- }
- }
-
-#endif // ADVANCE
-
- // compute a preliminary conservative acceleration trapezoid
- float safespeed = safe_speed(block);
- calculate_trapezoid_for_block(block, safespeed, safespeed);
-
- // Compute direction bits for this block
- block->direction_bits = 0;
- if (target[X_AXIS] < position[X_AXIS]) {
- block->direction_bits |= (1<<X_AXIS);
- }
- if (target[Y_AXIS] < position[Y_AXIS]) {
- block->direction_bits |= (1<<Y_AXIS);
- }
- if (target[Z_AXIS] < position[Z_AXIS]) {
- block->direction_bits |= (1<<Z_AXIS);
- }
- if (target[E_AXIS] < position[E_AXIS]) {
- block->direction_bits |= (1<<E_AXIS);
- }
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- memcpy(position, target, sizeof(target)); // position[] = target[]
-
- planner_recalculate();
- st_wake_up();
-}
-
-void plan_set_position(float x, float y, float z, float e)
-{
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-}
-
-// Stepper
-
-// intRes = intIn1 * intIn2 >> 16
-// uses:
-// r26 to store 0
-// r27 to store the byte 1 of the 24 bit result
-#define MultiU16X8toH16(intRes, charIn1, intIn2) \
-asm volatile ( \
-"clr r26 \n\t" \
-"mul %A1, %B2 \n\t" \
-"movw %A0, r0 \n\t" \
-"mul %A1, %A2 \n\t" \
-"add %A0, r1 \n\t" \
-"adc %B0, r26 \n\t" \
-"lsr r0 \n\t" \
-"adc %A0, r26 \n\t" \
-"adc %B0, r26 \n\t" \
-"clr r1 \n\t" \
-: \
-"=&r" (intRes) \
-: \
-"d" (charIn1), \
-"d" (intIn2) \
-: \
-"r26" \
-)
-
-// intRes = longIn1 * longIn2 >> 24
-// uses:
-// r26 to store 0
-// r27 to store the byte 1 of the 48bit result
-#define MultiU24X24toH16(intRes, longIn1, longIn2) \
-asm volatile ( \
-"clr r26 \n\t" \
-"mul %A1, %B2 \n\t" \
-"mov r27, r1 \n\t" \
-"mul %B1, %C2 \n\t" \
-"movw %A0, r0 \n\t" \
-"mul %C1, %C2 \n\t" \
-"add %B0, r0 \n\t" \
-"mul %C1, %B2 \n\t" \
-"add %A0, r0 \n\t" \
-"adc %B0, r1 \n\t" \
-"mul %A1, %C2 \n\t" \
-"add r27, r0 \n\t" \
-"adc %A0, r1 \n\t" \
-"adc %B0, r26 \n\t" \
-"mul %B1, %B2 \n\t" \
-"add r27, r0 \n\t" \
-"adc %A0, r1 \n\t" \
-"adc %B0, r26 \n\t" \
-"mul %C1, %A2 \n\t" \
-"add r27, r0 \n\t" \
-"adc %A0, r1 \n\t" \
-"adc %B0, r26 \n\t" \
-"mul %B1, %A2 \n\t" \
-"add r27, r1 \n\t" \
-"adc %A0, r26 \n\t" \
-"adc %B0, r26 \n\t" \
-"lsr r27 \n\t" \
-"adc %A0, r26 \n\t" \
-"adc %B0, r26 \n\t" \
-"clr r1 \n\t" \
-: \
-"=&r" (intRes) \
-: \
-"d" (longIn1), \
-"d" (longIn2) \
-: \
-"r26" , "r27" \
-)
-
-// Some useful constants
-
-#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
-#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
-
-static block_t *current_block; // A pointer to the block currently being traced
-
-// Variables used by The Stepper Driver Interrupt
-static unsigned char out_bits; // The next stepping-bits to be output
-static long counter_x, // Counter variables for the bresenham line tracer
- counter_y,
- counter_z,
- counter_e;
-static unsigned long step_events_completed; // The number of step events executed in the current block
-static long advance_rate, advance, final_advance = 0;
-static short old_advance = 0;
-static short e_steps;
-static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
-static long acceleration_time, deceleration_time;
-static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
-static unsigned short acc_step_rate; // needed for deccelaration start point
-
-
-
-// __________________________
-// /| |\ _________________ ^
-// / | | \ /| |\ |
-// / | | \ / | | \ s
-// / | | | | | \ p
-// / | | | | | \ e
-// +-----+------------------------+---+--+---------------+----+ e
-// | BLOCK 1 | BLOCK 2 | d
-//
-// time ----->
-//
-// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
-// first block->accelerate_until step_events_completed, then keeps going at constant speed until
-// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
-// The slope of acceleration is calculated with the leib ramp alghorithm.
-
-void st_wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-}
-
-inline unsigned short calc_timer(unsigned short step_rate) {
- unsigned short timer;
- if(step_rate < 32) step_rate = 32;
- step_rate -= 32; // Correct for minimal speed
- if(step_rate >= (8*256)){ // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if(timer < 100) timer = 100;
- return timer;
-}
-
-// Initializes the trapezoid generator from the current block. Called whenever a new
-// block begins.
-inline void trapezoid_generator_reset() {
- accelerate_until = current_block->accelerate_until;
- decelerate_after = current_block->decelerate_after;
- acceleration_rate = current_block->acceleration_rate;
- initial_rate = current_block->initial_rate;
- final_rate = current_block->final_rate;
- nominal_rate = current_block->nominal_rate;
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- deceleration_time = 0;
- advance_rate = current_block->advance_rate;
-
- // step_rate to timer interval
- acc_step_rate = initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
-}
-
-// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
-// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
-ISR(TIMER1_COMPA_vect)
-{
- if(busy){ /*Serial.println("BUSY")*/;
- return;
- } // The busy-flag is used to avoid reentering this interrupt
-
- busy = true;
- sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
-
- // If there is no current block, attempt to pop one from the buffer
- if (current_block == NULL) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block != NULL) {
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_x;
- counter_z = counter_x;
- counter_e = counter_x;
- step_events_completed = 0;
- e_steps = 0;
- }
- else {
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- }
- }
-
- if (current_block != NULL) {
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
- out_bits = current_block->direction_bits;
-
-#ifdef ADVANCE
- // Calculate E early.
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
- CRITICAL_SECTION_START;
- e_steps--;
- CRITICAL_SECTION_END;
- }
- else {
- CRITICAL_SECTION_START;
- e_steps++;
- CRITICAL_SECTION_END;
- }
- }
- // Do E steps + advance steps
- CRITICAL_SECTION_START;
- e_steps += ((advance >> 16) - old_advance);
- CRITICAL_SECTION_END;
- old_advance = advance >> 16;
-#endif //ADVANCE
-
- // Set direction en check limit switches
- if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
- WRITE(X_DIR_PIN, INVERT_X_DIR);
- if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(X_DIR_PIN,!INVERT_X_DIR);
-
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
- WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
-
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
-
-#ifndef ADVANCE
- if ((out_bits & (1<<E_AXIS)) != 0) // -direction
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- else // +direction
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
-#endif //!ADVANCE
-
- counter_x += current_block->steps_x;
- if (counter_x > 0) {
- WRITE(X_STEP_PIN, HIGH);
- counter_x -= current_block->step_event_count;
- WRITE(X_STEP_PIN, LOW);
- }
-
- counter_y += current_block->steps_y;
- if (counter_y > 0) {
- WRITE(Y_STEP_PIN, HIGH);
- counter_y -= current_block->step_event_count;
- WRITE(Y_STEP_PIN, LOW);
- }
-
- counter_z += current_block->steps_z;
- if (counter_z > 0) {
- WRITE(Z_STEP_PIN, HIGH);
- counter_z -= current_block->step_event_count;
- WRITE(Z_STEP_PIN, LOW);
- }
-
-#ifndef ADVANCE
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- WRITE(E_STEP_PIN, HIGH);
- counter_e -= current_block->step_event_count;
- WRITE(E_STEP_PIN, LOW);
- }
-#endif //!ADVANCE
-
- // Calculare new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed < accelerate_until) {
- MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
- acc_step_rate += initial_rate;
-
- // upper limit
- if(acc_step_rate > nominal_rate)
- acc_step_rate = nominal_rate;
-
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- advance += advance_rate;
- acceleration_time += timer;
- OCR1A = timer;
- }
- else if (step_events_completed >= decelerate_after) {
- MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
-
- if(step_rate > acc_step_rate) { // Check step_rate stays positive
- step_rate = final_rate;
- }
- else {
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- }
-
- // lower limit
- if(step_rate < final_rate)
- step_rate = final_rate;
-
- // step_rate to timer interval
- timer = calc_timer(step_rate);
-#ifdef ADVANCE
- advance -= advance_rate;
- if(advance < final_advance)
- advance = final_advance;
-#endif //ADVANCE
- deceleration_time += timer;
- OCR1A = timer;
- }
- // If current block is finished, reset pointer
- step_events_completed += 1;
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- busy=false;
-}
-
-#ifdef ADVANCE
-
-unsigned char old_OCR0A;
-// Timer interrupt for E. e_steps is set in the main routine;
-// Timer 0 is shared with millies
-ISR(TIMER0_COMPA_vect)
-{
- // Critical section needed because Timer 1 interrupt has higher priority.
- // The pin set functions are placed on trategic position to comply with the stepper driver timing.
- WRITE(E_STEP_PIN, LOW);
- // Set E direction (Depends on E direction + advance)
- if (e_steps < 0) {
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- e_steps++;
- WRITE(E_STEP_PIN, HIGH);
- }
- if (e_steps > 0) {
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- e_steps--;
- WRITE(E_STEP_PIN, HIGH);
- }
- old_OCR0A += 25; // 10kHz interrupt
- OCR0A = old_OCR0A;
-}
-#endif // ADVANCE
-
-void st_init()
-{
- // waveform generation = 0100 = CTC
- TCCR1B &= ~(1<<WGM13);
- TCCR1B |= (1<<WGM12);
- TCCR1A &= ~(1<<WGM11);
- TCCR1A &= ~(1<<WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
-
- OCR1A = 0x4000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
-
-#ifdef ADVANCE
- e_steps = 0;
- TIMSK0 |= (1<<OCIE0A);
-#endif //ADVANCE
- sei();
-}
-
-// Block until all buffered steps are executed
-void st_synchronize()
-{
- while(plan_get_current_block()) {
- manage_heater();
- manage_inactivity(1);
- }
-}
-
-// Temperature loop
-
-void tp_init()
-{
- DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
- ADMUX = ((1 << REFS0) | (5 & 0x07));
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
- TCCR2B = 0; //Stop timer in case of running
-
-#ifdef PIDTEMP
- TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
-#else
- TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
-#endif //PIDTEMP
- OCR2A = 156; //Period is ~10ms
- OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
- TIMSK2 = 0x01; //Enable overflow interrupt
- TCCR2B = 0x0F; //1/1024 prescaler, start
-}
-
-static unsigned char temp_count = 0;
-static unsigned long raw_temp_value = 0;
-
-ISR(TIMER2_OVF_vect)
-{
- // uint8_t low, high;
-
- // low = ADCL;
- // high = ADCH;
- raw_temp_value += ADC;
- // raw_temp_value = (ADCH <<8) | ADCL;
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
- // raw_temp_value += (high <<8) | low;
- temp_count++;
-
- if(temp_count >= 16)
- {
- current_raw = 16383 - raw_temp_value;
- temp_meas_ready = true;
- temp_count = 0;
- raw_temp_value = 0;
-#ifdef MAXTEMP
- if(current_raw >= maxttemp) {
- target_raw = 0;
-#ifdef PIDTEMP
- OCR2B = 0;
-#else
- WRITE(HEATER_0_PIN,LOW);
-#endif //PIDTEMP
- }
-#endif //MAXTEMP
-#ifdef MINTEMP
- if(current_raw <= minttemp) {
- target_raw = 0;
-#ifdef PIDTEMP
- OCR2B = 0;
-#else
- WRITE(HEATER_0_PIN,LOW);
-#endif //PIDTEMP
- }
-#endif //MAXTEMP
-#ifndef PIDTEMP
- if(current_raw >= target_raw)
- {
- WRITE(HEATER_0_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_0_PIN,HIGH);
- }
-#endif //PIDTEMP
- }
-}
-
-
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & MASK(DIO ## IO ## _PIN)))
/// write to a pin
#define _WRITE(IO, v) do { if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); }; } while (0)
+//#define _WRITE(IO, v) do { #if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_START; if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); };#if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_END; } while (0)
/// toggle a pin
#define _TOGGLE(IO) do {DIO ## IO ## _RPORT = MASK(DIO ## IO ## _PIN); } while (0)
--- /dev/null
+#ifndef __LCDH
+#define __LCDH
+
+
+
+
+
+
+
+#endif
#define HEATER_0_PIN 6
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
-
-
+#define HEATER_1_PIN -1
+#define HEATER_2_PIN -1
#endif
#define HEATER_0_PIN 14
#define TEMP_0_PIN 4 //D27 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
-
+#define HEATER_1_PIN -1
+#define HEATER_2_PIN -1
/* Unused (1) (2) (3) 4 5 6 7 8 9 10 11 12 13 (14) (15) (16) 17 (18) (19) (20) (21) (22) (23) 24 (25) (26) (27) 28 (29) (30) (31) */
#define HEATER_0_PIN -1
#define TEMP_0_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
-
+#define HEATER_1_PIN -1
+#define HEATER_2_PIN -1
#define HEATER_0_PIN 10
#define HEATER_1_PIN 8
+#define HEATER_2_PIN -1
#define TEMP_0_PIN 13 // ANALOG NUMBERING
#define TEMP_1_PIN 14 // ANALOG NUMBERING
+#define TEMP_2_PIN -1 // ANALOG NUMBERING
#else // RAMPS_V_1_1 or RAMPS_V_1_2 as default
#define HEATER_1_PIN 8 // RAMPS 1.1
#define FAN_PIN 9 // RAMPS 1.1
#endif
-
+#define HEATER_2_PIN -1
#define TEMP_0_PIN 2 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define TEMP_1_PIN 1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
+#define TEMP_2_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#endif
// SPI for Max6675 Thermocouple
#define HEATER_0_PIN 6
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
-
+#define HEATER_1_PIN -1
+#define HEATER_2_PIN -1
#endif
#define TEMP_0_PIN 5 //changed @ rkoeppl 20110410
#define HEATER_0_PIN 14 //changed @ rkoeppl 20110410
#define HEATER_1_PIN -1 //changed @ rkoeppl 20110410
-
+ #define HEATER_2_PIN -1
#define SDPOWER -1
#define SDSS 17
#define LED_PIN -1 //changed @ rkoeppl 20110410
#define TEMP_1_PIN -1 //changed @ rkoeppl 20110410
+ #define TEMP_2_PIN -1
#define FAN_PIN -1 //changed @ rkoeppl 20110410
#define PS_ON_PIN -1 //changed @ rkoeppl 20110410
//our pin for debugging.
#define RX_ENABLE_PIN 13
#endif
+
/****************************************************************************************
* Sanguinololu pin assignment
*
#define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
#define TEMP_1_PIN 6 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
-#define SDPOWER -1
-#define SDSS 31
+#define TEMP_2_PIN -1
+#define SDPOWER -1
+#define SDSS 31
+#define HEATER_2_PIN -1
-#ifndef KNOWN_BOARD
-#error Unknown MOTHERBOARD value in configuration.h
#endif
+
+#if MOTHERBOARD == 7
+#define KNOWN_BOARD
+/*****************************************************************
+* Ultimaker pin assignment
+******************************************************************/
+
+#ifndef __AVR_ATmega1280__
+ #ifndef __AVR_ATmega2560__
+ #error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
+ #endif
+#endif
+
+#define X_STEP_PIN 25
+#define X_DIR_PIN 23
+#define X_MIN_PIN 22
+#define X_MAX_PIN 24
+#define X_ENABLE_PIN 27
+
+#define Y_STEP_PIN 31
+#define Y_DIR_PIN 33
+#define Y_MIN_PIN 26
+#define Y_MAX_PIN 28
+#define Y_ENABLE_PIN 29
+
+#define Z_STEP_PIN 37
+#define Z_DIR_PIN 39
+#define Z_MIN_PIN 30
+#define Z_MAX_PIN 32
+#define Z_ENABLE_PIN 35
+
+#define HEATER_1_PIN 4
+#define TEMP_1_PIN 11
+
+#define EXTRUDER_0_STEP_PIN 43
+#define EXTRUDER_0_DIR_PIN 45
+#define EXTRUDER_0_ENABLE_PIN 41
+#define HEATER_0_PIN 2
+#define TEMP_0_PIN 8
+
+#define EXTRUDER_1_STEP_PIN 49
+#define EXTRUDER_1_DIR_PIN 47
+#define EXTRUDER_1_ENABLE_PIN 51
+#define EXTRUDER_1_HEATER_PIN 3
+#define EXTRUDER_1_TEMPERATURE_PIN 10
+#define HEATER_2_PIN 51
+#define TEMP_2_PIN 3
+
+
+
+#define E_STEP_PIN EXTRUDER_0_STEP_PIN
+#define E_DIR_PIN EXTRUDER_0_DIR_PIN
+#define E_ENABLE_PIN EXTRUDER_0_ENABLE_PIN
+
+#define SDPOWER -1
+#define SDSS 53
+#define LED_PIN 13
+#define FAN_PIN 7
+#define PS_ON_PIN 12
+#define KILL_PIN -1
#endif
+
+#ifndef KNOWN_BOARD
+#error Unknown MOTHERBOARD value in configuration.h
+#endif
#endif
--- /dev/null
+/*
+ planner.c - buffers movement commands and manages the acceleration profile plan
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
+
+/*
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
+
+ s == speed, a == acceleration, t == time, d == distance
+
+ Basic definitions:
+
+ Speed[s_, a_, t_] := s + (a*t)
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
+
+ Distance to reach a specific speed with a constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
+
+ Speed after a given distance of travel with constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
+ m -> Sqrt[2 a d + s^2]
+
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
+
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
+ from initial speed s1 without ever stopping at a plateau:
+
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
+*/
+
+
+//#include <inttypes.h>
+//#include <math.h>
+//#include <stdlib.h>
+
+#include "Marlin.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "fastio.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "ultralcd.h"
+
+unsigned long minsegmenttime;
+float max_feedrate[4]; // set the max speeds
+float axis_steps_per_unit[4];
+long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
+float minimumfeedrate;
+float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
+float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
+float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
+float max_z_jerk;
+float mintravelfeedrate;
+unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+// Manage heater variables.
+
+static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
+static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
+static volatile unsigned char block_buffer_tail; // Index of the block to process now
+
+// The current position of the tool in absolute steps
+ long position[4];
+
+#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
+
+// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
+// given acceleration:
+inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
+ if (acceleration!=0) {
+ return((target_rate*target_rate-initial_rate*initial_rate)/
+ (2.0*acceleration));
+ }
+ else {
+ return 0.0; // acceleration was 0, set acceleration distance to 0
+ }
+}
+
+// This function gives you the point at which you must start braking (at the rate of -acceleration) if
+// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
+// a total travel of distance. This can be used to compute the intersection point between acceleration and
+// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
+
+inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
+ if (acceleration!=0) {
+ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
+ (4.0*acceleration) );
+ }
+ else {
+ return 0.0; // acceleration was 0, set intersection distance to 0
+ }
+}
+
+// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+
+void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
+ if(block->busy == true) return; // If block is busy then bail out.
+ float entry_factor = entry_speed / block->nominal_speed;
+ float exit_factor = exit_speed / block->nominal_speed;
+ long initial_rate = ceil(block->nominal_rate*entry_factor);
+ long final_rate = ceil(block->nominal_rate*exit_factor);
+
+#ifdef ADVANCE
+ long initial_advance = block->advance*entry_factor*entry_factor;
+ long final_advance = block->advance*exit_factor*exit_factor;
+#endif // ADVANCE
+
+ // Limit minimal step rate (Otherwise the timer will overflow.)
+ if(initial_rate <120) initial_rate=120;
+ if(final_rate < 120) final_rate=120;
+
+ // Calculate the acceleration steps
+ long acceleration = block->acceleration_st;
+ long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
+ long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
+ // Calculate the size of Plateau of Nominal Rate.
+ long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
+
+ // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
+ // have to use intersection_distance() to calculate when to abort acceleration and start braking
+ // in order to reach the final_rate exactly at the end of this block.
+ if (plateau_steps < 0) {
+ accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
+ plateau_steps = 0;
+ }
+
+ long decelerate_after = accelerate_steps+plateau_steps;
+
+ CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
+ if(block->busy == false) { // Don't update variables if block is busy.
+ block->accelerate_until = accelerate_steps;
+ block->decelerate_after = decelerate_after;
+ block->initial_rate = initial_rate;
+ block->final_rate = final_rate;
+#ifdef ADVANCE
+ block->initial_advance = initial_advance;
+ block->final_advance = final_advance;
+#endif //ADVANCE
+ }
+ CRITICAL_SECTION_END;
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
+ return(
+ sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
+ );
+}
+
+// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
+// This method will calculate the junction jerk as the euclidean distance between the nominal
+// velocities of the respective blocks.
+inline float junction_jerk(block_t *before, block_t *after) {
+ return(sqrt(
+ pow((before->speed_x-after->speed_x), 2)+
+ pow((before->speed_y-after->speed_y), 2)));
+}
+
+// Return the safe speed which is max_jerk/2, e.g. the
+// speed under which you cannot exceed max_jerk no matter what you do.
+float safe_speed(block_t *block) {
+ float safe_speed;
+ safe_speed = max_xy_jerk/2;
+ if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
+ if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
+ return safe_speed;
+}
+
+// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
+void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) {
+ return;
+ }
+
+ float entry_speed = current->nominal_speed;
+ float exit_factor;
+ float exit_speed;
+ if (next) {
+ exit_speed = next->entry_speed;
+ }
+ else {
+ exit_speed = safe_speed(current);
+ }
+
+ // Calculate the entry_factor for the current block.
+ if (previous) {
+ // Reduce speed so that junction_jerk is within the maximum allowed
+ float jerk = junction_jerk(previous, current);
+ if((previous->steps_x == 0) && (previous->steps_y == 0)) {
+ entry_speed = safe_speed(current);
+ }
+ else if (jerk > max_xy_jerk) {
+ entry_speed = (max_xy_jerk/jerk) * entry_speed;
+ }
+ if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
+ entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
+ }
+ // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
+ if (entry_speed > exit_speed) {
+ float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
+ if (max_entry_speed < entry_speed) {
+ entry_speed = max_entry_speed;
+ }
+ }
+ }
+ else {
+ entry_speed = safe_speed(current);
+ }
+ // Store result
+ current->entry_speed = entry_speed;
+}
+
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the reverse pass.
+void planner_reverse_pass() {
+ char block_index = block_buffer_head;
+ if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
+ block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
+ block_t *block[5] = {
+ NULL, NULL, NULL, NULL, NULL };
+ while(block_index != block_buffer_tail) {
+ block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
+ block[2]= block[1];
+ block[1]= block[0];
+ block[0] = &block_buffer[block_index];
+ planner_reverse_pass_kernel(block[0], block[1], block[2]);
+ }
+ planner_reverse_pass_kernel(NULL, block[0], block[1]);
+ }
+}
+
+// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
+void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) {
+ return;
+ }
+ if(previous) {
+ // If the previous block is an acceleration block, but it is not long enough to
+ // complete the full speed change within the block, we need to adjust out entry
+ // speed accordingly. Remember current->entry_factor equals the exit factor of
+ // the previous block.
+ if(previous->entry_speed < current->entry_speed) {
+ float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
+ if (max_entry_speed < current->entry_speed) {
+ current->entry_speed = max_entry_speed;
+ }
+ }
+ }
+}
+
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the forward pass.
+void planner_forward_pass() {
+ char block_index = block_buffer_tail;
+ block_t *block[3] = {
+ NULL, NULL, NULL };
+
+ while(block_index != block_buffer_head) {
+ block[0] = block[1];
+ block[1] = block[2];
+ block[2] = &block_buffer[block_index];
+ planner_forward_pass_kernel(block[0],block[1],block[2]);
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+ planner_forward_pass_kernel(block[1], block[2], NULL);
+}
+
+// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
+// entry_factor for each junction. Must be called by planner_recalculate() after
+// updating the blocks.
+void planner_recalculate_trapezoids() {
+ char block_index = block_buffer_tail;
+ block_t *current;
+ block_t *next = NULL;
+ while(block_index != block_buffer_head) {
+ current = next;
+ next = &block_buffer[block_index];
+ if (current) {
+ calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
+ }
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+ calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
+}
+
+// Recalculates the motion plan according to the following algorithm:
+//
+// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
+// so that:
+// a. The junction jerk is within the set limit
+// b. No speed reduction within one block requires faster deceleration than the one, true constant
+// acceleration.
+// 2. Go over every block in chronological order and dial down junction speed reduction values if
+// a. The speed increase within one block would require faster accelleration than the one, true
+// constant acceleration.
+//
+// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
+// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
+// the set limit. Finally it will:
+//
+// 3. Recalculate trapezoids for all blocks.
+
+void planner_recalculate() {
+ planner_reverse_pass();
+ planner_forward_pass();
+ planner_recalculate_trapezoids();
+}
+
+void plan_init() {
+ block_buffer_head = 0;
+ block_buffer_tail = 0;
+ memset(position, 0, sizeof(position)); // clear position
+}
+
+
+void plan_discard_current_block() {
+ if (block_buffer_head != block_buffer_tail) {
+ block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+}
+
+block_t *plan_get_current_block() {
+ if (block_buffer_head == block_buffer_tail) {
+ return(NULL);
+ }
+ block_t *block = &block_buffer[block_buffer_tail];
+ block->busy = true;
+ return(block);
+}
+
+void check_axes_activity() {
+ unsigned char x_active = 0;
+ unsigned char y_active = 0;
+ unsigned char z_active = 0;
+ unsigned char e_active = 0;
+ block_t *block;
+
+ if(block_buffer_tail != block_buffer_head) {
+ char block_index = block_buffer_tail;
+ while(block_index != block_buffer_head) {
+ block = &block_buffer[block_index];
+ if(block->steps_x != 0) x_active++;
+ if(block->steps_y != 0) y_active++;
+ if(block->steps_z != 0) z_active++;
+ if(block->steps_e != 0) e_active++;
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+ }
+ if((DISABLE_X) && (x_active == 0)) disable_x();
+ if((DISABLE_Y) && (y_active == 0)) disable_y();
+ if((DISABLE_Z) && (z_active == 0)) disable_z();
+ if((DISABLE_E) && (e_active == 0)) disable_e();
+}
+
+// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
+// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
+// calculation the caller must also provide the physical length of the line in millimeters.
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
+
+ // The target position of the tool in absolute steps
+ // Calculate target position in absolute steps
+ long target[4];
+ target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+
+ // Calculate the buffer head after we push this byte
+ int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
+
+ // If the buffer is full: good! That means we are well ahead of the robot.
+ // Rest here until there is room in the buffer.
+ while(block_buffer_tail == next_buffer_head) {
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+ }
+
+ // Prepare to set up new block
+ block_t *block = &block_buffer[block_buffer_head];
+
+ // Mark block as not busy (Not executed by the stepper interrupt)
+ block->busy = false;
+
+ // Number of steps for each axis
+ block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
+ block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
+ block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
+ block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
+ block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
+
+ // Bail if this is a zero-length block
+ if (block->step_event_count <=dropsegments) {
+ return;
+ };
+
+ //enable active axes
+ if(block->steps_x != 0) enable_x();
+ if(block->steps_y != 0) enable_y();
+ if(block->steps_z != 0) enable_z();
+ if(block->steps_e != 0) enable_e();
+
+ float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
+ float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
+ float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
+ float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
+ block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
+
+ unsigned long microseconds;
+
+ if (block->steps_e == 0) {
+ if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
+ }
+ else {
+ if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
+ }
+
+ microseconds = lround((block->millimeters/feed_rate)*1000000);
+
+ // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
+ // reduces/removes corner blobs as the machine won't come to a full stop.
+ int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
+
+ if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
+ if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
+ microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
+ }
+ }
+ else {
+ if (microseconds<minsegmenttime) microseconds=minsegmenttime;
+ }
+ // END OF SLOW DOWN SECTION
+
+
+ // Calculate speed in mm/minute for each axis
+ float multiplier = 60.0*1000000.0/microseconds;
+ block->speed_z = delta_z_mm * multiplier;
+ block->speed_x = delta_x_mm * multiplier;
+ block->speed_y = delta_y_mm * multiplier;
+ block->speed_e = delta_e_mm * multiplier;
+
+
+ // Limit speed per axis
+ float speed_factor = 1; //factor <=1 do decrease speed
+ if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
+ //// [ErikDeBruijn] IS THIS THE BUG WE'RE LOOING FOR????
+ //// [bernhard] No its not, according to Zalm.
+ //// the if would always be true, since tmp_speedfactor <=0 due the inial if, so its safe to set. the next lines actually compare.
+ speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
+ //if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
+ float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
+ float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ if(abs(block->speed_e) > max_feedrate[E_AXIS]){
+ float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ multiplier = multiplier * speed_factor;
+ block->speed_z = delta_z_mm * multiplier;
+ block->speed_x = delta_x_mm * multiplier;
+ block->speed_y = delta_y_mm * multiplier;
+ block->speed_e = delta_e_mm * multiplier;
+ block->nominal_speed = block->millimeters * multiplier;
+ block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
+
+ if(block->nominal_rate < 120) block->nominal_rate = 120;
+ block->entry_speed = safe_speed(block);
+
+ // Compute the acceleration rate for the trapezoid generator.
+ float travel_per_step = block->millimeters/block->step_event_count;
+ if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
+ block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
+ }
+ else {
+ block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
+ float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
+ // Limit acceleration per axis
+ if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
+ block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
+ tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
+ }
+ if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
+ block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
+ tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
+ }
+ if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
+ block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
+ tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
+ }
+ if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
+ block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
+ tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
+ }
+ }
+ block->acceleration = block->acceleration_st * travel_per_step;
+ block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
+
+#ifdef ADVANCE
+ // Calculate advance rate
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+ block->advance_rate = 0;
+ block->advance = 0;
+ }
+ else {
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
+ (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
+ block->advance = advance;
+ if(acc_dist == 0) {
+ block->advance_rate = 0;
+ }
+ else {
+ block->advance_rate = advance / (float)acc_dist;
+ }
+ }
+#endif // ADVANCE
+
+ // compute a preliminary conservative acceleration trapezoid
+ float safespeed = safe_speed(block);
+ calculate_trapezoid_for_block(block, safespeed, safespeed);
+
+ // Compute direction bits for this block
+ block->direction_bits = 0;
+ if (target[X_AXIS] < position[X_AXIS]) {
+ block->direction_bits |= (1<<X_AXIS);
+ }
+ if (target[Y_AXIS] < position[Y_AXIS]) {
+ block->direction_bits |= (1<<Y_AXIS);
+ }
+ if (target[Z_AXIS] < position[Z_AXIS]) {
+ block->direction_bits |= (1<<Z_AXIS);
+ }
+ if (target[E_AXIS] < position[E_AXIS]) {
+ block->direction_bits |= (1<<E_AXIS);
+ }
+
+ // Move buffer head
+ block_buffer_head = next_buffer_head;
+
+ // Update position
+ memcpy(position, target, sizeof(target)); // position[] = target[]
+
+ planner_recalculate();
+ st_wake_up();
+}
+
+void plan_set_position(float x, float y, float z, float e)
+{
+ position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+}
+
--- /dev/null
+/*
+ planner.h - buffers movement commands and manages the acceleration profile plan
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+// This module is to be considered a sub-module of stepper.c. Please don't include
+// this file from any other module.
+
+#ifndef planner_h
+#define planner_h
+
+// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
+// the source g-code and may never actually be reached if acceleration management is active.
+typedef struct {
+ // Fields used by the bresenham algorithm for tracing the line
+ long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
+ long step_event_count; // The number of step events required to complete this block
+ volatile long accelerate_until; // The index of the step event on which to stop acceleration
+ volatile long decelerate_after; // The index of the step event on which to start decelerating
+ volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
+ unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
+#ifdef ADVANCE
+ long advance_rate;
+ volatile long initial_advance;
+ volatile long final_advance;
+ float advance;
+#endif
+
+ // Fields used by the motion planner to manage acceleration
+ float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
+ float nominal_speed; // The nominal speed for this block in mm/min
+ float millimeters; // The total travel of this block in mm
+ float entry_speed;
+ float acceleration; // acceleration mm/sec^2
+
+ // Settings for the trapezoid generator
+ long nominal_rate; // The nominal step rate for this block in step_events/sec
+ volatile long initial_rate; // The jerk-adjusted step rate at start of block
+ volatile long final_rate; // The minimal rate at exit
+ long acceleration_st; // acceleration steps/sec^2
+ volatile char busy;
+} block_t;
+
+// Initialize the motion plan subsystem
+void plan_init();
+
+// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
+// millimaters. Feed rate specifies the speed of the motion.
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
+
+// Set position. Used for G92 instructions.
+void plan_set_position(float x, float y, float z, float e);
+
+// Called when the current block is no longer needed. Discards the block and makes the memory
+// availible for new blocks.
+void plan_discard_current_block();
+
+// Gets the current block. Returns NULL if buffer empty
+block_t *plan_get_current_block();
+
+void check_axes_activity();
+
+extern unsigned long minsegmenttime;
+extern float max_feedrate[4]; // set the max speeds
+extern float axis_steps_per_unit[4];
+extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
+extern float minimumfeedrate;
+extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
+extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
+extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
+extern float max_z_jerk;
+extern float mintravelfeedrate;
+extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+
+#endif
#include <avr/pgmspace.h>
-uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
+uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
-{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0},
+{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
};
-uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
+uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
-{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3},
+{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
};
#endif
--- /dev/null
+/*
+ stepper.c - stepper motor driver: executes motion plans using stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
+ and Philipp Tiefenbacher. */
+
+#include "stepper.h"
+#include "Configuration.h"
+#include "Marlin.h"
+#include "planner.h"
+#include "pins.h"
+#include "fastio.h"
+#include "temperature.h"
+#include "ultralcd.h"
+
+#include "speed_lookuptable.h"
+
+// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
+// for debugging purposes only, should be disabled by default
+#ifdef DEBUG_STEPS
+volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
+volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
+#endif
+
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
+#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
+
+static block_t *current_block; // A pointer to the block currently being traced
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+static unsigned long step_events_completed; // The number of step events executed in the current block
+#ifdef ADVANCE
+static long advance_rate, advance, final_advance = 0;
+static short old_advance = 0;
+static short e_steps;
+#endif
+static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
+static long acceleration_time, deceleration_time;
+//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+static char step_loops;
+
+
+// __________________________
+// /| |\ _________________ ^
+// / | | \ /| |\ |
+// / | | \ / | | \ s
+// / | | | | | \ p
+// / | | | | | \ e
+// +-----+------------------------+---+--+---------------+----+ e
+// | BLOCK 1 | BLOCK 2 | d
+//
+// time ----->
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up() {
+ // TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+inline unsigned short calc_timer(unsigned short step_rate) {
+ unsigned short timer;
+ if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
+
+ if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
+ step_rate = step_rate >> 2;
+ step_loops = 4;
+ }
+ else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
+ step_rate = step_rate >> 1;
+ step_loops = 2;
+ }
+ else {
+ step_loops = 1;
+ }
+
+ if(step_rate < 32) step_rate = 32;
+ step_rate -= 32; // Correct for minimal speed
+ if(step_rate >= (8*256)){ // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
+ if(timer < 100) timer = 100;
+ return timer;
+}
+
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+inline void trapezoid_generator_reset() {
+#ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+#endif
+ deceleration_time = 0;
+ // advance_rate = current_block->advance_rate;
+ // step_rate to timer interval
+ acc_step_rate = current_block->initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
+}
+
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ if(busy){ Serial.print(*(unsigned short *)OCR1A); Serial.println(" BUSY");
+ return;
+ } // The busy-flag is used to avoid reentering this interrupt
+
+ busy = true;
+ sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
+
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+ #ifdef ADVANCE
+ e_steps = 0;
+ #endif
+ }
+ else {
+// DISABLE_STEPPER_DRIVER_INTERRUPT();
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+#ifdef ADVANCE
+ // Calculate E early.
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
+ CRITICAL_SECTION_START;
+ e_steps--;
+ CRITICAL_SECTION_END;
+ }
+ else {
+ CRITICAL_SECTION_START;
+ e_steps++;
+ CRITICAL_SECTION_END;
+ }
+ }
+ // Do E steps + advance steps
+ CRITICAL_SECTION_START;
+ e_steps += ((advance >> 16) - old_advance);
+ CRITICAL_SECTION_END;
+ old_advance = advance >> 16;
+#endif //ADVANCE
+
+ // Set direction en check limit switches
+if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
+ WRITE(X_DIR_PIN, INVERT_X_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[X_AXIS]=-1;
+ #endif
+#if X_MIN_PIN > -1
+ if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+ else { // +direction
+ WRITE(X_DIR_PIN,!INVERT_X_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[X_AXIS]=1;
+ #endif
+#if X_MAX_PIN > -1
+ if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+
+ if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
+ WRITE(Y_DIR_PIN,INVERT_Y_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Y_AXIS]=-1;
+ #endif
+#if Y_MIN_PIN > -1
+ if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+ else { // +direction
+ WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Y_AXIS]=1;
+ #endif
+#if Y_MAX_PIN > -1
+ if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Z_AXIS]=-1;
+ #endif
+#if Z_MIN_PIN > -1
+ if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+ else { // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Z_AXIS]=1;
+ #endif
+#if Z_MAX_PIN > -1
+ if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+#endif
+ }
+
+#ifndef ADVANCE
+ if ((out_bits & (1<<E_AXIS)) != 0) // -direction
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ else // +direction
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+#endif //!ADVANCE
+
+ for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, HIGH);
+ counter_x -= current_block->step_event_count;
+ WRITE(X_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[X_AXIS]+=count_direction[X_AXIS];
+ #endif
+ }
+
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, HIGH);
+ counter_y -= current_block->step_event_count;
+ WRITE(Y_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
+ #endif
+ }
+
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, HIGH);
+ counter_z -= current_block->step_event_count;
+ WRITE(Z_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
+ #endif
+ }
+
+#ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ WRITE(E_STEP_PIN, HIGH);
+ counter_e -= current_block->step_event_count;
+ WRITE(E_STEP_PIN, LOW);
+ }
+#endif //!ADVANCE
+ step_events_completed += 1;
+ if(step_events_completed >= current_block->step_event_count) break;
+ }
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed <= current_block->accelerate_until) {
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+ acc_step_rate += current_block->initial_rate;
+
+ // upper limit
+ if(acc_step_rate > current_block->nominal_rate)
+ acc_step_rate = current_block->nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+#ifdef ADVANCE
+ advance += advance_rate;
+#endif
+ acceleration_time += timer;
+ OCR1A = timer;
+ }
+ else if (step_events_completed > current_block->decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = current_block->final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
+
+ // lower limit
+ if(step_rate < current_block->final_rate)
+ step_rate = current_block->final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+#ifdef ADVANCE
+ advance -= advance_rate;
+ if(advance < final_advance)
+ advance = final_advance;
+#endif //ADVANCE
+ deceleration_time += timer;
+ OCR1A = timer;
+ }
+ // If current block is finished, reset pointer
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
+ cli(); // disable interrupts
+ busy=false;
+}
+
+#ifdef ADVANCE
+
+unsigned char old_OCR0A;
+// Timer interrupt for E. e_steps is set in the main routine;
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPA_vect)
+{
+ // Critical section needed because Timer 1 interrupt has higher priority.
+ // The pin set functions are placed on trategic position to comply with the stepper driver timing.
+ WRITE(E_STEP_PIN, LOW);
+ // Set E direction (Depends on E direction + advance)
+ if (e_steps < 0) {
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ e_steps++;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ if (e_steps > 0) {
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ e_steps--;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ old_OCR0A += 25; // 10kHz interrupt
+ OCR0A = old_OCR0A;
+}
+#endif // ADVANCE
+
+void st_init()
+{
+ //Initialize Dir Pins
+#if X_DIR_PIN > -1
+ SET_OUTPUT(X_DIR_PIN);
+#endif
+#if Y_DIR_PIN > -1
+ SET_OUTPUT(Y_DIR_PIN);
+#endif
+#if Z_DIR_PIN > -1
+ SET_OUTPUT(Z_DIR_PIN);
+#endif
+#if E_DIR_PIN > -1
+ SET_OUTPUT(E_DIR_PIN);
+#endif
+
+ //Initialize Enable Pins - steppers default to disabled.
+
+#if (X_ENABLE_PIN > -1)
+ SET_OUTPUT(X_ENABLE_PIN);
+ if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
+#endif
+#if (Y_ENABLE_PIN > -1)
+ SET_OUTPUT(Y_ENABLE_PIN);
+ if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
+#endif
+#if (Z_ENABLE_PIN > -1)
+ SET_OUTPUT(Z_ENABLE_PIN);
+ if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
+#endif
+#if (E_ENABLE_PIN > -1)
+ SET_OUTPUT(E_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
+#endif
+
+ //endstops and pullups
+#ifdef ENDSTOPPULLUPS
+#if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ WRITE(X_MIN_PIN,HIGH);
+#endif
+#if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ WRITE(X_MAX_PIN,HIGH);
+#endif
+#if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ WRITE(Y_MIN_PIN,HIGH);
+#endif
+#if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ WRITE(Y_MAX_PIN,HIGH);
+#endif
+#if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ WRITE(Z_MIN_PIN,HIGH);
+#endif
+#if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ WRITE(Z_MAX_PIN,HIGH);
+#endif
+#else //ENDSTOPPULLUPS
+#if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+#endif
+#if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+#endif
+#if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+#endif
+#if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+#endif
+#if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+#endif
+#if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+#endif
+#endif //ENDSTOPPULLUPS
+
+
+ //Initialize Step Pins
+#if (X_STEP_PIN > -1)
+ SET_OUTPUT(X_STEP_PIN);
+#endif
+#if (Y_STEP_PIN > -1)
+ SET_OUTPUT(Y_STEP_PIN);
+#endif
+#if (Z_STEP_PIN > -1)
+ SET_OUTPUT(Z_STEP_PIN);
+#endif
+#if (E_STEP_PIN > -1)
+ SET_OUTPUT(E_STEP_PIN);
+#endif
+
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<<WGM13);
+ TCCR1B |= (1<<WGM12);
+ TCCR1A &= ~(1<<WGM11);
+ TCCR1A &= ~(1<<WGM10);
+
+ // output mode = 00 (disconnected)
+ TCCR1A &= ~(3<<COM1A0);
+ TCCR1A &= ~(3<<COM1B0);
+ TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
+
+ OCR1A = 0x4000;
+ DISABLE_STEPPER_DRIVER_INTERRUPT();
+
+#ifdef ADVANCE
+ e_steps = 0;
+ TIMSK0 |= (1<<OCIE0A);
+#endif //ADVANCE
+ sei();
+}
+
+// Block until all buffered steps are executed
+void st_synchronize()
+{
+ while(plan_get_current_block()) {
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+ }
+}
--- /dev/null
+/*
+ stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef stepper_h
+#define stepper_h
+// Initialize and start the stepper motor subsystem
+void st_init();
+
+// Block until all buffered steps are executed
+void st_synchronize();
+
+// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
+// to notify the subsystem that it is time to go to work.
+void st_wake_up();
+
+// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
+// for debugging purposes only, should be disabled by default
+#ifdef DEBUG_STEPS
+extern volatile long count_position[NUM_AXIS];
+extern volatile int count_direction[NUM_AXIS];
+#endif
+
+#endif
--- /dev/null
+/*
+Streaming.h - Arduino library for supporting the << streaming operator
+Copyright (c) 2010 Mikal Hart. All rights reserved.
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 2.1 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+Lesser General Public License for more details.
+
+You should have received a copy of the GNU Lesser General Public
+License along with this library; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#ifndef ARDUINO_STREAMING
+#define ARDUINO_STREAMING
+
+//#include <WProgram.h>
+
+#define STREAMING_LIBRARY_VERSION 4
+
+// Generic template
+template<class T>
+inline Print &operator <<(Print &stream, T arg)
+{ stream.print(arg); return stream; }
+
+struct _BASED
+{
+ long val;
+ int base;
+ _BASED(long v, int b): val(v), base(b)
+ {}
+};
+
+#define _HEX(a) _BASED(a, HEX)
+#define _DEC(a) _BASED(a, DEC)
+#define _OCT(a) _BASED(a, OCT)
+#define _BIN(a) _BASED(a, BIN)
+#define _BYTE(a) _BASED(a, BYTE)
+
+// Specialization for class _BASED
+// Thanks to Arduino forum user Ben Combee who suggested this
+// clever technique to allow for expressions like
+// Serial << _HEX(a);
+
+inline Print &operator <<(Print &obj, const _BASED &arg)
+{ obj.print(arg.val, arg.base); return obj; }
+
+#if ARDUINO >= 18
+// Specialization for class _FLOAT
+// Thanks to Michael Margolis for suggesting a way
+// to accommodate Arduino 0018's floating point precision
+// feature like this:
+// Serial << _FLOAT(gps_latitude, 6); // 6 digits of precision
+
+struct _FLOAT
+{
+ float val;
+ int digits;
+ _FLOAT(double v, int d): val(v), digits(d)
+ {}
+};
+
+inline Print &operator <<(Print &obj, const _FLOAT &arg)
+{ obj.print(arg.val, arg.digits); return obj; }
+#endif
+
+// Specialization for enum _EndLineCode
+// Thanks to Arduino forum user Paul V. who suggested this
+// clever technique to allow for expressions like
+// Serial << "Hello!" << endl;
+
+enum _EndLineCode { endl };
+
+inline Print &operator <<(Print &obj, _EndLineCode arg)
+{ obj.println(); return obj; }
+
+#endif
+
--- /dev/null
+/*
+ temperature.c - temperature control
+ Part of Marlin
+
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+
+ This firmware is optimized for gen6 electronics.
+ */
+
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "temperature.h"
+
+int target_bed_raw = 0;
+int current_bed_raw = 0;
+
+int target_raw[3] = {0, 0, 0};
+int current_raw[3] = {0, 0, 0};
+unsigned char temp_meas_ready = false;
+
+unsigned long previous_millis_heater, previous_millis_bed_heater;
+
+#ifdef PIDTEMP
+ double temp_iState = 0;
+ double temp_dState = 0;
+ double pTerm;
+ double iTerm;
+ double dTerm;
+ //int output;
+ double pid_error;
+ double temp_iState_min;
+ double temp_iState_max;
+ double pid_setpoint = 0.0;
+ double pid_input;
+ double pid_output;
+ bool pid_reset;
+ float HeaterPower;
+
+ float Kp=DEFAULT_Kp;
+ float Ki=DEFAULT_Ki;
+ float Kd=DEFAULT_Kd;
+ float Kc=DEFAULT_Kc;
+#endif //PIDTEMP
+
+#ifdef MINTEMP
+int minttemp = temp2analog(MINTEMP);
+#endif //MINTEMP
+#ifdef MAXTEMP
+int maxttemp = temp2analog(MAXTEMP);
+#endif //MAXTEMP
+
+#ifdef BED_MINTEMP
+int bed_minttemp = temp2analog(BED_MINTEMP);
+#endif //BED_MINTEMP
+#ifdef BED_MAXTEMP
+int bed_maxttemp = temp2analog(BED_MAXTEMP);
+#endif //BED_MAXTEMP
+
+void manage_heater()
+{
+#ifdef USE_WATCHDOG
+ wd_reset();
+#endif
+
+ float pid_input;
+ float pid_output;
+ if(temp_meas_ready == true) {
+
+CRITICAL_SECTION_START;
+ temp_meas_ready = false;
+CRITICAL_SECTION_END;
+
+#ifdef PIDTEMP
+ pid_input = analog2temp(current_raw[0]);
+
+#ifndef PID_OPENLOOP
+ pid_error = pid_setpoint - pid_input;
+ if(pid_error > 10){
+ pid_output = PID_MAX;
+ pid_reset = true;
+ }
+ else if(pid_error < -10) {
+ pid_output = 0;
+ pid_reset = true;
+ }
+ else {
+ if(pid_reset == true) {
+ temp_iState = 0.0;
+ pid_reset = false;
+ }
+ pTerm = Kp * pid_error;
+ temp_iState += pid_error;
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
+ iTerm = Ki * temp_iState;
+ #define K1 0.95
+ #define K2 (1.0-K1)
+ dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
+ temp_dState = pid_input;
+ pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
+ }
+#endif //PID_OPENLOOP
+#ifdef PID_DEBUG
+ Serial.print(" Input ");
+ Serial.print(pid_input);
+ Serial.print(" Output ");
+ Serial.print(pid_output);
+ Serial.print(" pTerm ");
+ Serial.print(pTerm);
+ Serial.print(" iTerm ");
+ Serial.print(iTerm);
+ Serial.print(" dTerm ");
+ Serial.print(dTerm);
+ Serial.println();
+#endif //PID_DEBUG
+ analogWrite(HEATER_0_PIN, pid_output);
+#endif //PIDTEMP
+
+#ifndef PIDTEMP
+ if(current_raw[0] >= target_raw[0])
+ {
+ WRITE(HEATER_0_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_0_PIN,HIGH);
+ }
+#endif
+
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
+ return;
+ previous_millis_bed_heater = millis();
+
+ #if TEMP_1_PIN > -1
+ if(current_raw[1] >= target_raw[1])
+ {
+ WRITE(HEATER_1_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_1_PIN,HIGH);
+ }
+ #endif
+ }
+}
+
+// Takes hot end temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+float temp2analog(int celsius) {
+ #ifdef HEATER_USES_THERMISTOR
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (temptable[i][1] < celsius)
+ {
+ raw = temptable[i-1][0] +
+ (celsius - temptable[i-1][1]) *
+ (temptable[i][0] - temptable[i-1][0]) /
+ (temptable[i][1] - temptable[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) raw = temptable[i-1][0];
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined HEATER_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Takes bed temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+float temp2analogBed(int celsius) {
+ #ifdef BED_USES_THERMISTOR
+
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (bedtemptable[i][1] < celsius)
+ {
+ raw = bedtemptable[i-1][0] +
+ (celsius - bedtemptable[i-1][1]) *
+ (bedtemptable[i][0] - bedtemptable[i-1][0]) /
+ (bedtemptable[i][1] - bedtemptable[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined BED_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For hot end temperature measurement.
+float analog2temp(int raw) {
+ #ifdef HEATER_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+ raw = (1023 * OVERSAMPLENR) - raw;
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (temptable[i][0] > raw)
+ {
+ celsius = temptable[i-1][1] +
+ (raw - temptable[i-1][0]) *
+ (temptable[i][1] - temptable[i-1][1]) /
+ (temptable[i][0] - temptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) celsius = temptable[i-1][1];
+
+ return celsius;
+ #elif defined HEATER_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For bed temperature measurement.
+float analog2tempBed(int raw) {
+ #ifdef BED_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+
+ raw = (1023 * OVERSAMPLENR) - raw;
+
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (bedtemptable[i][0] > raw)
+ {
+ celsius = bedtemptable[i-1][1] +
+ (raw - bedtemptable[i-1][0]) *
+ (bedtemptable[i][1] - bedtemptable[i-1][1]) /
+ (bedtemptable[i][0] - bedtemptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];
+
+ return celsius;
+
+ #elif defined BED_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+void tp_init()
+{
+#if (HEATER_0_PIN > -1)
+ SET_OUTPUT(HEATER_0_PIN);
+#endif
+#if (HEATER_1_PIN > -1)
+ SET_OUTPUT(HEATER_1_PIN);
+#endif
+#if (HEATER_2_PIN > -1)
+ SET_OUTPUT(HEATER_2_PIN);
+#endif
+
+#ifdef PIDTEMP
+ temp_iState_min = 0.0;
+ temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
+#endif //PIDTEMP
+
+// Set analog inputs
+ ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
+
+// Use timer0 for temperature measurement
+// Interleave temperature interrupt with millies interrupt
+ OCR0B = 128;
+ TIMSK0 |= (1<<OCIE0B);
+}
+
+static unsigned char temp_count = 0;
+static unsigned long raw_temp_0_value = 0;
+static unsigned long raw_temp_1_value = 0;
+static unsigned long raw_temp_2_value = 0;
+static unsigned char temp_state = 0;
+
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPB_vect)
+{
+ switch(temp_state) {
+ case 0: // Prepare TEMP_0
+ #if (TEMP_0_PIN > -1)
+ #if TEMP_0_PIN < 8
+ DIDR0 = 1 << TEMP_0_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_0_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 1;
+ break;
+ case 1: // Measure TEMP_0
+ #if (TEMP_0_PIN > -1)
+ raw_temp_0_value += ADC;
+ #endif
+ temp_state = 2;
+ break;
+ case 2: // Prepare TEMP_1
+ #if (TEMP_1_PIN > -1)
+ #if TEMP_1_PIN < 7
+ DIDR0 = 1<<TEMP_1_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_1_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 3;
+ break;
+ case 3: // Measure TEMP_1
+ #if (TEMP_1_PIN > -1)
+ raw_temp_1_value += ADC;
+ #endif
+ temp_state = 4;
+ break;
+ case 4: // Prepare TEMP_2
+ #if (TEMP_2_PIN > -1)
+ #if TEMP_2_PIN < 7
+ DIDR0 = 1 << TEMP_2_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_2_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 5;
+ break;
+ case 5: // Measure TEMP_2
+ #if (TEMP_2_PIN > -1)
+ raw_temp_2_value += ADC;
+ #endif
+ temp_state = 0;
+ temp_count++;
+ break;
+ default:
+ Serial.println("!! Temp measurement error !!");
+ break;
+ }
+
+ if(temp_count >= 16) // 6 ms * 16 = 96ms.
+ {
+ #ifdef HEATER_USES_AD595
+ current_raw[0] = raw_temp_0_value;
+ current_raw[2] = raw_temp_2_value;
+ #else
+ current_raw[0] = 16383 - raw_temp_0_value;
+ current_raw[2] = 16383 - raw_temp_2_value;
+ #endif
+
+ #ifdef BED_USES_AD595
+ current_raw[1] = raw_temp_1_value;
+ #else
+ current_raw[1] = 16383 - raw_temp_1_value;
+ #endif
+
+ temp_meas_ready = true;
+ temp_count = 0;
+ raw_temp_0_value = 0;
+ raw_temp_1_value = 0;
+ raw_temp_2_value = 0;
+#ifdef MAXTEMP
+ #if (HEATER_0_PIN > -1)
+ if(current_raw[0] >= maxttemp) {
+ target_raw[0] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
+ }
+ #endif
+ #if (HEATER_2_PIN > -1)
+ if(current_raw[2] >= maxttemp) {
+ target_raw[2] = 0;
+ analogWrite(HEATER_2_PIN, 0);
+ Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
+ }
+ #endif
+#endif //MAXTEMP
+#ifdef MINTEMP
+ #if (HEATER_0_PIN > -1)
+ if(current_raw[0] <= minttemp) {
+ target_raw[0] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
+ }
+ #endif
+ #if (HEATER_2_PIN > -1)
+ if(current_raw[2] <= minttemp) {
+ target_raw[2] = 0;
+ analogWrite(HEATER_2_PIN, 0);
+ Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
+ }
+ #endif
+#endif //MAXTEMP
+#ifdef BED_MINTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] <= bed_minttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
+ }
+ #endif
+#endif
+#ifdef BED_MAXTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] >= bed_maxttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
+ }
+ #endif
+#endif
+ }
+}
--- /dev/null
+/*
+ temperature.h - temperature controller
+ Part of Marlin
+
+ Copyright (c) 2011 Erik van der Zalm
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef temperature_h
+#define temperature_h
+
+void manage_inactivity(byte debug);
+
+void tp_init();
+void manage_heater();
+//int temp2analogu(int celsius, const short table[][2], int numtemps);
+//float analog2tempu(int raw, const short table[][2], int numtemps);
+float temp2analog(int celsius);
+float temp2analogBed(int celsius);
+float analog2temp(int raw);
+float analog2tempBed(int raw);
+
+#ifdef HEATER_USES_THERMISTOR
+ #define HEATERSOURCE 1
+#endif
+#ifdef BED_USES_THERMISTOR
+ #define BEDSOURCE 1
+#endif
+
+//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
+//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
+
+
+extern float Kp;
+extern float Ki;
+extern float Kd;
+extern float Kc;
+
+extern int target_raw[3];
+extern int current_raw[3];
+extern double pid_setpoint;
+
+#endif
#ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_
+#define OVERSAMPLENR 16
#if (THERMISTORHEATER == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61
const short temptable_1[NUMTEMPS_1][2] = {
-{ (23*16) , 300 },
-{ (25*16) , 295 },
-{ (27*16) , 290 },
-{ (28*16) , 285 },
-{ (31*16) , 280 },
-{ (33*16) , 275 },
-{ (35*16) , 270 },
-{ (38*16) , 265 },
-{ (41*16) , 260 },
-{ (44*16) , 255 },
-{ (48*16) , 250 },
-{ (52*16) , 245 },
-{ (56*16) , 240 },
-{ (61*16) , 235 },
-{ (66*16) , 230 },
-{ (71*16) , 225 },
-{ (78*16) , 220 },
-{ (84*16) , 215 },
-{ (92*16) , 210 },
-{ (100*16), 205 },
-{ (109*16), 200 },
-{ (120*16), 195 },
-{ (131*16), 190 },
-{ (143*16), 185 },
-{ (156*16), 180 },
-{ (171*16), 175 },
-{ (187*16), 170 },
-{ (205*16), 165 },
-{ (224*16), 160 },
-{ (245*16), 155 },
-{ (268*16), 150 },
-{ (293*16), 145 },
-{ (320*16), 140 },
-{ (348*16), 135 },
-{ (379*16), 130 },
-{ (411*16), 125 },
-{ (445*16), 120 },
-{ (480*16), 115 },
-{ (516*16), 110 },
-{ (553*16), 105 },
-{ (591*16), 100 },
-{ (628*16), 95 },
-{ (665*16), 90 },
-{ (702*16), 85 },
-{ (737*16), 80 },
-{ (770*16), 75 },
-{ (801*16), 70 },
-{ (830*16), 65 },
-{ (857*16), 60 },
-{ (881*16), 55 },
-{ (903*16), 50 },
-{ (922*16), 45 },
-{ (939*16), 40 },
-{ (954*16), 35 },
-{ (966*16), 30 },
-{ (977*16), 25 },
-{ (985*16), 20 },
-{ (993*16), 15 },
-{ (999*16), 10 },
-{ (1004*16), 5 },
-{ (1008*16), 0 } //safety
+{ (23*OVERSAMPLENR) , 300 },
+{ (25*OVERSAMPLENR) , 295 },
+{ (27*OVERSAMPLENR) , 290 },
+{ (28*OVERSAMPLENR) , 285 },
+{ (31*OVERSAMPLENR) , 280 },
+{ (33*OVERSAMPLENR) , 275 },
+{ (35*OVERSAMPLENR) , 270 },
+{ (38*OVERSAMPLENR) , 265 },
+{ (41*OVERSAMPLENR) , 260 },
+{ (44*OVERSAMPLENR) , 255 },
+{ (48*OVERSAMPLENR) , 250 },
+{ (52*OVERSAMPLENR) , 245 },
+{ (56*OVERSAMPLENR) , 240 },
+{ (61*OVERSAMPLENR) , 235 },
+{ (66*OVERSAMPLENR) , 230 },
+{ (71*OVERSAMPLENR) , 225 },
+{ (78*OVERSAMPLENR) , 220 },
+{ (84*OVERSAMPLENR) , 215 },
+{ (92*OVERSAMPLENR) , 210 },
+{ (100*OVERSAMPLENR), 205 },
+{ (109*OVERSAMPLENR), 200 },
+{ (120*OVERSAMPLENR), 195 },
+{ (131*OVERSAMPLENR), 190 },
+{ (143*OVERSAMPLENR), 185 },
+{ (156*OVERSAMPLENR), 180 },
+{ (171*OVERSAMPLENR), 175 },
+{ (187*OVERSAMPLENR), 170 },
+{ (205*OVERSAMPLENR), 165 },
+{ (224*OVERSAMPLENR), 160 },
+{ (245*OVERSAMPLENR), 155 },
+{ (268*OVERSAMPLENR), 150 },
+{ (293*OVERSAMPLENR), 145 },
+{ (320*OVERSAMPLENR), 140 },
+{ (348*OVERSAMPLENR), 135 },
+{ (379*OVERSAMPLENR), 130 },
+{ (411*OVERSAMPLENR), 125 },
+{ (445*OVERSAMPLENR), 120 },
+{ (480*OVERSAMPLENR), 115 },
+{ (516*OVERSAMPLENR), 110 },
+{ (553*OVERSAMPLENR), 105 },
+{ (591*OVERSAMPLENR), 100 },
+{ (628*OVERSAMPLENR), 95 },
+{ (665*OVERSAMPLENR), 90 },
+{ (702*OVERSAMPLENR), 85 },
+{ (737*OVERSAMPLENR), 80 },
+{ (770*OVERSAMPLENR), 75 },
+{ (801*OVERSAMPLENR), 70 },
+{ (830*OVERSAMPLENR), 65 },
+{ (857*OVERSAMPLENR), 60 },
+{ (881*OVERSAMPLENR), 55 },
+{ (903*OVERSAMPLENR), 50 },
+{ (922*OVERSAMPLENR), 45 },
+{ (939*OVERSAMPLENR), 40 },
+{ (954*OVERSAMPLENR), 35 },
+{ (966*OVERSAMPLENR), 30 },
+{ (977*OVERSAMPLENR), 25 },
+{ (985*OVERSAMPLENR), 20 },
+{ (993*OVERSAMPLENR), 15 },
+{ (999*OVERSAMPLENR), 10 },
+{ (1004*OVERSAMPLENR), 5 },
+{ (1008*OVERSAMPLENR), 0 } //safety
};
#endif
#if (THERMISTORHEATER == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21
const short temptable_2[NUMTEMPS_2][2] = {
- {(1*16), 848},
- {(54*16), 275},
- {(107*16), 228},
- {(160*16), 202},
- {(213*16), 185},
- {(266*16), 171},
- {(319*16), 160},
- {(372*16), 150},
- {(425*16), 141},
- {(478*16), 133},
- {(531*16), 125},
- {(584*16), 118},
- {(637*16), 110},
- {(690*16), 103},
- {(743*16), 95},
- {(796*16), 86},
- {(849*16), 77},
- {(902*16), 65},
- {(955*16), 49},
- {(1008*16), 17},
- {(1020*16), 0} //safety
+ {(1*OVERSAMPLENR), 848},
+ {(54*OVERSAMPLENR), 275},
+ {(107*OVERSAMPLENR), 228},
+ {(160*OVERSAMPLENR), 202},
+ {(213*OVERSAMPLENR), 185},
+ {(266*OVERSAMPLENR), 171},
+ {(319*OVERSAMPLENR), 160},
+ {(372*OVERSAMPLENR), 150},
+ {(425*OVERSAMPLENR), 141},
+ {(478*OVERSAMPLENR), 133},
+ {(531*OVERSAMPLENR), 125},
+ {(584*OVERSAMPLENR), 118},
+ {(637*OVERSAMPLENR), 110},
+ {(690*OVERSAMPLENR), 103},
+ {(743*OVERSAMPLENR), 95},
+ {(796*OVERSAMPLENR), 86},
+ {(849*OVERSAMPLENR), 77},
+ {(902*OVERSAMPLENR), 65},
+ {(955*OVERSAMPLENR), 49},
+ {(1008*OVERSAMPLENR), 17},
+ {(1020*OVERSAMPLENR), 0} //safety
};
#endif
#if (THERMISTORHEATER == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28
const short temptable_3[NUMTEMPS_3][2] = {
- {(1*16),864},
- {(21*16),300},
- {(25*16),290},
- {(29*16),280},
- {(33*16),270},
- {(39*16),260},
- {(46*16),250},
- {(54*16),240},
- {(64*16),230},
- {(75*16),220},
- {(90*16),210},
- {(107*16),200},
- {(128*16),190},
- {(154*16),180},
- {(184*16),170},
- {(221*16),160},
- {(265*16),150},
- {(316*16),140},
- {(375*16),130},
- {(441*16),120},
- {(513*16),110},
- {(588*16),100},
- {(734*16),80},
- {(856*16),60},
- {(938*16),40},
- {(986*16),20},
- {(1008*16),0},
- {(1018*16),-20}
+ {(1*OVERSAMPLENR),864},
+ {(21*OVERSAMPLENR),300},
+ {(25*OVERSAMPLENR),290},
+ {(29*OVERSAMPLENR),280},
+ {(33*OVERSAMPLENR),270},
+ {(39*OVERSAMPLENR),260},
+ {(46*OVERSAMPLENR),250},
+ {(54*OVERSAMPLENR),240},
+ {(64*OVERSAMPLENR),230},
+ {(75*OVERSAMPLENR),220},
+ {(90*OVERSAMPLENR),210},
+ {(107*OVERSAMPLENR),200},
+ {(128*OVERSAMPLENR),190},
+ {(154*OVERSAMPLENR),180},
+ {(184*OVERSAMPLENR),170},
+ {(221*OVERSAMPLENR),160},
+ {(265*OVERSAMPLENR),150},
+ {(316*OVERSAMPLENR),140},
+ {(375*OVERSAMPLENR),130},
+ {(441*OVERSAMPLENR),120},
+ {(513*OVERSAMPLENR),110},
+ {(588*OVERSAMPLENR),100},
+ {(734*OVERSAMPLENR),80},
+ {(856*OVERSAMPLENR),60},
+ {(938*OVERSAMPLENR),40},
+ {(986*OVERSAMPLENR),20},
+ {(1008*OVERSAMPLENR),0},
+ {(1018*OVERSAMPLENR),-20}
};
#endif
--- /dev/null
+#ifndef __ULTRALCDH
+#define __ULTRALCDH
+#include "Configuration.h"
+
+#ifdef ULTRA_LCD
+
+ void lcd_status();
+ void lcd_init();
+ void lcd_status(const char* message);
+ void beep();
+ void buttons_check();
+ #define LCDSTATUSRIGHT
+
+ #define LCD_UPDATE_INTERVAL 100
+ #define STATUSTIMEOUT 15000
+
+ #include "Configuration.h"
+
+ #include <LiquidCrystal.h>
+ extern LiquidCrystal lcd;
+
+ //lcd display size
+
+#ifdef NEWPANEL
+ //arduino pin witch triggers an piezzo beeper
+ #define BEEPER 18
+
+ #define LCD_PINS_RS 20
+ #define LCD_PINS_ENABLE 17
+ #define LCD_PINS_D4 16
+ #define LCD_PINS_D5 21
+ #define LCD_PINS_D6 5
+ #define LCD_PINS_D7 6
+
+ //buttons are directly attached
+ #define BTN_EN1 40
+ #define BTN_EN2 42
+ #define BTN_ENC 19 //the click
+
+ #define BLEN_C 2
+ #define BLEN_B 1
+ #define BLEN_A 0
+
+ #define SDCARDDETECT 38
+
+ #define EN_C (1<<BLEN_C)
+ #define EN_B (1<<BLEN_B)
+ #define EN_A (1<<BLEN_A)
+
+ //encoder rotation values
+ #define encrot0 0
+ #define encrot1 2
+ #define encrot2 3
+ #define encrot3 1
+
+
+ #define CLICKED (buttons&EN_C)
+ #define BLOCK {blocking=millis()+blocktime;}
+ #define CARDINSERTED (READ(SDCARDDETECT)==0)
+
+#else
+ //arduino pin witch triggers an piezzo beeper
+ #define BEEPER 18
+
+ //buttons are attached to a shift register
+ #define SHIFT_CLK 38
+ #define SHIFT_LD 42
+ #define SHIFT_OUT 40
+ #define SHIFT_EN 17
+
+ #define LCD_PINS_RS 16
+ #define LCD_PINS_ENABLE 5
+ #define LCD_PINS_D4 6
+ #define LCD_PINS_D5 21
+ #define LCD_PINS_D6 20
+ #define LCD_PINS_D7 19
+
+ //bits in the shift register that carry the buttons for:
+ // left up center down right red
+ #define BL_LE 7
+ #define BL_UP 6
+ #define BL_MI 5
+ #define BL_DW 4
+ #define BL_RI 3
+ #define BL_ST 2
+
+ #define BLEN_B 1
+ #define BLEN_A 0
+
+ //encoder rotation values
+ #define encrot0 0
+ #define encrot1 2
+ #define encrot2 3
+ #define encrot3 1
+
+ //atomatic, do not change
+ #define B_LE (1<<BL_LE)
+ #define B_UP (1<<BL_UP)
+ #define B_MI (1<<BL_MI)
+ #define B_DW (1<<BL_DW)
+ #define B_RI (1<<BL_RI)
+ #define B_ST (1<<BL_ST)
+ #define EN_B (1<<BLEN_B)
+ #define EN_A (1<<BLEN_A)
+
+ #define CLICKED ((buttons&B_MI)||(buttons&B_ST))
+ #define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
+
+#endif
+ // blocking time for recognizing a new keypress of one key, ms
+#define blocktime 500
+#define lcdslow 5
+ enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
+
+ class MainMenu{
+ public:
+ MainMenu();
+ void update();
+ void getfilename(const uint8_t nr);
+ uint8_t activeline;
+ MainStatus status;
+ uint8_t displayStartingRow;
+
+ void showStatus();
+ void showMainMenu();
+ void showPrepare();
+ void showControl();
+ void showSD();
+ bool force_lcd_update;
+ int lastencoderpos;
+ int8_t lineoffset;
+ int8_t lastlineoffset;
+ char filename[11];
+ bool linechanging;
+ };
+
+ char *fillto(int8_t n,char *c);
+ char *ftostr51(const float &x);
+ char *ftostr31(const float &x);
+ char *ftostr3(const float &x);
+
+
+
+ #define LCD_MESSAGE(x) lcd_status(x);
+ #define LCD_STATUS lcd_status()
+#else //no lcd
+ #define LCD_STATUS
+ #define LCD_MESSAGE(x)
+#endif
+
+#ifndef ULTIPANEL
+ #define CLICKED false
+#define BLOCK ;
+#endif
+#endif //ULTRALCD
+
--- /dev/null
+#include "ultralcd.h"
+
+
+#ifdef ULTRA_LCD
+extern volatile int feedmultiply;
+extern long position[4];
+
+char messagetext[LCD_WIDTH]="";
+
+#include <LiquidCrystal.h>
+LiquidCrystal lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
+
+unsigned long previous_millis_lcd=0;
+
+
+
+volatile char buttons=0; //the last checked buttons in a bit array.
+int encoderpos=0;
+short lastenc=0;
+#ifdef NEWPANEL
+ long blocking=0;
+#else
+ long blocking[8]={0,0,0,0,0,0,0,0};
+#endif
+MainMenu menu;
+
+void lcd_status(const char* message)
+{
+ strncpy(messagetext,message,LCD_WIDTH);
+}
+
+void clear()
+{
+ //lcd.setCursor(0,0);
+ lcd.clear();
+ //delay(1);
+ // lcd.begin(LCD_WIDTH,LCD_HEIGHT);
+ //lcd_init();
+}
+long previous_millis_buttons=0;
+
+void lcd_init()
+{
+ //beep();
+ byte Degree[8] =
+ {
+ B01100,
+ B10010,
+ B10010,
+ B01100,
+ B00000,
+ B00000,
+ B00000,
+ B00000
+ };
+ byte Thermometer[8] =
+ {
+ B00100,
+ B01010,
+ B01010,
+ B01010,
+ B01010,
+ B10001,
+ B10001,
+ B01110
+ };
+ byte uplevel[8]={0x04, 0x0e, 0x1f, 0x04, 0x1c, 0x00, 0x00, 0x00};//thanks joris
+ byte refresh[8]={0x00, 0x06, 0x19, 0x18, 0x03, 0x13, 0x0c, 0x00}; //thanks joris
+ lcd.begin(LCD_WIDTH, LCD_HEIGHT);
+ lcd.createChar(1,Degree);
+ lcd.createChar(2,Thermometer);
+ lcd.createChar(3,uplevel);
+ lcd.createChar(4,refresh);
+ LCD_MESSAGE(fillto(LCD_WIDTH,"UltiMarlin ready."));
+}
+
+
+void beep()
+{
+ //return;
+#ifdef ULTIPANEL
+ pinMode(BEEPER,OUTPUT);
+ for(int i=0;i<20;i++){
+ WRITE(BEEPER,HIGH);
+ delay(5);
+ WRITE(BEEPER,LOW);
+ delay(5);
+ }
+#endif
+}
+
+void beepshort()
+{
+ //return;
+#ifdef ULTIPANEL
+ pinMode(BEEPER,OUTPUT);
+ for(int i=0;i<10;i++){
+ WRITE(BEEPER,HIGH);
+ delay(3);
+ WRITE(BEEPER,LOW);
+ delay(3);
+ }
+#endif
+}
+void lcd_status()
+{
+#ifdef ULTIPANEL
+ static uint8_t oldbuttons=0;
+ static long previous_millis_buttons=0;
+ static long previous_lcdinit=0;
+// buttons_check(); // Done in temperature interrupt
+ //previous_millis_buttons=millis();
+
+ if((buttons==oldbuttons) && ((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
+ return;
+ oldbuttons=buttons;
+#else
+
+ if(((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
+ return;
+#endif
+
+ previous_millis_lcd=millis();
+ menu.update();
+}
+#ifdef ULTIPANEL
+void buttons_init()
+{
+#ifdef NEWPANEL
+ pinMode(BTN_EN1,INPUT);
+ pinMode(BTN_EN2,INPUT);
+ pinMode(BTN_ENC,INPUT);
+ pinMode(SDCARDDETECT,INPUT);
+ WRITE(BTN_EN1,HIGH);
+ WRITE(BTN_EN2,HIGH);
+ WRITE(BTN_ENC,HIGH);
+ WRITE(SDCARDDETECT,HIGH);
+#else
+ pinMode(SHIFT_CLK,OUTPUT);
+ pinMode(SHIFT_LD,OUTPUT);
+ pinMode(SHIFT_EN,OUTPUT);
+ pinMode(SHIFT_OUT,INPUT);
+ WRITE(SHIFT_OUT,HIGH);
+ WRITE(SHIFT_LD,HIGH);
+ WRITE(SHIFT_EN,LOW);
+#endif
+}
+
+
+void buttons_check()
+{
+// volatile static bool busy=false;
+// if(busy)
+// return;
+// busy=true;
+
+#ifdef NEWPANEL
+ uint8_t newbutton=0;
+ if(READ(BTN_EN1)==0) newbutton|=EN_A;
+ if(READ(BTN_EN2)==0) newbutton|=EN_B;
+ if((blocking<millis()) &&(READ(BTN_ENC)==0))
+ newbutton|=EN_C;
+ buttons=newbutton;
+#else
+ //read it from the shift register
+ uint8_t newbutton=0;
+ WRITE(SHIFT_LD,LOW);
+ WRITE(SHIFT_LD,HIGH);
+ unsigned char tmp_buttons=0;
+ for(unsigned char i=0;i<8;i++)
+ {
+ newbutton = newbutton>>1;
+ if(READ(SHIFT_OUT))
+ newbutton|=(1<<7);
+ WRITE(SHIFT_CLK,HIGH);
+ WRITE(SHIFT_CLK,LOW);
+ }
+ buttons=~newbutton; //invert it, because a pressed switch produces a logical 0
+#endif
+ char enc=0;
+ if(buttons&EN_A)
+ enc|=(1<<0);
+ if(buttons&EN_B)
+ enc|=(1<<1);
+ if(enc!=lastenc)
+ {
+ switch(enc)
+ {
+ case encrot0:
+ if(lastenc==encrot3)
+ encoderpos++;
+ else if(lastenc==encrot1)
+ encoderpos--;
+ break;
+ case encrot1:
+ if(lastenc==encrot0)
+ encoderpos++;
+ else if(lastenc==encrot2)
+ encoderpos--;
+ break;
+ case encrot2:
+ if(lastenc==encrot1)
+ encoderpos++;
+ else if(lastenc==encrot3)
+ encoderpos--;
+ break;
+ case encrot3:
+ if(lastenc==encrot2)
+ encoderpos++;
+ else if(lastenc==encrot0)
+ encoderpos--;
+ break;
+ default:
+ ;
+ }
+ }
+ lastenc=enc;
+// busy=false;
+}
+
+#endif
+
+MainMenu::MainMenu()
+{
+ status=Main_Status;
+ displayStartingRow=0;
+ activeline=0;
+ force_lcd_update=true;
+#ifdef ULTIPANEL
+ buttons_init();
+#endif
+ lcd_init();
+ linechanging=false;
+}
+
+extern volatile bool feedmultiplychanged;
+
+void MainMenu::showStatus()
+{
+#if LCD_HEIGHT==4
+ static int oldcurrentraw=-1;
+ static int oldtargetraw=-1;
+ //force_lcd_update=true;
+ if(force_lcd_update||feedmultiplychanged) //initial display of content
+ {
+ feedmultiplychanged=false;
+ encoderpos=feedmultiply;
+ clear();
+ lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
+#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
+ lcd.setCursor(10,0);lcd.print("B123/567\001 ");
+#endif
+ }
+
+
+ if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
+ {
+ lcd.setCursor(1,0);
+ lcd.print(ftostr3(analog2temp(current_raw[0])));
+ oldcurrentraw=current_raw[0];
+ }
+ if((target_raw[0]!=oldtargetraw)||force_lcd_update)
+ {
+ lcd.setCursor(5,0);
+ lcd.print(ftostr3(analog2temp(target_raw[0])));
+ oldtargetraw=target_raw[0];
+ }
+ #if defined BED_USES_THERMISTOR || defined BED_USES_AD595
+ static int oldcurrentbedraw=-1;
+ static int oldtargetbedraw=-1;
+ if((current_bed_raw!=oldcurrentbedraw)||force_lcd_update)
+ {
+ lcd.setCursor(1,0);
+ lcd.print(ftostr3(analog2temp(current_bed_raw)));
+ oldcurrentraw=current_raw[1];
+ }
+ if((target_bed_raw!=oldtargebedtraw)||force_lcd_update)
+ {
+ lcd.setCursor(5,0);
+ lcd.print(ftostr3(analog2temp(target_bed_raw)));
+ oldtargetraw=target_bed_raw;
+ }
+ #endif
+ //starttime=2;
+ static uint16_t oldtime=0;
+ if(starttime!=0)
+ {
+ lcd.setCursor(0,1);
+ uint16_t time=millis()/60000-starttime/60000;
+
+ if(starttime!=oldtime)
+ {
+ lcd.print(itostr2(time/60));lcd.print("h ");lcd.print(itostr2(time%60));lcd.print("m");
+ oldtime=time;
+ }
+ }
+ static int oldzpos=0;
+ int currentz=current_position[2]*10;
+ if((currentz!=oldzpos)||force_lcd_update)
+ {
+ lcd.setCursor(10,1);
+ lcd.print("Z:");lcd.print(itostr31(currentz));
+ oldzpos=currentz;
+ }
+ static int oldfeedmultiply=0;
+ int curfeedmultiply=feedmultiply;
+ if(encoderpos!=curfeedmultiply||force_lcd_update)
+ {
+ curfeedmultiply=encoderpos;
+ if(curfeedmultiply<10)
+ curfeedmultiply=10;
+ if(curfeedmultiply>999)
+ curfeedmultiply=999;
+ feedmultiply=curfeedmultiply;
+ encoderpos=curfeedmultiply;
+ }
+ if((curfeedmultiply!=oldfeedmultiply)||force_lcd_update)
+ {
+ oldfeedmultiply=curfeedmultiply;
+ lcd.setCursor(0,2);
+ lcd.print(itostr3(curfeedmultiply));lcd.print("% ");
+ }
+ if(messagetext[0]!='\0')
+ {
+ lcd.setCursor(0,LCD_HEIGHT-1);
+ lcd.print(fillto(LCD_WIDTH,messagetext));
+ messagetext[0]='\0';
+ }
+#else //smaller LCDS----------------------------------
+ static int oldcurrentraw=-1;
+ static int oldtargetraw=-1;
+ if(force_lcd_update) //initial display of content
+ {
+ encoderpos=feedmultiply;
+ lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
+ #if defined BED_USES_THERMISTOR || defined BED_USES_AD595
+ lcd.setCursor(10,0);lcd.print("B123/567\001 ");
+ #endif
+ }
+
+
+ if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
+ {
+ lcd.setCursor(1,0);
+ lcd.print(ftostr3(analog2temp(current_raw[0])));
+ oldcurrentraw=current_raw[0];
+ }
+ if((target_raw[0]!=oldtargetraw)||force_lcd_update)
+ {
+ lcd.setCursor(5,0);
+ lcd.print(ftostr3(analog2temp(target_raw[0])));
+ oldtargetraw=target_raw[0];
+ }
+
+ if(messagetext[0]!='\0')
+ {
+ lcd.setCursor(0,LCD_HEIGHT-1);
+ lcd.print(fillto(LCD_WIDTH,messagetext));
+ messagetext[0]='\0';
+ }
+
+#endif
+}
+
+enum {ItemP_exit, ItemP_home, ItemP_origin, ItemP_preheat, ItemP_extrude, ItemP_disstep};
+
+void MainMenu::showPrepare()
+{
+ uint8_t line=0;
+ if(lastlineoffset!=lineoffset)
+ {
+ force_lcd_update=true;
+ clear();
+ }
+ for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
+ {
+ //Serial.println((int)(line-lineoffset));
+ switch(i)
+ {
+ case ItemP_exit:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Prepare");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ status=Main_Menu;
+ beepshort();
+ }
+ }break;
+ case ItemP_home:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Auto Home");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ enquecommand("G28 X-105 Y-105 Z0");
+ beepshort();
+ }
+ }break;
+ case ItemP_origin:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Set Origin");
+
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ enquecommand("G92 X0 Y0 Z0");
+ beepshort();
+ }
+ }break;
+ case ItemP_preheat:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Preheat");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ target_raw[0] = temp2analog(170);
+ beepshort();
+ }
+ }break;
+ case ItemP_extrude:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Extrude");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ enquecommand("G92 E0");
+ enquecommand("G1 F700 E50");
+ beepshort();
+ }
+ }break;
+ case ItemP_disstep:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Disable Steppers");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ enquecommand("M84");
+ beepshort();
+ }
+ }break;
+ default:
+ break;
+ }
+ line++;
+ }
+ lastlineoffset=lineoffset;
+ if((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update)
+ {
+
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
+
+ if(encoderpos<0)
+ {
+ lineoffset--;
+ if(lineoffset<0)
+ lineoffset=0;
+ encoderpos=0;
+ force_lcd_update=true;
+ }
+ if(encoderpos/lcdslow>3)
+ {
+ lineoffset++;
+ encoderpos=3*lcdslow;
+ if(lineoffset>(ItemP_disstep+1-LCD_HEIGHT))
+ lineoffset=ItemP_disstep+1-LCD_HEIGHT;
+ force_lcd_update=true;
+ }
+ //encoderpos=encoderpos%LCD_HEIGHT;
+ lastencoderpos=encoderpos;
+ activeline=encoderpos/lcdslow;
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
+ }
+}
+enum {
+ ItemC_exit, ItemC_nozzle,
+ ItemC_PID_P,ItemC_PID_I,ItemC_PID_D,ItemC_PID_C,
+ ItemC_fan,
+ ItemC_acc, ItemC_xyjerk,
+ ItemC_vmaxx, ItemC_vmaxy, ItemC_vmaxz, ItemC_vmaxe,
+ ItemC_vtravmin,ItemC_vmin,
+ ItemC_amaxx, ItemC_amaxy, ItemC_amaxz, ItemC_amaxe,
+ ItemC_aret,ItemC_esteps, ItemC_store, ItemC_load,ItemC_failsafe
+};
+
+void MainMenu::showControl()
+{
+ uint8_t line=0;
+ if((lastlineoffset!=lineoffset)||force_lcd_update)
+ {
+ force_lcd_update=true;
+ clear();
+ }
+ for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
+ {
+ switch(i)
+ {
+ case ItemC_exit:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Control");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ status=Main_Menu;
+ beepshort();
+ }
+ }break;
+ case ItemC_nozzle:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" \002Nozzle:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[0])));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)analog2temp(target_raw[0]);
+ }
+ else
+ {
+ target_raw[0] = temp2analog(encoderpos);
+ encoderpos=activeline*lcdslow;
+ beepshort();
+ }
+ BLOCK;
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>260) encoderpos=260;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+
+ case ItemC_fan:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Fan speed:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(fanpwm));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED) //nalogWrite(FAN_PIN, fanpwm);
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=fanpwm;
+ }
+ else
+ {
+ fanpwm = constrain(encoderpos,0,255);
+ encoderpos=fanpwm;
+ analogWrite(FAN_PIN, fanpwm);
+
+ beepshort();
+ }
+ BLOCK;
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>255) encoderpos=255;
+ fanpwm=encoderpos;
+ analogWrite(FAN_PIN, fanpwm);
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+ case ItemC_acc:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Acc:");
+ lcd.setCursor(13,line);lcd.print(itostr3(acceleration/100));lcd.print("00");
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)acceleration/100;
+ }
+ else
+ {
+ acceleration= encoderpos*100;
+ encoderpos=activeline*lcdslow;
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<5) encoderpos=5;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
+ }
+ }
+ }break;
+ case ItemC_xyjerk: //max_xy_jerk
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Vxy-jerk: ");
+ lcd.setCursor(13,line);lcd.print(itostr3(max_xy_jerk/60));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)max_xy_jerk/60;
+ }
+ else
+ {
+ max_xy_jerk= encoderpos*60;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+ case ItemC_PID_P:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" PID-P: ");
+ lcd.setCursor(13,line);lcd.print(itostr4(Kp));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)Kp/5;
+ }
+ else
+ {
+ Kp= encoderpos*5;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>9990/5) encoderpos=9990/5;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
+ }
+ }
+ }break;
+ case ItemC_PID_I:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" PID-I: ");
+ lcd.setCursor(13,line);lcd.print(ftostr51(Ki));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)(Ki*10);
+ }
+ else
+ {
+ Ki= encoderpos/10.;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>9990) encoderpos=9990;
+ lcd.setCursor(13,line);lcd.print(ftostr51(encoderpos/10.));
+ }
+ }
+ }break;
+ case ItemC_PID_D:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" PID-D: ");
+ lcd.setCursor(13,line);lcd.print(itostr4(Kd));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)Kd/5;
+ }
+ else
+ {
+ Kd= encoderpos*5;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>9990/5) encoderpos=9990/5;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
+ }
+ }
+ }break;
+
+
+
+ case ItemC_PID_C:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" PID-C: ");
+ lcd.setCursor(13,line);lcd.print(itostr3(Kc));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)Kc;
+ }
+ else
+ {
+ Kc= encoderpos;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+ case ItemC_vmaxx:
+ case ItemC_vmaxy:
+ case ItemC_vmaxz:
+ case ItemC_vmaxe:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Vmax ");
+ if(i==ItemC_vmaxx)lcd.print("x:");
+ if(i==ItemC_vmaxy)lcd.print("y:");
+ if(i==ItemC_vmaxz)lcd.print("z:");
+ if(i==ItemC_vmaxe)lcd.print("e:");
+ lcd.setCursor(13,line);lcd.print(itostr3(max_feedrate[i-ItemC_vmaxx]/60));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)max_feedrate[i-ItemC_vmaxx]/60;
+ }
+ else
+ {
+ max_feedrate[i-ItemC_vmaxx]= encoderpos*60;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+
+ case ItemC_vmin:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Vmin:");
+ lcd.setCursor(13,line);lcd.print(itostr3(minimumfeedrate/60));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)(minimumfeedrate/60.);
+ }
+ else
+ {
+ minimumfeedrate= encoderpos*60;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+ case ItemC_vtravmin:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" VTrav min:");
+ lcd.setCursor(13,line);lcd.print(itostr3(mintravelfeedrate/60));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)mintravelfeedrate/60;
+ }
+ else
+ {
+ mintravelfeedrate= encoderpos*60;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
+ }
+ }
+ }break;
+
+ case ItemC_amaxx:
+ case ItemC_amaxy:
+ case ItemC_amaxz:
+ case ItemC_amaxe:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Amax ");
+ if(i==ItemC_amaxx)lcd.print("x:");
+ if(i==ItemC_amaxy)lcd.print("y:");
+ if(i==ItemC_amaxz)lcd.print("z:");
+ if(i==ItemC_amaxe)lcd.print("e:");
+ lcd.setCursor(13,line);lcd.print(itostr3(max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100));lcd.print("00");
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100;
+ }
+ else
+ {
+ max_acceleration_units_per_sq_second[i-ItemC_amaxx]= encoderpos*100;
+ encoderpos=activeline*lcdslow;
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<1) encoderpos=1;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
+ }
+ }
+ }break;
+ case ItemC_aret://float retract_acceleration = 7000;
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" A-retract:");
+ lcd.setCursor(13,line);lcd.print(ftostr3(retract_acceleration/100));lcd.print("00");
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)retract_acceleration/100;
+ }
+ else
+ {
+ retract_acceleration= encoderpos*100;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<10) encoderpos=10;
+ if(encoderpos>990) encoderpos=990;
+ lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
+ }
+ }
+ }break;
+ case ItemC_esteps://axis_steps_per_unit[i] = code_value();
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Esteps/mm:");
+ lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
+ }
+
+ if((activeline==line) )
+ {
+ if(CLICKED)
+ {
+ linechanging=!linechanging;
+ if(linechanging)
+ {
+ encoderpos=(int)axis_steps_per_unit[3];
+ }
+ else
+ {
+ float factor=float(encoderpos)/float(axis_steps_per_unit[3]);
+ position[E_AXIS]=lround(position[E_AXIS]*factor);
+ //current_position[3]*=factor;
+ axis_steps_per_unit[E_AXIS]= encoderpos;
+ encoderpos=activeline*lcdslow;
+
+ }
+ BLOCK;
+ beepshort();
+ }
+ if(linechanging)
+ {
+ if(encoderpos<5) encoderpos=5;
+ if(encoderpos>9999) encoderpos=9999;
+ lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
+ }
+ }
+ }break;
+ case ItemC_store:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Store EPROM");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ //enquecommand("M84");
+ beepshort();
+ BLOCK;
+ StoreSettings();
+ }
+ }break;
+ case ItemC_load:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Load EPROM");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ //enquecommand("M84");
+ beepshort();
+ BLOCK;
+ RetrieveSettings();
+ }
+ }break;
+ case ItemC_failsafe:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" Restore Failsafe");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ //enquecommand("M84");
+ beepshort();
+ BLOCK;
+ RetrieveSettings(true);
+ }
+ }break;
+ default:
+ break;
+ }
+ line++;
+ }
+ lastlineoffset=lineoffset;
+
+ if(!linechanging && ((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update))
+ {
+
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
+
+ if(encoderpos<0)
+ {
+ lineoffset--;
+ if(lineoffset<0)
+ lineoffset=0;
+ encoderpos=0;
+ force_lcd_update=true;
+ }
+ if(encoderpos/lcdslow>3)
+ {
+ lineoffset++;
+ encoderpos=3*lcdslow;
+ if(lineoffset>(ItemC_failsafe+1-LCD_HEIGHT))
+ lineoffset=ItemC_failsafe+1-LCD_HEIGHT;
+ force_lcd_update=true;
+ }
+ //encoderpos=encoderpos%LCD_HEIGHT;
+ lastencoderpos=encoderpos;
+ activeline=encoderpos/lcdslow;
+ if(activeline>3) activeline=3;
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
+ }
+}
+
+#include "SdFat.h"
+
+void MainMenu::getfilename(const uint8_t nr)
+{
+#ifdef SDSUPPORT
+ dir_t p;
+ root.rewind();
+ uint8_t cnt=0;
+ filename[0]='\0';
+ while (root.readDir(p) > 0)
+ {
+ if (p.name[0] == DIR_NAME_FREE) break;
+ if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
+ if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
+ if(p.name[8]!='G') continue;
+ if(p.name[9]=='~') continue;
+ if(cnt++!=nr) continue;
+ //Serial.println((char*)p.name);
+ uint8_t writepos=0;
+ for (uint8_t i = 0; i < 11; i++)
+ {
+ if (p.name[i] == ' ') continue;
+ if (i == 8) {
+ filename[writepos++]='.';
+ }
+ filename[writepos++]=p.name[i];
+ }
+ filename[writepos++]=0;
+ }
+#endif
+}
+
+uint8_t getnrfilenames()
+{
+#ifdef SDSUPPORT
+ dir_t p;
+ root.rewind();
+ uint8_t cnt=0;
+ while (root.readDir(p) > 0)
+ {
+ if (p.name[0] == DIR_NAME_FREE) break;
+ if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
+ if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
+ if(p.name[8]!='G') continue;
+ if(p.name[9]=='~') continue;
+ cnt++;
+ }
+ return cnt;
+#endif
+}
+
+void MainMenu::showSD()
+{
+
+#ifdef SDSUPPORT
+ uint8_t line=0;
+
+ if(lastlineoffset!=lineoffset)
+ {
+ force_lcd_update=true;
+ }
+ static uint8_t nrfiles=0;
+ if(force_lcd_update)
+ {
+ clear();
+ if(sdactive)
+ {
+ nrfiles=getnrfilenames();
+ }
+ else
+ {
+ nrfiles=0;
+ lineoffset=0;
+ }
+ //Serial.print("Nr files:"); Serial.println((int)nrfiles);
+ }
+
+ for(int8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
+ {
+ switch(i)
+ {
+ case 0:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);lcd.print(" File");
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ status=Main_Menu;
+ beepshort();
+ }
+ }break;
+ case 1:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);
+#ifdef CARDINSERTED
+ if(CARDINSERTED)
+#else
+ if(true)
+#endif
+ {
+ lcd.print(" \004Refresh");
+ }
+ else
+ {
+ lcd.print(" \004Insert Card");
+ }
+
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK;
+ beepshort();
+ initsd();
+ force_lcd_update=true;
+ nrfiles=getnrfilenames();
+ }
+ }break;
+ default:
+ {
+ if(i-2<nrfiles)
+ {
+ if(force_lcd_update)
+ {
+ getfilename(i-2);
+ //Serial.print("Filenr:");Serial.println(i-2);
+ lcd.setCursor(0,line);lcd.print(" ");lcd.print(filename);
+ }
+ if((activeline==line) && CLICKED)
+ {
+ BLOCK
+ getfilename(i-2);
+ char cmd[30];
+ for(int i=0;i<strlen(filename);i++)
+ filename[i]=tolower(filename[i]);
+ sprintf(cmd,"M23 %s",filename);
+ //sprintf(cmd,"M115");
+ enquecommand(cmd);
+ enquecommand("M24");
+ beep();
+ status=Main_Status;
+ lcd_status(filename);
+ }
+ }
+
+ }
+ break;
+ }
+ line++;
+ }
+ lastlineoffset=lineoffset;
+ if((encoderpos!=lastencoderpos)||force_lcd_update)
+ {
+
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
+
+ if(encoderpos<0)
+ {
+ lineoffset--;
+ if(lineoffset<0)
+ lineoffset=0;
+ encoderpos=0;
+ force_lcd_update=true;
+ }
+ if(encoderpos/lcdslow>3)
+ {
+ lineoffset++;
+ encoderpos=3*lcdslow;
+ if(lineoffset>(1+nrfiles+1-LCD_HEIGHT))
+ lineoffset=1+nrfiles+1-LCD_HEIGHT;
+ force_lcd_update=true;
+
+ }
+ lastencoderpos=encoderpos;
+ activeline=encoderpos;
+ if(activeline>3)
+ {
+ activeline=3;
+ }
+ if(activeline<0)
+ {
+ activeline=0;
+ }
+ if(activeline>1+nrfiles) activeline=1+nrfiles;
+ if(lineoffset>1+nrfiles) lineoffset=1+nrfiles;
+ lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
+
+ }
+#endif
+}
+
+enum {ItemM_watch, ItemM_prepare, ItemM_control, ItemM_file };
+void MainMenu::showMainMenu()
+{
+ //if(int(encoderpos/lcdslow)!=int(lastencoderpos/lcdslow))
+ // force_lcd_update=true;
+#ifndef ULTIPANEL
+ force_lcd_update=false;
+#endif
+ //Serial.println((int)activeline);
+ if(force_lcd_update)
+ clear();
+ for(short line=0;line<LCD_HEIGHT;line++)
+ {
+ switch(line)
+ {
+ case ItemM_watch:
+ {
+ if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Watch \x7E");}
+ if((activeline==line)&&CLICKED)
+ {
+ BLOCK;
+ beepshort();
+ status=Main_Status;
+ }
+ } break;
+ case ItemM_prepare:
+ {
+ if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Prepare \x7E");}
+ if((activeline==line)&&CLICKED)
+ {
+ BLOCK;
+ status=Main_Prepare;
+ beepshort();
+ }
+ } break;
+
+ case ItemM_control:
+ {
+ if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Control \x7E");}
+ if((activeline==line)&&CLICKED)
+ {
+ BLOCK;
+ status=Main_Control;
+ beepshort();
+ }
+ }break;
+#ifdef SDSUPPORT
+ case ItemM_file:
+ {
+ if(force_lcd_update)
+ {
+ lcd.setCursor(0,line);
+#ifdef CARDINSERTED
+ if(CARDINSERTED)
+#else
+ if(true)
+#endif
+ {
+ if(sdmode)
+ lcd.print(" Stop Print \x7E");
+ else
+ lcd.print(" Card Menu \x7E");
+ }
+ else
+ {
+ lcd.print(" No Card");
+ }
+ }
+ #ifdef CARDINSERTED
+ if(CARDINSERTED)
+ #endif
+ if((activeline==line)&&CLICKED)
+ {
+ sdmode = false;
+ BLOCK;
+ status=Main_SD;
+ beepshort();
+ }
+ }break;
+#endif
+ default:
+ Serial.println('NEVER say never');
+ break;
+ }
+ }
+ if(activeline<0) activeline=0;
+ if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
+ if((encoderpos!=lastencoderpos)||force_lcd_update)
+ {
+ lcd.setCursor(0,activeline);lcd.print(activeline?' ':' ');
+ if(encoderpos<0) encoderpos=0;
+ if(encoderpos>3*lcdslow) encoderpos=3*lcdslow;
+ activeline=abs(encoderpos/lcdslow)%LCD_HEIGHT;
+ if(activeline<0) activeline=0;
+ if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
+ lastencoderpos=encoderpos;
+ lcd.setCursor(0,activeline);lcd.print(activeline?'>':'\003');
+ }
+
+
+
+}
+
+void MainMenu::update()
+{
+ static MainStatus oldstatus=Main_Menu; //init automatically causes foce_lcd_update=true
+ static long timeoutToStatus=0;
+ static bool oldcardstatus=false;
+#ifdef CARDINSERTED
+ if((CARDINSERTED != oldcardstatus))
+ {
+ force_lcd_update=true;
+ oldcardstatus=CARDINSERTED;
+ //Serial.println("SD CHANGE");
+ if(CARDINSERTED)
+ {
+ initsd();
+ lcd_status("Card inserted");
+ }
+ else
+ {
+ sdactive=false;
+ lcd_status("Card removed");
+
+ }
+ }
+#endif
+
+ if(status!=oldstatus)
+ {
+ //Serial.println(status);
+ //clear();
+ force_lcd_update=true;
+ encoderpos=0;
+ lineoffset=0;
+
+ oldstatus=status;
+ }
+ if( (encoderpos!=lastencoderpos) || CLICKED)
+ timeoutToStatus=millis()+STATUSTIMEOUT;
+
+ switch(status)
+ {
+ case Main_Status:
+ {
+ showStatus();
+ if(CLICKED)
+ {
+ linechanging=false;
+ BLOCK
+ status=Main_Menu;
+ timeoutToStatus=millis()+STATUSTIMEOUT;
+ }
+ }break;
+ case Main_Menu:
+ {
+ showMainMenu();
+ linechanging=false;
+ }break;
+ case Main_Prepare:
+ {
+ showPrepare();
+ }break;
+ case Main_Control:
+ {
+ showControl();
+ }break;
+ case Main_SD:
+ {
+ showSD();
+ }break;
+ }
+
+ if(timeoutToStatus<millis())
+ status=Main_Status;
+ force_lcd_update=false;
+ lastencoderpos=encoderpos;
+}
+
+
+
+
+//return for string conversion routines
+char conv[8];
+
+/// convert float to string with +123.4 format
+char *ftostr3(const float &x)
+{
+ //sprintf(conv,"%5.1f",x);
+ int xx=x;
+ conv[0]=(xx/100)%10+'0';
+ conv[1]=(xx/10)%10+'0';
+ conv[2]=(xx)%10+'0';
+ conv[3]=0;
+ return conv;
+}
+char *itostr2(const uint8_t &x)
+{
+ //sprintf(conv,"%5.1f",x);
+ int xx=x;
+ conv[0]=(xx/10)%10+'0';
+ conv[1]=(xx)%10+'0';
+ conv[2]=0;
+ return conv;
+}
+/// convert float to string with +123.4 format
+char *ftostr31(const float &x)
+{
+ //sprintf(conv,"%5.1f",x);
+ int xx=x*10;
+ conv[0]=(xx>=0)?'+':'-';
+ xx=abs(xx);
+ conv[1]=(xx/1000)%10+'0';
+ conv[2]=(xx/100)%10+'0';
+ conv[3]=(xx/10)%10+'0';
+ conv[4]='.';
+ conv[5]=(xx)%10+'0';
+ conv[6]=0;
+ return conv;
+}
+
+char *itostr31(const int &xx)
+{
+ //sprintf(conv,"%5.1f",x);
+ conv[0]=(xx>=0)?'+':'-';
+ conv[1]=(xx/1000)%10+'0';
+ conv[2]=(xx/100)%10+'0';
+ conv[3]=(xx/10)%10+'0';
+ conv[4]='.';
+ conv[5]=(xx)%10+'0';
+ conv[6]=0;
+ return conv;
+}
+char *itostr3(const int &xx)
+{
+ conv[0]=(xx/100)%10+'0';
+ conv[1]=(xx/10)%10+'0';
+ conv[2]=(xx)%10+'0';
+ conv[3]=0;
+ return conv;
+}
+
+char *itostr4(const int &xx)
+{
+ conv[0]=(xx/1000)%10+'0';
+ conv[1]=(xx/100)%10+'0';
+ conv[2]=(xx/10)%10+'0';
+ conv[3]=(xx)%10+'0';
+ conv[4]=0;
+ return conv;
+}
+
+/// convert float to string with +1234.5 format
+char *ftostr51(const float &x)
+{
+ int xx=x*10;
+ conv[0]=(xx>=0)?'+':'-';
+ xx=abs(xx);
+ conv[1]=(xx/10000)%10+'0';
+ conv[2]=(xx/1000)%10+'0';
+ conv[3]=(xx/100)%10+'0';
+ conv[4]=(xx/10)%10+'0';
+ conv[5]='.';
+ conv[6]=(xx)%10+'0';
+ conv[7]=0;
+ return conv;
+}
+
+char *fillto(int8_t n,char *c)
+{
+ static char ret[25];
+ bool endfound=false;
+ for(int8_t i=0;i<n;i++)
+ {
+ ret[i]=c[i];
+ if(c[i]==0)
+ {
+ endfound=true;
+ }
+ if(endfound)
+ {
+ ret[i]=' ';
+ }
+ }
+ ret[n]=0;
+ return ret;
+
+}
+
+#else
+inline void lcd_status() {};
+#endif
+
+++ /dev/null
-/*
- wiring.c - Partial implementation of the Wiring API for the ATmega8.
- Part of Arduino - http://www.arduino.cc/
-
- Copyright (c) 2005-2006 David A. Mellis
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General
- Public License along with this library; if not, write to the
- Free Software Foundation, Inc., 59 Temple Place, Suite 330,
- Boston, MA 02111-1307 USA
-
- $Id: wiring.c 388 2008-03-08 22:05:23Z mellis $
-*/
-
-#include "wiring_private.h"
-
-volatile unsigned long timer0_millis = 0;
-
-SIGNAL(TIMER0_OVF_vect)
-{
- // timer 0 prescale factor is 64 and the timer overflows at 256
- timer0_millis++;
-}
-
-unsigned long millis()
-{
- unsigned long m;
- uint8_t oldSREG = SREG;
-
- // disable interrupts while we read timer0_millis or we might get an
- // inconsistent value (e.g. in the middle of the timer0_millis++)
- cli();
- m = timer0_millis;
- SREG = oldSREG;
-
- return m;
-}
-
-void delay(unsigned long ms)
-{
- unsigned long start = millis();
-
- while (millis() - start <= ms)
- ;
-}
-
-/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock.
- * Disables interrupts, which will disrupt the millis() function if used
- * too frequently. */
-void delayMicroseconds(unsigned int us)
-{
- uint8_t oldSREG;
-
- // calling avrlib's delay_us() function with low values (e.g. 1 or
- // 2 microseconds) gives delays longer than desired.
- //delay_us(us);
-
-#if F_CPU >= 16000000L
- // for the 16 MHz clock on most Arduino boards
-
- // for a one-microsecond delay, simply return. the overhead
- // of the function call yields a delay of approximately 1 1/8 us.
- if (--us == 0)
- return;
-
- // the following loop takes a quarter of a microsecond (4 cycles)
- // per iteration, so execute it four times for each microsecond of
- // delay requested.
- us <<= 2;
-
- // account for the time taken in the preceeding commands.
- us -= 2;
-#else
- // for the 8 MHz internal clock on the ATmega168
-
- // for a one- or two-microsecond delay, simply return. the overhead of
- // the function calls takes more than two microseconds. can't just
- // subtract two, since us is unsigned; we'd overflow.
- if (--us == 0)
- return;
- if (--us == 0)
- return;
-
- // the following loop takes half of a microsecond (4 cycles)
- // per iteration, so execute it twice for each microsecond of
- // delay requested.
- us <<= 1;
-
- // partially compensate for the time taken by the preceeding commands.
- // we can't subtract any more than this or we'd overflow w/ small delays.
- us--;
-#endif
-
- // disable interrupts, otherwise the timer 0 overflow interrupt that
- // tracks milliseconds will make us delay longer than we want.
- oldSREG = SREG;
- cli();
-
- // busy wait
- __asm__ __volatile__ (
- "1: sbiw %0,1" "\n\t" // 2 cycles
- "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
- );
-
- // reenable interrupts.
- SREG = oldSREG;
-}
-
-void init()
-{
- // this needs to be called before setup() or some functions won't
- // work there
- sei();
-
- // on the ATmega168, timer 0 is also used for fast hardware pwm
- // (using phase-correct PWM would mean that timer 0 overflowed half as often
- // resulting in different millis() behavior on the ATmega8 and ATmega168)
- sbi(TCCR0A, WGM01);
- sbi(TCCR0A, WGM00);
-
- // set timer 0 prescale factor to 64
- sbi(TCCR0B, CS01);
- sbi(TCCR0B, CS00);
-
- // enable timer 0 overflow interrupt
- sbi(TIMSK0, TOIE0);
-
- // timers 1 and 2 are used for phase-correct hardware pwm
- // this is better for motors as it ensures an even waveform
- // note, however, that fast pwm mode can achieve a frequency of up
- // 8 MHz (with a 16 MHz clock) at 50% duty cycle
-#if 0
- // set timer 1 prescale factor to 64
- sbi(TCCR1B, CS11);
- sbi(TCCR1B, CS10);
-
- // put timer 1 in 8-bit phase correct pwm mode
- sbi(TCCR1A, WGM10);
-
- // set timer 2 prescale factor to 64
- sbi(TCCR2B, CS22);
-
- // configure timer 2 for phase correct pwm (8-bit)
- sbi(TCCR2A, WGM20);
-
- // set a2d prescale factor to 128
- // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
- // XXX: this will not work properly for other clock speeds, and
- // this code should use F_CPU to determine the prescale factor.
- sbi(ADCSRA, ADPS2);
- sbi(ADCSRA, ADPS1);
- sbi(ADCSRA, ADPS0);
-
- // enable a2d conversions
- sbi(ADCSRA, ADEN);
-
- // the bootloader connects pins 0 and 1 to the USART; disconnect them
- // here so they can be used as normal digital i/o; they will be
- // reconnected in Serial.begin()
- UCSR0B = 0;
- #if defined(__AVR_ATmega644P__)
- //TODO: test to see if disabling this helps?
- //UCSR1B = 0;
- #endif
-#endif
-}
+++ /dev/null
-/*
- wiring_serial.c - serial functions.
- Part of Arduino - http://www.arduino.cc/
-
- Copyright (c) 2005-2006 David A. Mellis
- Modified 29 January 2009, Marius Kintel for Sanguino - http://www.sanguino.cc/
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General
- Public License along with this library; if not, write to the
- Free Software Foundation, Inc., 59 Temple Place, Suite 330,
- Boston, MA 02111-1307 USA
-
- $Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
-*/
-
-
-#include "wiring_private.h"
-
-// Define constants and variables for buffering incoming serial data. We're
-// using a ring buffer (I think), in which rx_buffer_head is the index of the
-// location to which to write the next incoming character and rx_buffer_tail
-// is the index of the location from which to read.
-#define RX_BUFFER_SIZE 128
-#define RX_BUFFER_MASK 0x7f
-
-#if defined(__AVR_ATmega644P__)
-unsigned char rx_buffer[2][RX_BUFFER_SIZE];
-int rx_buffer_head[2] = {0, 0};
-int rx_buffer_tail[2] = {0, 0};
-#else
-unsigned char rx_buffer[1][RX_BUFFER_SIZE];
-int rx_buffer_head[1] = {0};
-int rx_buffer_tail[1] = {0};
-#endif
-
-
-#define BEGIN_SERIAL(uart_, baud_) \
-{ \
- UBRR##uart_##H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; \
- UBRR##uart_##L = ((F_CPU / 16 + baud / 2) / baud - 1); \
- \
- /* reset config for UART */ \
- UCSR##uart_##A = 0; \
- UCSR##uart_##B = 0; \
- UCSR##uart_##C = 0; \
- \
- /* enable rx and tx */ \
- sbi(UCSR##uart_##B, RXEN##uart_);\
- sbi(UCSR##uart_##B, TXEN##uart_);\
- \
- /* enable interrupt on complete reception of a byte */ \
- sbi(UCSR##uart_##B, RXCIE##uart_); \
- UCSR##uart_##C = _BV(UCSZ##uart_##1)|_BV(UCSZ##uart_##0); \
- /* defaults to 8-bit, no parity, 1 stop bit */ \
-}
-
-void beginSerial(uint8_t uart, long baud)
-{
- if (uart == 0) BEGIN_SERIAL(0, baud)
-#if defined(__AVR_ATmega644P__)
- else BEGIN_SERIAL(1, baud)
-#endif
-}
-
-#define SERIAL_WRITE(uart_, c_) \
- while (!(UCSR##uart_##A & (1 << UDRE##uart_))) \
- ; \
- UDR##uart_ = c
-
-void serialWrite(uint8_t uart, unsigned char c)
-{
- if (uart == 0) {
- SERIAL_WRITE(0, c);
- }
-#if defined(__AVR_ATmega644P__)
- else {
- SERIAL_WRITE(1, c);
- }
-#endif
-}
-
-int serialAvailable(uint8_t uart)
-{
- return (RX_BUFFER_SIZE + rx_buffer_head[uart] - rx_buffer_tail[uart]) & RX_BUFFER_MASK;
-}
-
-int serialRead(uint8_t uart)
-{
- // if the head isn't ahead of the tail, we don't have any characters
- if (rx_buffer_head[uart] == rx_buffer_tail[uart]) {
- return -1;
- } else {
- unsigned char c = rx_buffer[uart][rx_buffer_tail[uart]];
- rx_buffer_tail[uart] = (rx_buffer_tail[uart] + 1) & RX_BUFFER_MASK;
- return c;
- }
-}
-
-void serialFlush(uint8_t uart)
-{
- // don't reverse this or there may be problems if the RX interrupt
- // occurs after reading the value of rx_buffer_head but before writing
- // the value to rx_buffer_tail; the previous value of rx_buffer_head
- // may be written to rx_buffer_tail, making it appear as if the buffer
- // were full, not empty.
- rx_buffer_head[uart] = rx_buffer_tail[uart];
-}
-
-#define UART_ISR(uart_) \
-ISR(USART##uart_##_RX_vect) \
-{ \
- unsigned char c = UDR##uart_; \
- \
- int i = (rx_buffer_head[uart_] + 1) & RX_BUFFER_MASK; \
- \
- /* if we should be storing the received character into the location \
- just before the tail (meaning that the head would advance to the \
- current location of the tail), we're about to overflow the buffer \
- and so we don't write the character or advance the head. */ \
- if (i != rx_buffer_tail[uart_]) { \
- rx_buffer[uart_][rx_buffer_head[uart_]] = c; \
- rx_buffer_head[uart_] = i; \
- } \
-}
-
-UART_ISR(0)
-#if defined(__AVR_ATmega644P__)
-UART_ISR(1)
-#endif