-#ifndef CONFIGURATION_H\r
-#define CONFIGURATION_H\r
-\r
-//#define DEBUG_STEPS\r
-\r
-// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration\r
-\r
-//// The following define selects which electronics board you have. Please choose the one that matches your setup\r
-// MEGA/RAMPS up to 1.2 = 3,\r
-// RAMPS 1.3 = 33\r
-// Gen6 = 5,\r
-// Sanguinololu 1.2 and above = 62\r
-// Ultimaker = 7,\r
-#define MOTHERBOARD 7\r
-//#define MOTHERBOARD 5\r
-\r
-\r
-//// Thermistor settings:\r
-// 1 is 100k thermistor\r
-// 2 is 200k thermistor\r
-// 3 is mendel-parts thermistor\r
-// 4 is 10k thermistor\r
-// 5 is ParCan supplied 104GT-2 100K\r
-// 6 is EPCOS 100k\r
-// 7 is 100k Honeywell thermistor 135-104LAG-J01\r
-#define THERMISTORHEATER_1 3\r
-#define THERMISTORHEATER_2 3\r
-#define THERMISTORBED 3\r
-\r
-//#define HEATER_1_USES_THERMISTOR\r
-//#define HEATER_2_USES_THERMISTOR\r
-#define HEATER_1_USES_AD595\r
-//#define HEATER_2_USES_AD595\r
-\r
-// Select one of these only to define how the bed temp is read.\r
-//#define BED_USES_THERMISTOR\r
-//#define BED_USES_AD595\r
-\r
-#define HEATER_CHECK_INTERVAL 50\r
-#define BED_CHECK_INTERVAL 5000\r
-\r
-\r
-//// Endstop Settings\r
-#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors\r
-// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.\r
-const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. \r
-// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false\r
-\r
-// This determines the communication speed of the printer\r
-//#define BAUDRATE 250000\r
-#define BAUDRATE 115200\r
-//#define BAUDRATE 230400\r
-\r
-// Comment out (using // at the start of the line) to disable SD support:\r
-\r
-// #define ULTRA_LCD //any lcd \r
-\r
-\r
-#define ULTIPANEL\r
-#ifdef ULTIPANEL\r
- //#define NEWPANEL //enable this if you have a click-encoder panel\r
- #define SDSUPPORT\r
- #define ULTRA_LCD\r
- #define LCD_WIDTH 20\r
-#define LCD_HEIGHT 4\r
-#else //no panel but just lcd \r
- #ifdef ULTRA_LCD\r
- #define LCD_WIDTH 16\r
- #define LCD_HEIGHT 2\r
- #endif\r
-#endif\r
-\r
-\r
-//#define SDSUPPORT // Enable SD Card Support in Hardware Console\r
-\r
-\r
-\r
-const int dropsegments=5; //everything with this number of steps will be ignored as move\r
-\r
-//// ADVANCED SETTINGS - to tweak parameters\r
-\r
-#include "thermistortables.h"\r
-\r
-// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1\r
-#define X_ENABLE_ON 0\r
-#define Y_ENABLE_ON 0\r
-#define Z_ENABLE_ON 0\r
-#define E_ENABLE_ON 0\r
-\r
-// Disables axis when it's not being used.\r
-#define DISABLE_X false\r
-#define DISABLE_Y false\r
-#define DISABLE_Z false\r
-#define DISABLE_E false\r
-\r
-// Inverting axis direction\r
-#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true\r
-#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false\r
-#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true\r
-#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false\r
-\r
-//// ENDSTOP SETTINGS:\r
-// Sets direction of endstops when homing; 1=MAX, -1=MIN\r
-#define X_HOME_DIR -1\r
-#define Y_HOME_DIR -1\r
-#define Z_HOME_DIR -1\r
-\r
-#define min_software_endstops false //If true, axis won't move to coordinates less than zero.\r
-#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.\r
-#define X_MAX_LENGTH 210\r
-#define Y_MAX_LENGTH 210\r
-#define Z_MAX_LENGTH 210\r
-\r
-//// MOVEMENT SETTINGS\r
-#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E\r
-//note: on bernhards ultimaker 200 200 12 are working well.\r
-#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds\r
-//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed. \r
-//!!!!!!Use only if you know that your printer works at the maximum declared speeds.\r
-// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze\r
-#define TRAVELING_AT_MAXSPEED \r
-#define AXIS_RELATIVE_MODES {false, false, false, false}\r
-\r
-#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)\r
-\r
-// default settings \r
-\r
-#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker \r
-#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000} \r
-#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.\r
-\r
-#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves \r
-#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts\r
-\r
-#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate\r
-#define DEFAULT_MINTRAVELFEEDRATE 10\r
-\r
-// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.\r
-#define DEFAULT_MINSEGMENTTIME 20000\r
-#define DEFAULT_XYJERK 30.0*60 \r
-#define DEFAULT_ZJERK 10.0*60\r
-\r
-\r
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature\r
-//this enables the watchdog interrupt.\r
-#define USE_WATCHDOG\r
-//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:\r
-#define RESET_MANUAL\r
-\r
-#define WATCHDOG_TIMEOUT 4\r
-\r
-\r
-\r
-//// Experimental watchdog and minimal temp\r
-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature\r
-// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109\r
-//#define WATCHPERIOD 5000 //5 seconds\r
-\r
-// Actual temperature must be close to target for this long before M109 returns success\r
-//#define TEMP_RESIDENCY_TIME 20 // (seconds)\r
-//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one\r
-\r
-//// The minimal temperature defines the temperature below which the heater will not be enabled\r
-#define MINTEMP 5\r
-#define BED_MINTEMP 5\r
-\r
-\r
-// When temperature exceeds max temp, your heater will be switched off.\r
-// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!\r
-// You should use MINTEMP for thermistor short/failure protection.\r
-#define MAXTEMP 275\r
-#define BED_MAXTEMP 150\r
-\r
-\r
-\r
-\r
-\r
-\r
-\r
-#define PIDTEMP\r
-#ifdef PIDTEMP\r
- /// PID settings:\r
- // Uncomment the following line to enable PID support.\r
- //#define SMOOTHING\r
- //#define SMOOTHFACTOR 5.0\r
- //float current_raw_average=0;\r
- #define K1 0.95 //smoothing of the PID\r
- //#define PID_DEBUG // Sends debug data to the serial port. \r
- //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %\r
- #define PID_MAX 255 // limits current to nozzle\r
- #define PID_INTEGRAL_DRIVE_MAX 255\r
- #define PID_dT 0.1\r
- //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47\r
-\r
- #define PID_CRITIAL_GAIN 3000\r
- #define PID_SWING_AT_CRITIAL 45 //seconds\r
- #define PIDIADD 5\r
- /*\r
- //PID according to Ziegler-Nichols method\r
- float Kp = 0.6*PID_CRITIAL_GAIN; \r
- float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT; \r
- float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT; \r
- */\r
- //PI according to Ziegler-Nichols method\r
- #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) \r
- #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)\r
- #define DEFAULT_Kd (0)\r
- \r
- #define PID_ADD_EXTRUSION_RATE \r
- #ifdef PID_ADD_EXTRUSION_RATE\r
- #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)\r
- #endif\r
-#endif // PIDTEMP\r
-\r
-// extruder advance constant (s2/mm3)\r
-//\r
-// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2\r
-//\r
-// hooke's law says: force = k * distance\r
-// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant\r
-// so: v ^ 2 is proportional to number of steps we advance the extruder\r
-//#define ADVANCE\r
-\r
-#ifdef ADVANCE\r
-#define EXTRUDER_ADVANCE_K .3\r
-\r
-#define D_FILAMENT 1.7\r
-#define STEPS_MM_E 65\r
-#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)\r
-#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)\r
-\r
-#endif // ADVANCE\r
-\r
-// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32 \r
-#if defined SDSUPPORT\r
-// The number of linear motions that can be in the plan at any give time. \r
- #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller\r
-#else\r
- #define BLOCK_BUFFER_SIZE 16 // maximize block buffer\r
-#endif\r
-\r
-\r
-#endif\r
+#ifndef CONFIGURATION_H
+#define CONFIGURATION_H
+
+//#define DEBUG_STEPS
+
+// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
+
+//// The following define selects which electronics board you have. Please choose the one that matches your setup
+// MEGA/RAMPS up to 1.2 = 3,
+// RAMPS 1.3 = 33
+// Gen6 = 5,
+// Sanguinololu 1.2 and above = 62
+// Ultimaker = 7,
+#define MOTHERBOARD 7
+//#define MOTHERBOARD 5
+
+
+//// Thermistor settings:
+// 1 is 100k thermistor
+// 2 is 200k thermistor
+// 3 is mendel-parts thermistor
+// 4 is 10k thermistor
+// 5 is ParCan supplied 104GT-2 100K
+// 6 is EPCOS 100k
+// 7 is 100k Honeywell thermistor 135-104LAG-J01
+#define THERMISTORHEATER_1 3
+#define THERMISTORHEATER_2 3
+#define THERMISTORBED 3
+
+//#define HEATER_0_USES_THERMISTOR
+//#define HEATER_1_USES_THERMISTOR
+#define HEATER_0_USES_AD595
+//#define HEATER_1_USES_AD595
+
+// Select one of these only to define how the bed temp is read.
+//#define BED_USES_THERMISTOR
+//#define BED_USES_AD595
+
+#define HEATER_CHECK_INTERVAL 50
+#define BED_CHECK_INTERVAL 5000
+
+
+//// Endstop Settings
+#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
+// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
+const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
+// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
+
+// This determines the communication speed of the printer
+#define BAUDRATE 250000
+//#define BAUDRATE 115200
+//#define BAUDRATE 230400
+
+// Comment out (using // at the start of the line) to disable SD support:
+
+// #define ULTRA_LCD //any lcd
- #define LCD_WIDTH 16
- #define LCD_HEIGHT 2
+
++#define ULTIPANEL
+#define ULTIPANEL
+#ifdef ULTIPANEL
+ //#define NEWPANEL //enable this if you have a click-encoder panel
+ #define SDSUPPORT
+ #define ULTRA_LCD
+ #define LCD_WIDTH 20
+#define LCD_HEIGHT 4
++#else //no panel but just lcd
++ #ifdef ULTRA_LCD
++ #define LCD_WIDTH 16
++ #define LCD_HEIGHT 2
++ #endif
+#endif
+
+
+//#define SDSUPPORT // Enable SD Card Support in Hardware Console
+
+
+
+const int dropsegments=5; //everything with this number of steps will be ignored as move
+
+//// ADVANCED SETTINGS - to tweak parameters
+
+#include "thermistortables.h"
+
+// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
+#define X_ENABLE_ON 0
+#define Y_ENABLE_ON 0
+#define Z_ENABLE_ON 0
+#define E_ENABLE_ON 0
+
+// Disables axis when it's not being used.
+#define DISABLE_X false
+#define DISABLE_Y false
+#define DISABLE_Z false
+#define DISABLE_E false
+
+// Inverting axis direction
+#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
+#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
+#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
+
+//// ENDSTOP SETTINGS:
+// Sets direction of endstops when homing; 1=MAX, -1=MIN
+#define X_HOME_DIR -1
+#define Y_HOME_DIR -1
+#define Z_HOME_DIR -1
+
+#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
+#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
+#define X_MAX_LENGTH 210
+#define Y_MAX_LENGTH 210
+#define Z_MAX_LENGTH 210
+
+//// MOVEMENT SETTINGS
+#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
+//note: on bernhards ultimaker 200 200 12 are working well.
+#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
+//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
+//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
+// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
+#define TRAVELING_AT_MAXSPEED
+#define AXIS_RELATIVE_MODES {false, false, false, false}
+
+#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
+
+// default settings
+
+#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
+#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
+#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+
+#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
+#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
+
+#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
+#define DEFAULT_MINTRAVELFEEDRATE 10
+
+// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
+#define DEFAULT_MINSEGMENTTIME 20000
+#define DEFAULT_XYJERK 30.0*60
+#define DEFAULT_ZJERK 10.0*60
+
+
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+//this enables the watchdog interrupt.
+#define USE_WATCHDOG
+//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
+#define RESET_MANUAL
+
+#define WATCHDOG_TIMEOUT 4
+
+
+
+//// Experimental watchdog and minimal temp
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
+//#define WATCHPERIOD 5000 //5 seconds
+
+// Actual temperature must be close to target for this long before M109 returns success
+//#define TEMP_RESIDENCY_TIME 20 // (seconds)
+//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
+
+//// The minimal temperature defines the temperature below which the heater will not be enabled
+#define HEATER_0_MINTEMP 5
+//#define HEATER_1_MINTEMP 5
+//#define BED_MINTEMP 5
+
+
+// When temperature exceeds max temp, your heater will be switched off.
+// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
+// You should use MINTEMP for thermistor short/failure protection.
+#define HEATER_0_MAXTEMP 275
+//#define_HEATER_1_MAXTEMP 275
+//#define BED_MAXTEMP 150
+
- /// PID settings:
- // Uncomment the following line to enable PID support.
- //#define SMOOTHING
- //#define SMOOTHFACTOR 5.0
- //float current_raw_average=0;
++
++
++
++
++
+
+#define PIDTEMP
+#ifdef PIDTEMP
- //#define PID_DEBUG // Sends debug data to the serial port.
- //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
- #define PID_MAX 255 // limits current to nozzle
- #define PID_INTEGRAL_DRIVE_MAX 255
- #define PID_dT 0.10 // 100ms sample time
- #define DEFAULT_Kp 20.0
- #define DEFAULT_Ki 1.5*PID_dT
- #define DEFAULT_Kd 80/PID_dT
- #define DEFAULT_Kc 0
++ /// PID settings:
++ // Uncomment the following line to enable PID support.
++ //#define SMOOTHING
++ //#define SMOOTHFACTOR 5.0
++ //float current_raw_average=0;
++ #define K1 0.95 //smoothing of the PID
++ //#define PID_DEBUG // Sends debug data to the serial port.
++ //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
++ #define PID_MAX 255 // limits current to nozzle
++ #define PID_INTEGRAL_DRIVE_MAX 255
++ #define PID_dT 0.1
++ //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
++
++ #define PID_CRITIAL_GAIN 3000
++ #define PID_SWING_AT_CRITIAL 45 //seconds
++ #define PIDIADD 5
++ /*
++ //PID according to Ziegler-Nichols method
++ float Kp = 0.6*PID_CRITIAL_GAIN;
++ float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
++ float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
++ */
++ //PI according to Ziegler-Nichols method
++ #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
++ #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
++ #define DEFAULT_Kd (0)
++
++ #define PID_ADD_EXTRUSION_RATE
++ #ifdef PID_ADD_EXTRUSION_RATE
++ #define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
++ #endif
+#endif // PIDTEMP
+
-
+// extruder advance constant (s2/mm3)
+//
+// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
+//
+// hooke's law says: force = k * distance
+// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
+// so: v ^ 2 is proportional to number of steps we advance the extruder
+//#define ADVANCE
+
+#ifdef ADVANCE
+#define EXTRUDER_ADVANCE_K .3
+
+#define D_FILAMENT 1.7
+#define STEPS_MM_E 65
+#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
+#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
+
+#endif // ADVANCE
+
++// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
+#if defined SDSUPPORT
+// The number of linear motions that can be in the plan at any give time.
+ #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+#else
+ #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+#endif
+
- #ifdef SIMPLE_LCD
- #define BLOCK_BUFFER_SIZE 16 // A little less buffer for just a simple LCD
- #endif
+
+#endif
-
-#ifndef __EEPROMH\r
-#define __EEPROMH\r
-#include "planner.h"\r
-#include "temperature.h"\r
-#include <EEPROM.h>\r
-#include "Marlin.h"\r
-#include "streaming.h"\r
-\r
-//======================================================================================\r
-template <class T> int EEPROM_writeAnything(int &ee, const T& value)\r
-{\r
- const byte* p = (const byte*)(const void*)&value;\r
- int i;\r
- for (i = 0; i < (int)sizeof(value); i++)\r
- EEPROM.write(ee++, *p++);\r
- return i;\r
-}\r
-//======================================================================================\r
-template <class T> int EEPROM_readAnything(int &ee, T& value)\r
-{\r
- byte* p = (byte*)(void*)&value;\r
- int i;\r
- for (i = 0; i < (int)sizeof(value); i++)\r
- *p++ = EEPROM.read(ee++);\r
- return i;\r
-}\r
-//======================================================================================\r
-\r
-#define EEPROM_OFFSET 100\r
-\r
-#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM\r
- // in the functions below, also increment the version number. This makes sure that\r
- // the default values are used whenever there is a change to the data, to prevent\r
- // wrong data being written to the variables.\r
- // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.\r
-void StoreSettings() {\r
- char ver[4]= "000";\r
- int i=EEPROM_OFFSET;\r
- EEPROM_writeAnything(i,ver); // invalidate data first \r
- EEPROM_writeAnything(i,axis_steps_per_unit); \r
- EEPROM_writeAnything(i,max_feedrate); \r
- EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);\r
- EEPROM_writeAnything(i,acceleration);\r
- EEPROM_writeAnything(i,retract_acceleration);\r
- EEPROM_writeAnything(i,minimumfeedrate);\r
- EEPROM_writeAnything(i,mintravelfeedrate);\r
- EEPROM_writeAnything(i,minsegmenttime);\r
- EEPROM_writeAnything(i,max_xy_jerk);\r
- EEPROM_writeAnything(i,max_z_jerk);\r
- #ifdef PIDTEMP\r
- EEPROM_writeAnything(i,Kp);\r
- EEPROM_writeAnything(i,Ki);\r
- EEPROM_writeAnything(i,Kd);\r
-#else\r
- EEPROM_writeAnything(i,3000);\r
- EEPROM_writeAnything(i,0);\r
- EEPROM_writeAnything(i,0);\r
-#endif\r
- char ver2[4]=EEPROM_VERSION;\r
- i=EEPROM_OFFSET;\r
- EEPROM_writeAnything(i,ver2); // validate data\r
- ECHOLN("Settings Stored");\r
-\r
-}\r
-\r
-void RetrieveSettings(bool def=false){ // if def=true, the default values will be used\r
- int i=EEPROM_OFFSET;\r
- char stored_ver[4];\r
- char ver[4]=EEPROM_VERSION;\r
- EEPROM_readAnything(i,stored_ver); //read stored version\r
-// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");\r
- if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match\r
- EEPROM_readAnything(i,axis_steps_per_unit); \r
- EEPROM_readAnything(i,max_feedrate); \r
- EEPROM_readAnything(i,max_acceleration_units_per_sq_second);\r
- EEPROM_readAnything(i,acceleration);\r
- EEPROM_readAnything(i,retract_acceleration);\r
- EEPROM_readAnything(i,minimumfeedrate);\r
- EEPROM_readAnything(i,mintravelfeedrate);\r
- EEPROM_readAnything(i,minsegmenttime);\r
- EEPROM_readAnything(i,max_xy_jerk);\r
- EEPROM_readAnything(i,max_z_jerk);\r
-#ifndef PIDTEMP\r
- float Kp,Ki,Kd;\r
-#endif\r
- EEPROM_readAnything(i,Kp);\r
- EEPROM_readAnything(i,Ki);\r
- EEPROM_readAnything(i,Kd);\r
-\r
- ECHOLN("Stored settings retreived:");\r
- }\r
- else {\r
- float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;\r
- float tmp2[]=DEFAULT_MAX_FEEDRATE;\r
- long tmp3[]=DEFAULT_MAX_ACCELERATION;\r
- for (int i=0;i<4;i++) {\r
- axis_steps_per_unit[i]=tmp1[i]; \r
- max_feedrate[i]=tmp2[i]; \r
- max_acceleration_units_per_sq_second[i]=tmp3[i];\r
- }\r
- acceleration=DEFAULT_ACCELERATION;\r
- retract_acceleration=DEFAULT_RETRACT_ACCELERATION;\r
- minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;\r
- minsegmenttime=DEFAULT_MINSEGMENTTIME; \r
- mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;\r
- max_xy_jerk=DEFAULT_XYJERK;\r
- max_z_jerk=DEFAULT_ZJERK;\r
- ECHOLN("Using Default settings:");\r
- }\r
- ECHOLN("Steps per unit:");\r
- ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));\r
- ECHOLN("Maximum feedrates (mm/s):");\r
- ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));\r
- ECHOLN("Maximum Acceleration (mm/s2):");\r
- ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));\r
- ECHOLN("Acceleration: S=acceleration, T=retract acceleration");\r
- ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));\r
- ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");\r
- ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));\r
-#ifdef PIDTEMP\r
- ECHOLN("PID settings:");\r
- ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3)); \r
-#endif\r
- \r
-} \r
-\r
-#endif\r
-\r
-\r
++#ifndef __EEPROMH
++#define __EEPROMH
+#include "planner.h"
+#include "temperature.h"
++#include <EEPROM.h>
++#include "Marlin.h"
++#include "streaming.h"
+
+//======================================================================================
+template <class T> int EEPROM_writeAnything(int &ee, const T& value)
+{
+ const byte* p = (const byte*)(const void*)&value;
+ int i;
- for (i = 0; i < sizeof(value); i++)
++ for (i = 0; i < (int)sizeof(value); i++)
+ EEPROM.write(ee++, *p++);
+ return i;
+}
+//======================================================================================
+template <class T> int EEPROM_readAnything(int &ee, T& value)
+{
+ byte* p = (byte*)(void*)&value;
+ int i;
- for (i = 0; i < sizeof(value); i++)
++ for (i = 0; i < (int)sizeof(value); i++)
+ *p++ = EEPROM.read(ee++);
+ return i;
+}
+//======================================================================================
+
+#define EEPROM_OFFSET 100
+
+#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
+ // in the functions below, also increment the version number. This makes sure that
+ // the default values are used whenever there is a change to the data, to prevent
+ // wrong data being written to the variables.
+ // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
+void StoreSettings() {
+ char ver[4]= "000";
+ int i=EEPROM_OFFSET;
+ EEPROM_writeAnything(i,ver); // invalidate data first
+ EEPROM_writeAnything(i,axis_steps_per_unit);
+ EEPROM_writeAnything(i,max_feedrate);
+ EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);
+ EEPROM_writeAnything(i,acceleration);
+ EEPROM_writeAnything(i,retract_acceleration);
+ EEPROM_writeAnything(i,minimumfeedrate);
+ EEPROM_writeAnything(i,mintravelfeedrate);
+ EEPROM_writeAnything(i,minsegmenttime);
+ EEPROM_writeAnything(i,max_xy_jerk);
+ EEPROM_writeAnything(i,max_z_jerk);
+ #ifdef PIDTEMP
+ EEPROM_writeAnything(i,Kp);
+ EEPROM_writeAnything(i,Ki);
+ EEPROM_writeAnything(i,Kd);
+#else
+ EEPROM_writeAnything(i,3000);
+ EEPROM_writeAnything(i,0);
+ EEPROM_writeAnything(i,0);
+#endif
+ char ver2[4]=EEPROM_VERSION;
+ i=EEPROM_OFFSET;
+ EEPROM_writeAnything(i,ver2); // validate data
+ ECHOLN("Settings Stored");
+
+}
+
+void RetrieveSettings(bool def=false){ // if def=true, the default values will be used
+ int i=EEPROM_OFFSET;
+ char stored_ver[4];
+ char ver[4]=EEPROM_VERSION;
+ EEPROM_readAnything(i,stored_ver); //read stored version
+// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
+ if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match
+ EEPROM_readAnything(i,axis_steps_per_unit);
+ EEPROM_readAnything(i,max_feedrate);
+ EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
+ EEPROM_readAnything(i,acceleration);
+ EEPROM_readAnything(i,retract_acceleration);
+ EEPROM_readAnything(i,minimumfeedrate);
+ EEPROM_readAnything(i,mintravelfeedrate);
+ EEPROM_readAnything(i,minsegmenttime);
+ EEPROM_readAnything(i,max_xy_jerk);
+ EEPROM_readAnything(i,max_z_jerk);
+#ifndef PIDTEMP
+ float Kp,Ki,Kd;
+#endif
+ EEPROM_readAnything(i,Kp);
+ EEPROM_readAnything(i,Ki);
+ EEPROM_readAnything(i,Kd);
+
+ ECHOLN("Stored settings retreived:");
+ }
+ else {
+ float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
+ float tmp2[]=DEFAULT_MAX_FEEDRATE;
+ long tmp3[]=DEFAULT_MAX_ACCELERATION;
+ for (int i=0;i<4;i++) {
+ axis_steps_per_unit[i]=tmp1[i];
+ max_feedrate[i]=tmp2[i];
+ max_acceleration_units_per_sq_second[i]=tmp3[i];
+ }
+ acceleration=DEFAULT_ACCELERATION;
+ retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
+ minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
+ minsegmenttime=DEFAULT_MINSEGMENTTIME;
+ mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
+ max_xy_jerk=DEFAULT_XYJERK;
+ max_z_jerk=DEFAULT_ZJERK;
+ ECHOLN("Using Default settings:");
+ }
+ ECHOLN("Steps per unit:");
+ ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));
+ ECHOLN("Maximum feedrates (mm/s):");
+ ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));
+ ECHOLN("Maximum Acceleration (mm/s2):");
+ ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));
+ ECHOLN("Acceleration: S=acceleration, T=retract acceleration");
+ ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
+ ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
+ ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
+#ifdef PIDTEMP
+ ECHOLN("PID settings:");
+ ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
+#endif
+
+}
+
++#endif
++
+
-#ifndef __MARLINH\r
-#define __MARLINH\r
-\r
-// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.\r
-// Licence: GPL\r
-#include <WProgram.h>\r
-#include "fastio.h"\r
-\r
-\r
-#define ECHO(x) Serial << "echo: " << x;\r
-#define ECHOLN(x) Serial << "echo: "<<x<<endl;\r
-\r
-void get_command();\r
-void process_commands();\r
-\r
-void manage_inactivity(byte debug);\r
-\r
-#if X_ENABLE_PIN > -1\r
-#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)\r
-#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)\r
-#else\r
-#define enable_x() ;\r
-#define disable_x() ;\r
-#endif\r
-#if Y_ENABLE_PIN > -1\r
-#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)\r
-#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)\r
-#else\r
-#define enable_y() ;\r
-#define disable_y() ;\r
-#endif\r
-#if Z_ENABLE_PIN > -1\r
-#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)\r
-#define disable_z() WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON)\r
-#else\r
-#define enable_z() ;\r
-#define disable_z() ;\r
-#endif\r
-\r
-#if E_ENABLE_PIN > -1\r
-\r
- #define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)\r
- #define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)\r
-\r
-#else\r
-#define enable_e() ;\r
-#define disable_e() ;\r
-#endif\r
-\r
-#define X_AXIS 0\r
-#define Y_AXIS 1\r
-#define Z_AXIS 2\r
-#define E_AXIS 3\r
-\r
-void FlushSerialRequestResend();\r
-void ClearToSend();\r
-\r
-void get_coordinates();\r
-void prepare_move();\r
-void kill();\r
-\r
-//void check_axes_activity();\r
-//void plan_init();\r
-//void st_init();\r
-//void tp_init();\r
-//void plan_buffer_line(float x, float y, float z, float e, float feed_rate);\r
-//void plan_set_position(float x, float y, float z, float e);\r
-//void st_wake_up();\r
-//void st_synchronize();\r
-void enquecommand(const char *cmd);\r
-\r
-\r
-#ifndef CRITICAL_SECTION_START\r
-#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();\r
-#define CRITICAL_SECTION_END SREG = _sreg;\r
-#endif //CRITICAL_SECTION_START\r
-\r
-extern float homing_feedrate[];\r
-extern bool axis_relative_modes[];\r
-\r
-void wd_reset() ;\r
-#endif\r
+#ifndef __MARLINH
+#define __MARLINH
+
+// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
+// Licence: GPL
+#include <WProgram.h>
+#include "fastio.h"
+
+
+#define ECHO(x) Serial << "echo: " << x;
+#define ECHOLN(x) Serial << "echo: "<<x<<endl;
+
+void get_command();
+void process_commands();
+
+void manage_inactivity(byte debug);
+
+#if X_ENABLE_PIN > -1
+#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
+#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
+#else
+#define enable_x() ;
+#define disable_x() ;
+#endif
+#if Y_ENABLE_PIN > -1
+#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
+#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
+#else
+#define enable_y() ;
+#define disable_y() ;
+#endif
+#if Z_ENABLE_PIN > -1
+#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
+#define disable_z() WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON)
+#else
+#define enable_z() ;
+#define disable_z() ;
+#endif
+
+#if E_ENABLE_PIN > -1
+
+ #define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
+ #define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
+
+#else
+#define enable_e() ;
+#define disable_e() ;
+#endif
+
+#define X_AXIS 0
+#define Y_AXIS 1
+#define Z_AXIS 2
+#define E_AXIS 3
+
+void FlushSerialRequestResend();
+void ClearToSend();
+
+void get_coordinates();
+void prepare_move();
+void kill();
+
+//void check_axes_activity();
+//void plan_init();
+//void st_init();
+//void tp_init();
+//void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
+//void plan_set_position(float x, float y, float z, float e);
+//void st_wake_up();
+//void st_synchronize();
+void enquecommand(const char *cmd);
- void wd_reset();
++
+
+#ifndef CRITICAL_SECTION_START
+#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
+#define CRITICAL_SECTION_END SREG = _sreg;
+#endif //CRITICAL_SECTION_START
+
+extern float homing_feedrate[];
+extern bool axis_relative_modes[];
+
- void manage_inactivity(byte debug);
-
++void wd_reset() ;
+#endif
-/*\r
- Reprap firmware based on Sprinter and grbl.\r
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm\r
- \r
- This program is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
- \r
- This program is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
- \r
- You should have received a copy of the GNU General Public License\r
- along with this program. If not, see <http://www.gnu.org/licenses/>.\r
- */\r
-\r
-/*\r
- This firmware is a mashup between Sprinter and grbl.\r
- (https://github.com/kliment/Sprinter)\r
- (https://github.com/simen/grbl/tree)\r
- \r
- It has preliminary support for Matthew Roberts advance algorithm \r
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html\r
- */\r
-\r
-#include "EEPROMwrite.h"\r
-#include "fastio.h"\r
-#include "Configuration.h"\r
-#include "pins.h"\r
-#include "Marlin.h"\r
-#include "ultralcd.h"\r
-#include "streaming.h"\r
-#include "planner.h"\r
-#include "stepper.h"\r
-#include "temperature.h"\r
-\r
-#ifdef SIMPLE_LCD\r
- #include "Simplelcd.h"\r
-#endif\r
-\r
-char version_string[] = "1.0.0 Alpha 1";\r
-\r
-#ifdef SDSUPPORT\r
-#include "SdFat.h"\r
-#endif //SDSUPPORT\r
-\r
-\r
-// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html\r
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes\r
-\r
-//Implemented Codes\r
-//-------------------\r
-// G0 -> G1\r
-// G1 - Coordinated Movement X Y Z E\r
-// G4 - Dwell S<seconds> or P<milliseconds>\r
-// G28 - Home all Axis\r
-// G90 - Use Absolute Coordinates\r
-// G91 - Use Relative Coordinates\r
-// G92 - Set current position to cordinates given\r
-\r
-//RepRap M Codes\r
-// M104 - Set extruder target temp\r
-// M105 - Read current temp\r
-// M106 - Fan on\r
-// M107 - Fan off\r
-// M109 - Wait for extruder current temp to reach target temp.\r
-// M114 - Display current position\r
-\r
-//Custom M Codes\r
-// M20 - List SD card\r
-// M21 - Init SD card\r
-// M22 - Release SD card\r
-// M23 - Select SD file (M23 filename.g)\r
-// M24 - Start/resume SD print\r
-// M25 - Pause SD print\r
-// M26 - Set SD position in bytes (M26 S12345)\r
-// M27 - Report SD print status\r
-// M28 - Start SD write (M28 filename.g)\r
-// M29 - Stop SD write\r
-// M42 - Change pin status via gcode\r
-// M80 - Turn on Power Supply\r
-// M81 - Turn off Power Supply\r
-// M82 - Set E codes absolute (default)\r
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode\r
-// M84 - Disable steppers until next move, \r
-// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.\r
-// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)\r
-// M92 - Set axis_steps_per_unit - same syntax as G92\r
-// M115 - Capabilities string\r
-// M140 - Set bed target temp\r
-// M190 - Wait for bed current temp to reach target temp.\r
-// M200 - Set filament diameter\r
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)\r
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!\r
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec\r
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate\r
-// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk\r
-// M220 - set speed factor override percentage S:factor in percent\r
-// M301 - Set PID parameters P I and D\r
-// M500 - stores paramters in EEPROM\r
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D\r
-// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.\r
-\r
-//Stepper Movement Variables\r
-\r
-char axis_codes[NUM_AXIS] = {\r
- 'X', 'Y', 'Z', 'E'};\r
-float destination[NUM_AXIS] = {\r
- 0.0, 0.0, 0.0, 0.0};\r
-float current_position[NUM_AXIS] = {\r
- 0.0, 0.0, 0.0, 0.0};\r
-bool home_all_axis = true;\r
-float feedrate = 1500.0, next_feedrate, saved_feedrate;\r
-long gcode_N, gcode_LastN;\r
-\r
-float homing_feedrate[] = HOMING_FEEDRATE;\r
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;\r
-\r
-bool relative_mode = false; //Determines Absolute or Relative Coordinates\r
-bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.\r
-\r
-uint8_t fanpwm=0;\r
-\r
-volatile int feedmultiply=100; //100->1 200->2\r
-int saved_feedmultiply;\r
-volatile bool feedmultiplychanged=false;\r
-// comm variables\r
-#define MAX_CMD_SIZE 96\r
-#define BUFSIZE 4\r
-char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];\r
-bool fromsd[BUFSIZE];\r
-int bufindr = 0;\r
-int bufindw = 0;\r
-int buflen = 0;\r
-int i = 0;\r
-char serial_char;\r
-int serial_count = 0;\r
-boolean comment_mode = false;\r
-char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc\r
-extern float HeaterPower;\r
-\r
-#include "EEPROM.h"\r
-\r
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42\r
-\r
-float tt = 0, bt = 0;\r
-#ifdef WATCHPERIOD\r
-int watch_raw = -1000;\r
-unsigned long watchmillis = 0;\r
-#endif //WATCHPERIOD\r
-\r
-//Inactivity shutdown variables\r
-unsigned long previous_millis_cmd = 0;\r
-unsigned long max_inactive_time = 0;\r
-unsigned long stepper_inactive_time = 0;\r
-\r
-unsigned long starttime=0;\r
-unsigned long stoptime=0;\r
-#ifdef SDSUPPORT\r
-Sd2Card card;\r
-SdVolume volume;\r
-SdFile root;\r
-SdFile file;\r
-uint32_t filesize = 0;\r
-uint32_t sdpos = 0;\r
-bool sdmode = false;\r
-bool sdactive = false;\r
-bool savetosd = false;\r
-int16_t n;\r
-unsigned long autostart_atmillis=0;\r
-\r
-void initsd(){\r
- sdactive = false;\r
-#if SDSS >- 1\r
- if(root.isOpen())\r
- root.close();\r
- if (!card.init(SPI_FULL_SPEED,SDSS)){\r
- //if (!card.init(SPI_HALF_SPEED,SDSS))\r
- Serial.println("SD init fail");\r
- }\r
- else if (!volume.init(&card))\r
- Serial.println("volume.init failed");\r
- else if (!root.openRoot(&volume)) \r
- Serial.println("openRoot failed");\r
- else \r
- {\r
- sdactive = true;\r
- Serial.println("SD card ok");\r
- }\r
-#endif //SDSS\r
-}\r
-\r
-void quickinitsd(){\r
- sdactive=false;\r
- autostart_atmillis=millis()+5000;\r
-}\r
-\r
-inline void write_command(char *buf){\r
- char* begin = buf;\r
- char* npos = 0;\r
- char* end = buf + strlen(buf) - 1;\r
-\r
- file.writeError = false;\r
- if((npos = strchr(buf, 'N')) != NULL){\r
- begin = strchr(npos, ' ') + 1;\r
- end = strchr(npos, '*') - 1;\r
- }\r
- end[1] = '\r';\r
- end[2] = '\n';\r
- end[3] = '\0';\r
- //Serial.println(begin);\r
- file.write(begin);\r
- if (file.writeError){\r
- Serial.println("error writing to file");\r
- }\r
-}\r
-#endif //SDSUPPORT\r
-\r
-\r
-///adds an command to the main command buffer\r
-void enquecommand(const char *cmd)\r
-{\r
- if(buflen < BUFSIZE)\r
- {\r
- //this is dangerous if a mixing of serial and this happsens\r
- strcpy(&(cmdbuffer[bufindw][0]),cmd);\r
- Serial.print("en:");Serial.println(cmdbuffer[bufindw]);\r
- bufindw= (bufindw + 1)%BUFSIZE;\r
- buflen += 1;\r
- }\r
-}\r
-\r
-void setup()\r
-{ \r
- \r
- Serial.begin(BAUDRATE);\r
- ECHOLN("Marlin "<<version_string);\r
- Serial.println("start");\r
-#if defined FANCY_LCD || defined SIMPLE_LCD\r
- lcd_init();\r
-#endif\r
- for(int i = 0; i < BUFSIZE; i++){\r
- fromsd[i] = false;\r
- }\r
- \r
- RetrieveSettings(); // loads data from EEPROM if available\r
-\r
-\r
- for(int i=0; i < NUM_AXIS; i++){\r
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];\r
- }\r
-\r
-#ifdef SDSUPPORT\r
- //power to SD reader\r
-#if SDPOWER > -1\r
- SET_OUTPUT(SDPOWER); \r
- WRITE(SDPOWER,HIGH);\r
-#endif //SDPOWER\r
- quickinitsd();\r
-\r
-#endif //SDSUPPORT\r
- plan_init(); // Initialize planner;\r
- st_init(); // Initialize stepper;\r
- tp_init(); // Initialize temperature loop\r
- //checkautostart();\r
-}\r
-\r
-#ifdef SDSUPPORT\r
-bool autostart_stilltocheck=true;\r
-\r
-\r
-void checkautostart(bool force)\r
-{\r
- //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset\r
- if(!force)\r
- {\r
- if(!autostart_stilltocheck)\r
- return;\r
- if(autostart_atmillis<millis())\r
- return;\r
- }\r
- autostart_stilltocheck=false;\r
- if(!sdactive)\r
- {\r
- initsd();\r
- if(!sdactive) //fail\r
- return;\r
- }\r
- static int lastnr=0;\r
- char autoname[30];\r
- sprintf(autoname,"auto%i.g",lastnr);\r
- for(int i=0;i<(int)strlen(autoname);i++)\r
- autoname[i]=tolower(autoname[i]);\r
- dir_t p;\r
-\r
- root.rewind();\r
- //char filename[11];\r
- //int cnt=0;\r
-\r
- bool found=false;\r
- while (root.readDir(p) > 0) \r
- {\r
- for(int i=0;i<(int)strlen((char*)p.name);i++)\r
- p.name[i]=tolower(p.name[i]);\r
- //Serial.print((char*)p.name);\r
- //Serial.print(" ");\r
- //Serial.println(autoname);\r
- if(p.name[9]!='~') //skip safety copies\r
- if(strncmp((char*)p.name,autoname,5)==0)\r
- {\r
- char cmd[30];\r
- \r
- sprintf(cmd,"M23 %s",autoname);\r
- //sprintf(cmd,"M115");\r
- //enquecommand("G92 Z0");\r
- //enquecommand("G1 Z10 F2000");\r
- //enquecommand("G28 X-105 Y-105");\r
- enquecommand(cmd);\r
- enquecommand("M24");\r
- found=true;\r
- \r
- }\r
- }\r
- if(!found)\r
- lastnr=-1;\r
- else\r
- lastnr++;\r
- \r
-}\r
-#else\r
-\r
-inline void checkautostart(bool x)\r
-{\r
-}\r
-#endif\r
-\r
-\r
-void loop()\r
-{\r
- if(buflen<3)\r
- get_command();\r
- checkautostart(false);\r
- if(buflen)\r
- {\r
-#ifdef SDSUPPORT\r
- if(savetosd){\r
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){\r
- write_command(cmdbuffer[bufindr]);\r
- Serial.println("ok");\r
- }\r
- else{\r
- file.sync();\r
- file.close();\r
- savetosd = false;\r
- Serial.println("Done saving file.");\r
- }\r
- }\r
- else{\r
- process_commands();\r
- }\r
-#else\r
- process_commands();\r
-#endif //SDSUPPORT\r
- buflen = (buflen-1);\r
- bufindr = (bufindr + 1)%BUFSIZE;\r
- }\r
- //check heater every n milliseconds\r
- manage_heater();\r
- manage_inactivity(1);\r
- LCD_STATUS;\r
-}\r
-\r
-\r
-inline void get_command() \r
-{ \r
- while( Serial.available() > 0 && buflen < BUFSIZE) {\r
- serial_char = Serial.read();\r
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) \r
- {\r
- if(!serial_count) return; //if empty line\r
- cmdbuffer[bufindw][serial_count] = 0; //terminate string\r
- if(!comment_mode){\r
- fromsd[bufindw] = false;\r
- if(strstr(cmdbuffer[bufindw], "N") != NULL)\r
- {\r
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');\r
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));\r
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {\r
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");\r
- Serial.println(gcode_LastN);\r
- //Serial.println(gcode_N);\r
- FlushSerialRequestResend();\r
- serial_count = 0;\r
- return;\r
- }\r
-\r
- if(strstr(cmdbuffer[bufindw], "*") != NULL)\r
- {\r
- byte checksum = 0;\r
- byte count = 0;\r
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];\r
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');\r
-\r
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {\r
- Serial.print("Error: checksum mismatch, Last Line:");\r
- Serial.println(gcode_LastN);\r
- FlushSerialRequestResend();\r
- serial_count = 0;\r
- return;\r
- }\r
- //if no errors, continue parsing\r
- }\r
- else \r
- {\r
- Serial.print("Error: No Checksum with line number, Last Line:");\r
- Serial.println(gcode_LastN);\r
- FlushSerialRequestResend();\r
- serial_count = 0;\r
- return;\r
- }\r
-\r
- gcode_LastN = gcode_N;\r
- //if no errors, continue parsing\r
- }\r
- else // if we don't receive 'N' but still see '*'\r
- {\r
- if((strstr(cmdbuffer[bufindw], "*") != NULL))\r
- {\r
- Serial.print("Error: No Line Number with checksum, Last Line:");\r
- Serial.println(gcode_LastN);\r
- serial_count = 0;\r
- return;\r
- }\r
- }\r
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){\r
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');\r
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){\r
- case 0:\r
- case 1:\r
-#ifdef SDSUPPORT\r
- if(savetosd)\r
- break;\r
-#endif //SDSUPPORT\r
- Serial.println("ok"); \r
- break;\r
- default:\r
- break;\r
- }\r
-\r
- }\r
- bufindw = (bufindw + 1)%BUFSIZE;\r
- buflen += 1;\r
-\r
- }\r
- comment_mode = false; //for new command\r
- serial_count = 0; //clear buffer\r
- }\r
- else\r
- {\r
- if(serial_char == ';') comment_mode = true;\r
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;\r
- }\r
- }\r
-#ifdef SDSUPPORT\r
- if(!sdmode || serial_count!=0){\r
- return;\r
- }\r
- while( filesize > sdpos && buflen < BUFSIZE) {\r
- n = file.read();\r
- serial_char = (char)n;\r
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) \r
- {\r
- sdpos = file.curPosition();\r
- if(sdpos >= filesize){\r
- sdmode = false;\r
- Serial.println("Done printing file");\r
- stoptime=millis();\r
- char time[30];\r
- unsigned long t=(stoptime-starttime)/1000;\r
- int sec,min;\r
- min=t/60;\r
- sec=t%60;\r
- sprintf(time,"%i min, %i sec",min,sec);\r
- Serial.println(time);\r
- LCD_MESSAGE(time);\r
- checkautostart(true);\r
- }\r
- if(!serial_count) return; //if empty line\r
- cmdbuffer[bufindw][serial_count] = 0; //terminate string\r
- if(!comment_mode){\r
- fromsd[bufindw] = true;\r
- buflen += 1;\r
- bufindw = (bufindw + 1)%BUFSIZE;\r
- }\r
- comment_mode = false; //for new command\r
- serial_count = 0; //clear buffer\r
- }\r
- else\r
- {\r
- if(serial_char == ';') comment_mode = true;\r
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;\r
- }\r
- }\r
-#endif //SDSUPPORT\r
-\r
-}\r
-\r
-\r
-inline float code_value() { \r
- return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); \r
-}\r
-inline long code_value_long() { \r
- return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); \r
-}\r
-inline bool code_seen(char code_string[]) { \r
- return (strstr(cmdbuffer[bufindr], code_string) != NULL); \r
-} //Return True if the string was found\r
-\r
-inline bool code_seen(char code)\r
-{\r
- strchr_pointer = strchr(cmdbuffer[bufindr], code);\r
- return (strchr_pointer != NULL); //Return True if a character was found\r
-}\r
-\r
-inline void process_commands()\r
-{\r
- unsigned long codenum; //throw away variable\r
- char *starpos = NULL;\r
-\r
- if(code_seen('G'))\r
- {\r
- switch((int)code_value())\r
- {\r
- case 0: // G0 -> G1\r
- case 1: // G1\r
- get_coordinates(); // For X Y Z E F\r
- prepare_move();\r
- previous_millis_cmd = millis();\r
- //ClearToSend();\r
- return;\r
- //break;\r
- case 4: // G4 dwell\r
- codenum = 0;\r
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait\r
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait\r
- codenum += millis(); // keep track of when we started waiting\r
- while(millis() < codenum ){\r
- manage_heater();\r
- }\r
- break;\r
- case 28: //G28 Home all Axis one at a time\r
- saved_feedrate = feedrate;\r
- saved_feedmultiply = feedmultiply;\r
- feedmultiply = 100;\r
- \r
- for(int i=0; i < NUM_AXIS; i++) {\r
- destination[i] = current_position[i];\r
- }\r
- feedrate = 0.0;\r
-\r
- home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));\r
-\r
- if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {\r
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){\r
-// st_synchronize();\r
- current_position[X_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;\r
- feedrate = homing_feedrate[X_AXIS];\r
- prepare_move();\r
- \r
-// st_synchronize(); \r
- current_position[X_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[X_AXIS] = -5 * X_HOME_DIR;\r
- prepare_move();\r
- \r
-// st_synchronize(); \r
- destination[X_AXIS] = 10 * X_HOME_DIR;\r
- feedrate = homing_feedrate[X_AXIS]/2 ;\r
- prepare_move();\r
- \r
-// st_synchronize();\r
- current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[X_AXIS] = current_position[X_AXIS];\r
- feedrate = 0.0;\r
- }\r
- }\r
-\r
- if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {\r
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){\r
- current_position[Y_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;\r
- feedrate = homing_feedrate[Y_AXIS];\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- current_position[Y_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Y_AXIS] = -5 * Y_HOME_DIR;\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- destination[Y_AXIS] = 10 * Y_HOME_DIR;\r
- feedrate = homing_feedrate[Y_AXIS]/2;\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Y_AXIS] = current_position[Y_AXIS];\r
- feedrate = 0.0;\r
- }\r
- }\r
-\r
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {\r
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){\r
- current_position[Z_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;\r
- feedrate = homing_feedrate[Z_AXIS];\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- current_position[Z_AXIS] = 0;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Z_AXIS] = -2 * Z_HOME_DIR;\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- destination[Z_AXIS] = 3 * Z_HOME_DIR;\r
- feedrate = homing_feedrate[Z_AXIS]/2;\r
- prepare_move();\r
-// st_synchronize();\r
-\r
- current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- destination[Z_AXIS] = current_position[Z_AXIS];\r
- feedrate = 0.0; \r
- }\r
- } \r
- feedrate = saved_feedrate;\r
- feedmultiply = saved_feedmultiply;\r
- previous_millis_cmd = millis();\r
- break;\r
- case 90: // G90\r
- relative_mode = false;\r
- break;\r
- case 91: // G91\r
- relative_mode = true;\r
- break;\r
- case 92: // G92\r
- if(!code_seen(axis_codes[E_AXIS])) \r
- st_synchronize();\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) current_position[i] = code_value(); \r
- }\r
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\r
- break;\r
- }\r
- }\r
-\r
- else if(code_seen('M'))\r
- {\r
-\r
- switch( (int)code_value() ) \r
- {\r
-#ifdef SDSUPPORT\r
-\r
- case 20: // M20 - list SD card\r
- Serial.println("Begin file list");\r
- root.ls();\r
- Serial.println("End file list");\r
- break;\r
- case 21: // M21 - init SD card\r
- sdmode = false;\r
- initsd();\r
- break;\r
- case 22: //M22 - release SD card\r
- sdmode = false;\r
- sdactive = false;\r
- break;\r
- case 23: //M23 - Select file\r
- if(sdactive){\r
- sdmode = false;\r
- file.close();\r
- starpos = (strchr(strchr_pointer + 4,'*'));\r
- if(starpos!=NULL)\r
- *(starpos-1)='\0';\r
- if (file.open(&root, strchr_pointer + 4, O_READ)) {\r
- Serial.print("File opened:");\r
- Serial.print(strchr_pointer + 4);\r
- Serial.print(" Size:");\r
- Serial.println(file.fileSize());\r
- sdpos = 0;\r
- filesize = file.fileSize();\r
- Serial.println("File selected");\r
- }\r
- else{\r
- Serial.println("file.open failed");\r
- }\r
- }\r
- break;\r
- case 24: //M24 - Start SD print\r
- if(sdactive){\r
- sdmode = true;\r
- starttime=millis();\r
- }\r
- break;\r
- case 25: //M25 - Pause SD print\r
- if(sdmode){\r
- sdmode = false;\r
- }\r
- break;\r
- case 26: //M26 - Set SD index\r
- if(sdactive && code_seen('S')){\r
- sdpos = code_value_long();\r
- file.seekSet(sdpos);\r
- }\r
- break;\r
- case 27: //M27 - Get SD status\r
- if(sdactive){\r
- Serial.print("SD printing byte ");\r
- Serial.print(sdpos);\r
- Serial.print("/");\r
- Serial.println(filesize);\r
- }\r
- else{\r
- Serial.println("Not SD printing");\r
- }\r
- break;\r
- case 28: //M28 - Start SD write\r
- if(sdactive){\r
- char* npos = 0;\r
- file.close();\r
- sdmode = false;\r
- starpos = (strchr(strchr_pointer + 4,'*'));\r
- if(starpos != NULL){\r
- npos = strchr(cmdbuffer[bufindr], 'N');\r
- strchr_pointer = strchr(npos,' ') + 1;\r
- *(starpos-1) = '\0';\r
- }\r
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))\r
- {\r
- Serial.print("open failed, File: ");\r
- Serial.print(strchr_pointer + 4);\r
- Serial.print(".");\r
- }\r
- else{\r
- savetosd = true;\r
- Serial.print("Writing to file: ");\r
- Serial.println(strchr_pointer + 4);\r
- }\r
- }\r
- break;\r
- case 29: //M29 - Stop SD write\r
- //processed in write to file routine above\r
- //savetosd = false;\r
- break;\r
- case 30:\r
- {\r
- stoptime=millis();\r
- char time[30];\r
- unsigned long t=(stoptime-starttime)/1000;\r
- int sec,min;\r
- min=t/60;\r
- sec=t%60;\r
- sprintf(time,"%i min, %i sec",min,sec);\r
- Serial.println(time);\r
- LCD_MESSAGE(time);\r
- }\r
- break;\r
-#endif //SDSUPPORT\r
- case 42: //M42 -Change pin status via gcode\r
- if (code_seen('S'))\r
- {\r
- int pin_status = code_value();\r
- if (code_seen('P') && pin_status >= 0 && pin_status <= 255)\r
- {\r
- int pin_number = code_value();\r
- for(int i = 0; i < (int)sizeof(sensitive_pins); i++)\r
- {\r
- if (sensitive_pins[i] == pin_number)\r
- {\r
- pin_number = -1;\r
- break;\r
- }\r
- }\r
- \r
- if (pin_number > -1)\r
- { \r
- pinMode(pin_number, OUTPUT);\r
- digitalWrite(pin_number, pin_status);\r
- analogWrite(pin_number, pin_status);\r
- }\r
- }\r
- }\r
- break;\r
- case 104: // M104\r
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());\r
-#ifdef PIDTEMP\r
- pid_setpoint = code_value();\r
-#endif //PIDTEM\r
- #ifdef WATCHPERIOD\r
- if(target_raw[TEMPSENSOR_HOTEND] > current_raw[TEMPSENSOR_HOTEND]){\r
- watchmillis = max(1,millis());\r
- watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];\r
- }else{\r
- watchmillis = 0;\r
- }\r
- #endif\r
- break;\r
- case 140: // M140 set bed temp\r
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());\r
- break;\r
- case 105: // M105\r
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)\r
- tt = analog2temp(current_raw[TEMPSENSOR_HOTEND]);\r
- #endif\r
- #if TEMP_1_PIN > -1\r
- bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);\r
- #endif\r
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)\r
- Serial.print("ok T:");\r
- Serial.print(tt); \r
-// Serial.print(", raw:");\r
-// Serial.print(current_raw); \r
- #if TEMP_1_PIN > -1 \r
-#ifdef PIDTEMP\r
- Serial.print(" B:");\r
- #if TEMP_1_PIN > -1\r
- Serial.println(bt); \r
- #else\r
- Serial.println(HeaterPower); \r
- #endif\r
-#else\r
- Serial.println();\r
-#endif\r
- #else\r
- Serial.println();\r
- #endif\r
- #else\r
- Serial.println("No thermistors - no temp");\r
- #endif\r
- return;\r
- //break;\r
- case 109: {// M109 - Wait for extruder heater to reach target.\r
- LCD_MESSAGE("Heating...");\r
- if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());\r
- #ifdef PIDTEMP\r
- pid_setpoint = code_value();\r
- #endif //PIDTEM\r
- #ifdef WATCHPERIOD\r
- if(target_raw[TEMPSENSOR_HOTEND]>current_raw[TEMPSENSOR_HOTEND]){\r
- watchmillis = max(1,millis());\r
- watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];\r
- } else {\r
- watchmillis = 0;\r
- }\r
- #endif //WATCHPERIOD\r
- codenum = millis(); \r
- \r
- /* See if we are heating up or cooling down */\r
- bool target_direction = (current_raw[0] < target_raw[0]); // true if heating, false if cooling\r
-\r
- #ifdef TEMP_RESIDENCY_TIME\r
- long residencyStart;\r
- residencyStart = -1;\r
- /* continue to loop until we have reached the target temp \r
- _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */\r
- while((target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0])) ||\r
- (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {\r
- #else\r
- while ( target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0]) ) {\r
- #endif //TEMP_RESIDENCY_TIME\r
- if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down\r
- Serial.print("T:");\r
- Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND]) ); \r
- codenum = millis();\r
- }\r
- manage_heater();\r
- LCD_STATUS;\r
- #ifdef TEMP_RESIDENCY_TIME\r
- /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time\r
- or when current temp falls outside the hysteresis after target temp was reached */\r
- if ((residencyStart == -1 && target_direction && current_raw[0] >= target_raw[0]) ||\r
- (residencyStart == -1 && !target_direction && current_raw[0] <= target_raw[0]) ||\r
- (residencyStart > -1 && labs(analog2temp(current_raw[0]) - analog2temp(target_raw[0])) > TEMP_HYSTERESIS) ) {\r
- residencyStart = millis();\r
- }\r
- #endif //TEMP_RESIDENCY_TIME\r
- }\r
- LCD_MESSAGE("Marlin ready.");\r
- }\r
- break;\r
- case 190: // M190 - Wait bed for heater to reach target.\r
- #if TEMP_1_PIN > -1\r
- if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());\r
- codenum = millis(); \r
- while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED]) \r
- {\r
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.\r
- {\r
- float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND]);\r
- Serial.print("T:");\r
- Serial.println( tt );\r
- Serial.print("ok T:");\r
- Serial.print( tt ); \r
- Serial.print(" B:");\r
- Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) ); \r
- codenum = millis(); \r
- }\r
- manage_heater();\r
- }\r
- #endif\r
- break;\r
-#if FAN_PIN > -1\r
- case 106: //M106 Fan On\r
- if (code_seen('S')){\r
- WRITE(FAN_PIN,HIGH);\r
- fanpwm=constrain(code_value(),0,255);\r
- analogWrite(FAN_PIN, fanpwm);\r
- }\r
- else {\r
- WRITE(FAN_PIN,HIGH);\r
- fanpwm=255;\r
- analogWrite(FAN_PIN, fanpwm); \r
- }\r
- break;\r
- case 107: //M107 Fan Off\r
- WRITE(FAN_PIN,LOW);\r
- analogWrite(FAN_PIN, 0);\r
- break;\r
-#endif\r
-#if (PS_ON_PIN > -1)\r
- case 80: // M80 - ATX Power On\r
- SET_OUTPUT(PS_ON_PIN); //GND\r
- break;\r
- case 81: // M81 - ATX Power Off\r
- SET_INPUT(PS_ON_PIN); //Floating\r
- break;\r
-#endif\r
- case 82:\r
- axis_relative_modes[3] = false;\r
- break;\r
- case 83:\r
- axis_relative_modes[3] = true;\r
- break;\r
- case 18:\r
- case 84:\r
- if(code_seen('S')){ \r
- stepper_inactive_time = code_value() * 1000; \r
- }\r
- else{ \r
- st_synchronize(); \r
- disable_x(); \r
- disable_y(); \r
- disable_z(); \r
- disable_e(); \r
- }\r
- break;\r
- case 85: // M85\r
- code_seen('S');\r
- max_inactive_time = code_value() * 1000; \r
- break;\r
- case 92: // M92\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();\r
- }\r
-\r
- break;\r
- case 115: // M115\r
- Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");\r
- break;\r
- case 114: // M114\r
- Serial.print("X:");\r
- Serial.print(current_position[X_AXIS]);\r
- Serial.print("Y:");\r
- Serial.print(current_position[Y_AXIS]);\r
- Serial.print("Z:");\r
- Serial.print(current_position[Z_AXIS]);\r
- Serial.print("E:"); \r
- Serial.print(current_position[E_AXIS]);\r
- #ifdef DEBUG_STEPS\r
- Serial.print(" Count X:");\r
- Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);\r
- Serial.print("Y:");\r
- Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);\r
- Serial.print("Z:");\r
- Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);\r
- #endif\r
- Serial.println("");\r
- break;\r
- case 119: // M119\r
-#if (X_MIN_PIN > -1)\r
- Serial.print("x_min:");\r
- Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
-#if (X_MAX_PIN > -1)\r
- Serial.print("x_max:");\r
- Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
-#if (Y_MIN_PIN > -1)\r
- Serial.print("y_min:");\r
- Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
-#if (Y_MAX_PIN > -1)\r
- Serial.print("y_max:");\r
- Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
-#if (Z_MIN_PIN > -1)\r
- Serial.print("z_min:");\r
- Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
-#if (Z_MAX_PIN > -1)\r
- Serial.print("z_max:");\r
- Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");\r
-#endif\r
- Serial.println("");\r
- break;\r
- //TODO: update for all axis, use for loop\r
- case 201: // M201\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];\r
- }\r
- break;\r
-#if 0 // Not used for Sprinter/grbl gen6\r
- case 202: // M202\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];\r
- }\r
- break;\r
-#endif\r
- case 203: // M203 max feedrate mm/sec\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;\r
- }\r
- break;\r
- case 204: // M204 acclereration S normal moves T filmanent only moves\r
- {\r
- if(code_seen('S')) acceleration = code_value() ;\r
- if(code_seen('T')) retract_acceleration = code_value() ;\r
- }\r
- break;\r
- case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk\r
- {\r
- if(code_seen('S')) minimumfeedrate = code_value()*60 ;\r
- if(code_seen('T')) mintravelfeedrate = code_value()*60 ;\r
- if(code_seen('B')) minsegmenttime = code_value() ;\r
- if(code_seen('X')) max_xy_jerk = code_value()*60 ;\r
- if(code_seen('Z')) max_z_jerk = code_value()*60 ;\r
- }\r
- break;\r
- case 220: // M220 S<factor in percent>- set speed factor override percentage\r
- {\r
- if(code_seen('S')) \r
- {\r
- feedmultiply = code_value() ;\r
- feedmultiplychanged=true;\r
- }\r
- }\r
- break;\r
-#ifdef PIDTEMP\r
- case 301: // M301\r
- if(code_seen('P')) Kp = code_value();\r
- if(code_seen('I')) Ki = code_value()*PID_dT;\r
- if(code_seen('D')) Kd = code_value()/PID_dT;\r
-// ECHOLN("Kp "<<_FLOAT(Kp,2));\r
-// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));\r
-// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));\r
-\r
-// temp_iState_min = 0.0;\r
-// if (Ki!=0) {\r
-// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);\r
-// }\r
-// else temp_iState_max = 1.0e10;\r
- break;\r
-#endif //PIDTEMP\r
- case 500: // Store settings in EEPROM\r
- {\r
- StoreSettings();\r
- }\r
- break;\r
- case 501: // Read settings from EEPROM\r
- {\r
- RetrieveSettings();\r
- }\r
- break;\r
- case 502: // Revert to default settings\r
- {\r
- RetrieveSettings(true);\r
- }\r
- break;\r
-\r
- }\r
- }\r
- else{\r
- Serial.println("Unknown command:");\r
- Serial.println(cmdbuffer[bufindr]);\r
- }\r
-\r
- ClearToSend();\r
-}\r
-\r
-void FlushSerialRequestResend()\r
-{\r
- //char cmdbuffer[bufindr][100]="Resend:";\r
- Serial.flush();\r
- Serial.print("Resend:");\r
- Serial.println(gcode_LastN + 1);\r
- ClearToSend();\r
-}\r
-\r
-void ClearToSend()\r
-{\r
- previous_millis_cmd = millis();\r
-#ifdef SDSUPPORT\r
- if(fromsd[bufindr])\r
- return;\r
-#endif //SDSUPPORT\r
- Serial.println("ok"); \r
-}\r
-\r
-inline void get_coordinates()\r
-{\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];\r
- else destination[i] = current_position[i]; //Are these else lines really needed?\r
- }\r
- if(code_seen('F')) {\r
- next_feedrate = code_value();\r
- if(next_feedrate > 0.0) feedrate = next_feedrate;\r
- }\r
-}\r
-\r
-void prepare_move()\r
-{\r
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);\r
- for(int i=0; i < NUM_AXIS; i++) {\r
- current_position[i] = destination[i];\r
- }\r
-}\r
-\r
-\r
-\r
-#ifdef USE_WATCHDOG\r
-\r
-#include <avr/wdt.h>\r
-#include <avr/interrupt.h>\r
-\r
-volatile uint8_t timeout_seconds=0;\r
-\r
-void(* ctrlaltdelete) (void) = 0;\r
-\r
-ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec\r
- if(timeout_seconds++ >= WATCHDOG_TIMEOUT)\r
- {\r
- kill();\r
-#ifdef RESET_MANUAL\r
- LCD_MESSAGE("Please Reset!");\r
- ECHOLN("echo_: Something is wrong, please turn off the printer.");\r
-#else\r
- LCD_MESSAGE("Timeout, resetting!");\r
-#endif \r
- //disable watchdog, it will survife reboot.\r
- WDTCSR |= (1<<WDCE) | (1<<WDE);\r
- WDTCSR = 0;\r
-#ifdef RESET_MANUAL\r
- while(1); //wait for user or serial reset\r
-#else\r
- ctrlaltdelete();\r
-#endif\r
- }\r
-}\r
-\r
-/// intialise watch dog with a 1 sec interrupt time\r
-void wd_init() {\r
- WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes\r
- WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);\r
-}\r
-\r
-/// reset watchdog. MUST be called every 1s after init or avr will reset.\r
-void wd_reset() {\r
- wdt_reset();\r
- timeout_seconds=0; //reset counter for resets\r
-}\r
-#endif /* USE_WATCHDOG */\r
-\r
-\r
-inline void kill()\r
-{\r
- #if TEMP_0_PIN > -1\r
- target_raw[0]=0;\r
- #if HEATER_0_PIN > -1 \r
- WRITE(HEATER_0_PIN,LOW);\r
- #endif\r
- #endif\r
- #if TEMP_1_PIN > -1\r
- target_raw[1]=0;\r
- #if HEATER_1_PIN > -1 \r
- WRITE(HEATER_1_PIN,LOW);\r
- #endif\r
- #endif\r
- #if TEMP_2_PIN > -1\r
- target_raw[2]=0;\r
- #if HEATER_2_PIN > -1 \r
- WRITE(HEATER_2_PIN,LOW);\r
- #endif\r
- #endif\r
- disable_x();\r
- disable_y();\r
- disable_z();\r
- disable_e();\r
- \r
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);\r
- Serial.println("!! Printer halted. kill() called!!");\r
- while(1); // Wait for reset\r
-}\r
-\r
-void manage_inactivity(byte debug) { \r
- if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); \r
- if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { \r
- disable_x(); \r
- disable_y(); \r
- disable_z(); \r
- disable_e(); \r
- }\r
- check_axes_activity();\r
-}\r
+/*
+ Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
- #include <EEPROM.h>
++#include "EEPROMwrite.h"
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+
+#ifdef SIMPLE_LCD
+ #include "Simplelcd.h"
+#endif
+
+char version_string[] = "1.0.0 Alpha 1";
+
+#ifdef SDSUPPORT
+#include "SdFat.h"
+#endif //SDSUPPORT
+
+
+// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+// G0 -> G1
+// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
+// G4 - Dwell S<seconds> or P<milliseconds>
+// G28 - Home all Axis
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to cordinates given
+
+//RepRap M Codes
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Wait for extruder current temp to reach target temp.
+// M114 - Display current position
+
+//Custom M Codes
+// M20 - List SD card
+// M21 - Init SD card
+// M22 - Release SD card
+// M23 - Select SD file (M23 filename.g)
+// M24 - Start/resume SD print
+// M25 - Pause SD print
+// M26 - Set SD position in bytes (M26 S12345)
+// M27 - Report SD print status
+// M28 - Start SD write (M28 filename.g)
+// M29 - Stop SD write
+// M42 - Change pin status via gcode
+// M80 - Turn on Power Supply
+// M81 - Turn off Power Supply
+// M82 - Set E codes absolute (default)
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84 - Disable steppers until next move,
+// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
+// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M92 - Set axis_steps_per_unit - same syntax as G92
+// M115 - Capabilities string
+// M140 - Set bed target temp
+// M190 - Wait for bed current temp to reach target temp.
+// M200 - Set filament diameter
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+// M220 - set speed factor override percentage S:factor in percent
+// M301 - Set PID parameters P I and D
+// M500 - stores paramters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+
+//Stepper Movement Variables
+
+char axis_codes[NUM_AXIS] = {
+ 'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {
+ 0.0, 0.0, 0.0, 0.0};
+float current_position[NUM_AXIS] = {
+ 0.0, 0.0, 0.0, 0.0};
+bool home_all_axis = true;
+float feedrate = 1500.0, next_feedrate, saved_feedrate;
+long gcode_N, gcode_LastN;
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+
+bool relative_mode = false; //Determines Absolute or Relative Coordinates
+bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
+
+uint8_t fanpwm=0;
+
+volatile int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
+// comm variables
+#define MAX_CMD_SIZE 96
+#define BUFSIZE 4
+char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
+bool fromsd[BUFSIZE];
+int bufindr = 0;
+int bufindw = 0;
+int buflen = 0;
+int i = 0;
+char serial_char;
+int serial_count = 0;
+boolean comment_mode = false;
+char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
+extern float HeaterPower;
+
+#include "EEPROM.h"
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+float tt = 0, bt = 0;
+#ifdef WATCHPERIOD
+int watch_raw = -1000;
+unsigned long watchmillis = 0;
+#endif //WATCHPERIOD
+
+//Inactivity shutdown variables
+unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+unsigned long stepper_inactive_time = 0;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+#ifdef SDSUPPORT
+Sd2Card card;
+SdVolume volume;
+SdFile root;
+SdFile file;
+uint32_t filesize = 0;
+uint32_t sdpos = 0;
+bool sdmode = false;
+bool sdactive = false;
+bool savetosd = false;
+int16_t n;
- long autostart_atmillis=0;
++unsigned long autostart_atmillis=0;
+
+void initsd(){
+ sdactive = false;
+#if SDSS >- 1
+ if(root.isOpen())
+ root.close();
+ if (!card.init(SPI_FULL_SPEED,SDSS)){
+ //if (!card.init(SPI_HALF_SPEED,SDSS))
+ Serial.println("SD init fail");
+ }
+ else if (!volume.init(&card))
+ Serial.println("volume.init failed");
+ else if (!root.openRoot(&volume))
+ Serial.println("openRoot failed");
+ else
+ {
+ sdactive = true;
+ Serial.println("SD card ok");
+ }
+#endif //SDSS
+}
+
+void quickinitsd(){
+ sdactive=false;
+ autostart_atmillis=millis()+5000;
+}
+
+inline void write_command(char *buf){
+ char* begin = buf;
+ char* npos = 0;
+ char* end = buf + strlen(buf) - 1;
+
+ file.writeError = false;
+ if((npos = strchr(buf, 'N')) != NULL){
+ begin = strchr(npos, ' ') + 1;
+ end = strchr(npos, '*') - 1;
+ }
+ end[1] = '\r';
+ end[2] = '\n';
+ end[3] = '\0';
+ //Serial.println(begin);
+ file.write(begin);
+ if (file.writeError){
+ Serial.println("error writing to file");
+ }
+}
+#endif //SDSUPPORT
+
+
+///adds an command to the main command buffer
+void enquecommand(const char *cmd)
+{
+ if(buflen < BUFSIZE)
+ {
+ //this is dangerous if a mixing of serial and this happsens
+ strcpy(&(cmdbuffer[bufindw][0]),cmd);
+ Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
+ bufindw= (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+ }
+}
+
+void setup()
+{
+
+ Serial.begin(BAUDRATE);
+ ECHOLN("Marlin "<<version_string);
+ Serial.println("start");
+#if defined FANCY_LCD || defined SIMPLE_LCD
+ lcd_init();
+#endif
+ for(int i = 0; i < BUFSIZE; i++){
+ fromsd[i] = false;
+ }
+
+ RetrieveSettings(); // loads data from EEPROM if available
+
+
+ for(int i=0; i < NUM_AXIS; i++){
+ axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+ }
+
+#ifdef SDSUPPORT
+ //power to SD reader
+#if SDPOWER > -1
+ SET_OUTPUT(SDPOWER);
+ WRITE(SDPOWER,HIGH);
+#endif //SDPOWER
+ quickinitsd();
+
+#endif //SDSUPPORT
+ plan_init(); // Initialize planner;
+ st_init(); // Initialize stepper;
+ tp_init(); // Initialize temperature loop
+ //checkautostart();
+}
+
+#ifdef SDSUPPORT
+bool autostart_stilltocheck=true;
+
+
+void checkautostart(bool force)
+{
+ //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
+ if(!force)
+ {
+ if(!autostart_stilltocheck)
+ return;
+ if(autostart_atmillis<millis())
+ return;
+ }
+ autostart_stilltocheck=false;
+ if(!sdactive)
+ {
+ initsd();
+ if(!sdactive) //fail
+ return;
+ }
- static int lastnr=0;
- char autoname[30];
- sprintf(autoname,"auto%i.g",lastnr);
- for(int i=0;i<strlen(autoname);i++)
- autoname[i]=tolower(autoname[i]);
- dir_t p;
-
- root.rewind();
- char filename[11];
- int cnt=0;
-
- bool found=false;
- while (root.readDir(p) > 0)
- {
- for(int i=0;i<strlen((char*)p.name);i++)
- p.name[i]=tolower(p.name[i]);
- //Serial.print((char*)p.name);
- //Serial.print(" ");
++ static int lastnr=0;
++ char autoname[30];
++ sprintf(autoname,"auto%i.g",lastnr);
++ for(int i=0;i<(int)strlen(autoname);i++)
++ autoname[i]=tolower(autoname[i]);
++ dir_t p;
++
++ root.rewind();
++ //char filename[11];
++ //int cnt=0;
++
++ bool found=false;
++ while (root.readDir(p) > 0)
++ {
++ for(int i=0;i<(int)strlen((char*)p.name);i++)
++ p.name[i]=tolower(p.name[i]);
++ //Serial.print((char*)p.name);
++ //Serial.print(" ");
+ //Serial.println(autoname);
+ if(p.name[9]!='~') //skip safety copies
+ if(strncmp((char*)p.name,autoname,5)==0)
+ {
+ char cmd[30];
+
+ sprintf(cmd,"M23 %s",autoname);
+ //sprintf(cmd,"M115");
+ //enquecommand("G92 Z0");
+ //enquecommand("G1 Z10 F2000");
+ //enquecommand("G28 X-105 Y-105");
+ enquecommand(cmd);
+ enquecommand("M24");
+ found=true;
+
+ }
+ }
+ if(!found)
+ lastnr=-1;
+ else
+ lastnr++;
+
+}
+#else
+
+inline void checkautostart(bool x)
+{
+}
+#endif
+
+
+void loop()
+{
+ if(buflen<3)
+ get_command();
+ checkautostart(false);
+ if(buflen)
+ {
+#ifdef SDSUPPORT
+ if(savetosd){
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+ write_command(cmdbuffer[bufindr]);
+ Serial.println("ok");
+ }
+ else{
+ file.sync();
+ file.close();
+ savetosd = false;
+ Serial.println("Done saving file.");
+ }
+ }
+ else{
+ process_commands();
+ }
+#else
+ process_commands();
+#endif //SDSUPPORT
+ buflen = (buflen-1);
+ bufindr = (bufindr + 1)%BUFSIZE;
+ }
+ //check heater every n milliseconds
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+}
+
+
+inline void get_command()
+{
+ while( Serial.available() > 0 && buflen < BUFSIZE) {
+ serial_char = Serial.read();
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
+ {
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = false;
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
+ Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
+ Serial.println(gcode_LastN);
+ //Serial.println(gcode_N);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)
+ {
+ byte checksum = 0;
+ byte count = 0;
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
+ Serial.print("Error: checksum mismatch, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+ //if no errors, continue parsing
+ }
+ else
+ {
+ Serial.print("Error: No Checksum with line number, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ gcode_LastN = gcode_N;
+ //if no errors, continue parsing
+ }
+ else // if we don't receive 'N' but still see '*'
+ {
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))
+ {
+ Serial.print("Error: No Line Number with checksum, Last Line:");
+ Serial.println(gcode_LastN);
+ serial_count = 0;
+ return;
+ }
+ }
+ if((strstr(cmdbuffer[bufindw], "G") != NULL)){
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
+ case 0:
+ case 1:
+#ifdef SDSUPPORT
+ if(savetosd)
+ break;
+#endif //SDSUPPORT
+ Serial.println("ok");
+ break;
+ default:
+ break;
+ }
+
+ }
+ bufindw = (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+ }
+#ifdef SDSUPPORT
+ if(!sdmode || serial_count!=0){
+ return;
+ }
+ while( filesize > sdpos && buflen < BUFSIZE) {
+ n = file.read();
+ serial_char = (char)n;
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
+ {
+ sdpos = file.curPosition();
+ if(sdpos >= filesize){
+ sdmode = false;
+ Serial.println("Done printing file");
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
+ checkautostart(true);
+ }
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = true;
+ buflen += 1;
+ bufindw = (bufindw + 1)%BUFSIZE;
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+ }
+#endif //SDSUPPORT
+
+}
+
+
+inline float code_value() {
+ return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
+}
+inline long code_value_long() {
+ return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
+}
+inline bool code_seen(char code_string[]) {
+ return (strstr(cmdbuffer[bufindr], code_string) != NULL);
+} //Return True if the string was found
+
+inline bool code_seen(char code)
+{
+ strchr_pointer = strchr(cmdbuffer[bufindr], code);
+ return (strchr_pointer != NULL); //Return True if a character was found
+}
+
+inline void process_commands()
+{
+ unsigned long codenum; //throw away variable
+ char *starpos = NULL;
+
+ if(code_seen('G'))
+ {
+ switch((int)code_value())
+ {
+ case 0: // G0 -> G1
+ case 1: // G1
+ get_coordinates(); // For X Y Z E F
+ prepare_move();
+ previous_millis_cmd = millis();
+ //ClearToSend();
+ return;
+ //break;
+ case 4: // G4 dwell
+ codenum = 0;
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+ codenum += millis(); // keep track of when we started waiting
+ while(millis() < codenum ){
+ manage_heater();
+ }
+ break;
+ case 28: //G28 Home all Axis one at a time
+ saved_feedrate = feedrate;
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+
+ for(int i=0; i < NUM_AXIS; i++) {
+ destination[i] = current_position[i];
+ }
+ feedrate = 0.0;
+
+ home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
+
+ if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
+ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
+// st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS];
+ prepare_move();
+
+// st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = -5 * X_HOME_DIR;
+ prepare_move();
+
+// st_synchronize();
+ destination[X_AXIS] = 10 * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS]/2 ;
+ prepare_move();
+
+// st_synchronize();
+ current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
+ feedrate = 0.0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
+ if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS];
+ prepare_move();
+// st_synchronize();
+
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = -5 * Y_HOME_DIR;
+ prepare_move();
+// st_synchronize();
+
+ destination[Y_AXIS] = 10 * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS]/2;
+ prepare_move();
+// st_synchronize();
+
+ current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = current_position[Y_AXIS];
+ feedrate = 0.0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+ if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS];
+ prepare_move();
+// st_synchronize();
+
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = -2 * Z_HOME_DIR;
+ prepare_move();
+// st_synchronize();
+
+ destination[Z_AXIS] = 3 * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS]/2;
+ prepare_move();
+// st_synchronize();
+
+ current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = current_position[Z_AXIS];
+ feedrate = 0.0;
+ }
+ }
+ feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+ previous_millis_cmd = millis();
+ break;
+ case 90: // G90
+ relative_mode = false;
+ break;
+ case 91: // G91
+ relative_mode = true;
+ break;
+ case 92: // G92
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) current_position[i] = code_value();
+ }
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ break;
+ }
+ }
+
+ else if(code_seen('M'))
+ {
+
+ switch( (int)code_value() )
+ {
+#ifdef SDSUPPORT
+
+ case 20: // M20 - list SD card
+ Serial.println("Begin file list");
+ root.ls();
+ Serial.println("End file list");
+ break;
+ case 21: // M21 - init SD card
+ sdmode = false;
+ initsd();
+ break;
+ case 22: //M22 - release SD card
+ sdmode = false;
+ sdactive = false;
+ break;
+ case 23: //M23 - Select file
+ if(sdactive){
+ sdmode = false;
+ file.close();
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos!=NULL)
+ *(starpos-1)='\0';
+ if (file.open(&root, strchr_pointer + 4, O_READ)) {
+ Serial.print("File opened:");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(" Size:");
+ Serial.println(file.fileSize());
+ sdpos = 0;
+ filesize = file.fileSize();
+ Serial.println("File selected");
+ }
+ else{
+ Serial.println("file.open failed");
+ }
+ }
+ break;
+ case 24: //M24 - Start SD print
+ if(sdactive){
+ sdmode = true;
+ starttime=millis();
+ }
+ break;
+ case 25: //M25 - Pause SD print
+ if(sdmode){
+ sdmode = false;
+ }
+ break;
+ case 26: //M26 - Set SD index
+ if(sdactive && code_seen('S')){
+ sdpos = code_value_long();
+ file.seekSet(sdpos);
+ }
+ break;
+ case 27: //M27 - Get SD status
+ if(sdactive){
+ Serial.print("SD printing byte ");
+ Serial.print(sdpos);
+ Serial.print("/");
+ Serial.println(filesize);
+ }
+ else{
+ Serial.println("Not SD printing");
+ }
+ break;
+ case 28: //M28 - Start SD write
+ if(sdactive){
+ char* npos = 0;
+ file.close();
+ sdmode = false;
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ npos = strchr(cmdbuffer[bufindr], 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos-1) = '\0';
+ }
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+ {
+ Serial.print("open failed, File: ");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(".");
+ }
+ else{
+ savetosd = true;
+ Serial.print("Writing to file: ");
+ Serial.println(strchr_pointer + 4);
+ }
+ }
+ break;
+ case 29: //M29 - Stop SD write
+ //processed in write to file routine above
+ //savetosd = false;
+ break;
+ case 30:
+ {
+ stoptime=millis();
+ char time[30];
+ unsigned long t=(stoptime-starttime)/1000;
+ int sec,min;
+ min=t/60;
+ sec=t%60;
+ sprintf(time,"%i min, %i sec",min,sec);
+ Serial.println(time);
+ LCD_MESSAGE(time);
- }
- break;
++ }
++ break;
+#endif //SDSUPPORT
+ case 42: //M42 -Change pin status via gcode
+ if (code_seen('S'))
+ {
+ int pin_status = code_value();
+ if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+ {
+ int pin_number = code_value();
- for(int i = 0; i < sizeof(sensitive_pins); i++)
++ for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
+ {
+ if (sensitive_pins[i] == pin_number)
+ {
+ pin_number = -1;
+ break;
+ }
+ }
+
+ if (pin_number > -1)
+ {
+ pinMode(pin_number, OUTPUT);
+ digitalWrite(pin_number, pin_status);
+ analogWrite(pin_number, pin_status);
+ }
+ }
+ }
+ break;
+ case 104: // M104
- if (code_seen('S')) target_raw[0] = temp2analog(code_value());
++ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
+#ifdef PIDTEMP
+ pid_setpoint = code_value();
+#endif //PIDTEM
+ #ifdef WATCHPERIOD
- if(target_raw[0] > current_raw[0]){
++ if(target_raw[TEMPSENSOR_HOTEND] > current_raw[TEMPSENSOR_HOTEND]){
+ watchmillis = max(1,millis());
- watch_raw = current_raw[0];
++ watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
+ }else{
+ watchmillis = 0;
+ }
+ #endif
+ break;
+ case 140: // M140 set bed temp
- if (code_seen('S')) target_raw[1] = temp2analogBed(code_value());
++ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
+ break;
+ case 105: // M105
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
- tt = analog2temp(current_raw[0]);
++ tt = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
+ #endif
+ #if TEMP_1_PIN > -1
- bt = analog2tempBed(current_raw[1]);
++ bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
+ #endif
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+ Serial.print("ok T:");
+ Serial.print(tt);
+// Serial.print(", raw:");
+// Serial.print(current_raw);
+ #if TEMP_1_PIN > -1
+#ifdef PIDTEMP
+ Serial.print(" B:");
+ #if TEMP_1_PIN > -1
+ Serial.println(bt);
+ #else
+ Serial.println(HeaterPower);
+ #endif
+#else
+ Serial.println();
+#endif
+ #else
+ Serial.println();
+ #endif
+ #else
+ Serial.println("No thermistors - no temp");
+ #endif
+ return;
+ //break;
+ case 109: {// M109 - Wait for extruder heater to reach target.
+ LCD_MESSAGE("Heating...");
- if (code_seen('S')) target_raw[0] = temp2analog(code_value());
++ if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
+ #ifdef PIDTEMP
+ pid_setpoint = code_value();
+ #endif //PIDTEM
+ #ifdef WATCHPERIOD
- if(target_raw[0]>current_raw[0]) {
++ if(target_raw[TEMPSENSOR_HOTEND]>current_raw[TEMPSENSOR_HOTEND]){
+ watchmillis = max(1,millis());
- watch_raw = current_raw[0];
++ watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
+ } else {
+ watchmillis = 0;
+ }
+ #endif //WATCHPERIOD
+ codenum = millis();
+
+ /* See if we are heating up or cooling down */
+ bool target_direction = (current_raw[0] < target_raw[0]); // true if heating, false if cooling
+
+ #ifdef TEMP_RESIDENCY_TIME
+ long residencyStart;
+ residencyStart = -1;
+ /* continue to loop until we have reached the target temp
+ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+ while((target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0])) ||
+ (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
+ #else
+ while ( target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0]) ) {
+ #endif //TEMP_RESIDENCY_TIME
+ if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
+ Serial.print("T:");
- Serial.println( analog2temp(current_raw[0]) );
++ Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND]) );
+ codenum = millis();
+ }
+ manage_heater();
+ LCD_STATUS;
+ #ifdef TEMP_RESIDENCY_TIME
+ /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+ or when current temp falls outside the hysteresis after target temp was reached */
+ if ((residencyStart == -1 && target_direction && current_raw[0] >= target_raw[0]) ||
+ (residencyStart == -1 && !target_direction && current_raw[0] <= target_raw[0]) ||
+ (residencyStart > -1 && labs(analog2temp(current_raw[0]) - analog2temp(target_raw[0])) > TEMP_HYSTERESIS) ) {
+ residencyStart = millis();
+ }
+ #endif //TEMP_RESIDENCY_TIME
- }
++ }
+ LCD_MESSAGE("Marlin ready.");
+ }
+ break;
+ case 190: // M190 - Wait bed for heater to reach target.
+ #if TEMP_1_PIN > -1
- if (code_seen('S')) target_raw[1] = temp2analog(code_value());
++ if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
+ codenum = millis();
- while(current_raw[1] < target_raw[1])
++ while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
+ {
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
- float tt=analog2temp(current_raw[0]);
++ float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND]);
+ Serial.print("T:");
+ Serial.println( tt );
+ Serial.print("ok T:");
+ Serial.print( tt );
+ Serial.print(" B:");
- Serial.println( analog2temp(current_raw[1]) );
++ Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
+ codenum = millis();
+ }
+ manage_heater();
+ }
+ #endif
+ break;
+#if FAN_PIN > -1
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=constrain(code_value(),0,255);
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ else {
+ WRITE(FAN_PIN,HIGH);
+ fanpwm=255;
+ analogWrite(FAN_PIN, fanpwm);
+ }
+ break;
+ case 107: //M107 Fan Off
+ WRITE(FAN_PIN,LOW);
+ analogWrite(FAN_PIN, 0);
+ break;
+#endif
+#if (PS_ON_PIN > -1)
+ case 80: // M80 - ATX Power On
+ SET_OUTPUT(PS_ON_PIN); //GND
+ break;
+ case 81: // M81 - ATX Power Off
+ SET_INPUT(PS_ON_PIN); //Floating
+ break;
+#endif
+ case 82:
+ axis_relative_modes[3] = false;
+ break;
+ case 83:
+ axis_relative_modes[3] = true;
+ break;
+ case 18:
+ case 84:
+ if(code_seen('S')){
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else{
+ st_synchronize();
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
+ break;
+ case 85: // M85
+ code_seen('S');
+ max_inactive_time = code_value() * 1000;
+ break;
+ case 92: // M92
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
+ }
+
+ break;
+ case 115: // M115
+ Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
+ break;
+ case 114: // M114
+ Serial.print("X:");
+ Serial.print(current_position[X_AXIS]);
+ Serial.print("Y:");
+ Serial.print(current_position[Y_AXIS]);
+ Serial.print("Z:");
+ Serial.print(current_position[Z_AXIS]);
+ Serial.print("E:");
+ Serial.print(current_position[E_AXIS]);
+ #ifdef DEBUG_STEPS
+ Serial.print(" Count X:");
+ Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
+ Serial.print("Y:");
+ Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
+ Serial.print("Z:");
+ Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
+ #endif
+ Serial.println("");
+ break;
+ case 119: // M119
+#if (X_MIN_PIN > -1)
+ Serial.print("x_min:");
+ Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (X_MAX_PIN > -1)
+ Serial.print("x_max:");
+ Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MIN_PIN > -1)
+ Serial.print("y_min:");
+ Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MAX_PIN > -1)
+ Serial.print("y_max:");
+ Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MIN_PIN > -1)
+ Serial.print("z_min:");
+ Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MAX_PIN > -1)
+ Serial.print("z_max:");
+ Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+ Serial.println("");
+ break;
+ //TODO: update for all axis, use for loop
+ case 201: // M201
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+#if 0 // Not used for Sprinter/grbl gen6
+ case 202: // M202
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+#endif
+ case 203: // M203 max feedrate mm/sec
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
+ }
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ {
+ if(code_seen('S')) acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ }
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ {
+ if(code_seen('S')) minimumfeedrate = code_value()*60 ;
+ if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
+ if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_xy_jerk = code_value()*60 ;
+ if(code_seen('Z')) max_z_jerk = code_value()*60 ;
+ }
+ break;
+ case 220: // M220 S<factor in percent>- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ feedmultiplychanged=true;
+ }
+ }
+ break;
+#ifdef PIDTEMP
+ case 301: // M301
+ if(code_seen('P')) Kp = code_value();
+ if(code_seen('I')) Ki = code_value()*PID_dT;
+ if(code_seen('D')) Kd = code_value()/PID_dT;
+// ECHOLN("Kp "<<_FLOAT(Kp,2));
+// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
+// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
+
+// temp_iState_min = 0.0;
+// if (Ki!=0) {
+// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
+// }
+// else temp_iState_max = 1.0e10;
+ break;
+#endif //PIDTEMP
+ case 500: // Store settings in EEPROM
+ {
+ StoreSettings();
+ }
+ break;
+ case 501: // Read settings from EEPROM
+ {
+ RetrieveSettings();
+ }
+ break;
+ case 502: // Revert to default settings
+ {
+ RetrieveSettings(true);
+ }
+ break;
+
+ }
+ }
+ else{
+ Serial.println("Unknown command:");
+ Serial.println(cmdbuffer[bufindr]);
+ }
+
+ ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+ //char cmdbuffer[bufindr][100]="Resend:";
+ Serial.flush();
+ Serial.print("Resend:");
+ Serial.println(gcode_LastN + 1);
+ ClearToSend();
+}
+
+void ClearToSend()
+{
+ previous_millis_cmd = millis();
+#ifdef SDSUPPORT
+ if(fromsd[bufindr])
+ return;
+#endif //SDSUPPORT
+ Serial.println("ok");
+}
+
+inline void get_coordinates()
+{
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
+ if(code_seen('F')) {
+ next_feedrate = code_value();
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
+ }
+}
+
+void prepare_move()
+{
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
+ for(int i=0; i < NUM_AXIS; i++) {
+ current_position[i] = destination[i];
+ }
+}
+
+
+
+#ifdef USE_WATCHDOG
+
+#include <avr/wdt.h>
+#include <avr/interrupt.h>
+
+volatile uint8_t timeout_seconds=0;
+
+void(* ctrlaltdelete) (void) = 0;
+
+ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
+ if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
+ {
+ kill();
+#ifdef RESET_MANUAL
+ LCD_MESSAGE("Please Reset!");
+ ECHOLN("echo_: Something is wrong, please turn off the printer.");
+#else
+ LCD_MESSAGE("Timeout, resetting!");
+#endif
+ //disable watchdog, it will survife reboot.
+ WDTCSR |= (1<<WDCE) | (1<<WDE);
+ WDTCSR = 0;
+#ifdef RESET_MANUAL
+ while(1); //wait for user or serial reset
+#else
+ ctrlaltdelete();
+#endif
+ }
+}
+
+/// intialise watch dog with a 1 sec interrupt time
+void wd_init() {
+ WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
+ WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
+}
+
+/// reset watchdog. MUST be called every 1s after init or avr will reset.
+void wd_reset() {
+ wdt_reset();
+ timeout_seconds=0; //reset counter for resets
+}
+#endif /* USE_WATCHDOG */
+
+
+inline void kill()
+{
+ #if TEMP_0_PIN > -1
+ target_raw[0]=0;
+ #if HEATER_0_PIN > -1
+ WRITE(HEATER_0_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_1_PIN > -1
+ target_raw[1]=0;
+ #if HEATER_1_PIN > -1
+ WRITE(HEATER_1_PIN,LOW);
+ #endif
+ #endif
+ #if TEMP_2_PIN > -1
+ target_raw[2]=0;
+ #if HEATER_2_PIN > -1
+ WRITE(HEATER_2_PIN,LOW);
+ #endif
+ #endif
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+ Serial.println("!! Printer halted. kill() called!!");
+ while(1); // Wait for reset
+}
+
+void manage_inactivity(byte debug) {
+ if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
+ if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
+ check_axes_activity();
+}
-/*\r
- temperature.c - temperature control\r
- Part of Marlin\r
- \r
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm\r
- \r
- This program is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
- \r
- This program is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
- \r
- You should have received a copy of the GNU General Public License\r
- along with this program. If not, see <http://www.gnu.org/licenses/>.\r
- */\r
-\r
-/*\r
- This firmware is a mashup between Sprinter and grbl.\r
- (https://github.com/kliment/Sprinter)\r
- (https://github.com/simen/grbl/tree)\r
- \r
- It has preliminary support for Matthew Roberts advance algorithm \r
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html\r
-\r
- This firmware is optimized for gen6 electronics.\r
- */\r
-\r
-#include "fastio.h"\r
-#include "Configuration.h"\r
-#include "pins.h"\r
-#include "Marlin.h"\r
-#include "ultralcd.h"\r
-#include "streaming.h"\r
-#include "temperature.h"\r
-\r
-int target_bed_raw = 0;\r
-int current_bed_raw = 0;\r
-\r
-int target_raw[3] = {0, 0, 0};\r
-int current_raw[3] = {0, 0, 0};\r
-unsigned char temp_meas_ready = false;\r
-\r
-unsigned long previous_millis_heater, previous_millis_bed_heater;\r
-\r
-#ifdef PIDTEMP\r
- double temp_iState = 0;\r
- double temp_dState = 0;\r
- double pTerm;\r
- double iTerm;\r
- double dTerm;\r
- //int output;\r
- double pid_error;\r
- double temp_iState_min;\r
- double temp_iState_max;\r
- double pid_setpoint = 0.0;\r
- double pid_input;\r
- double pid_output;\r
- bool pid_reset;\r
- float HeaterPower;\r
- \r
- float Kp=DEFAULT_Kp;\r
- float Ki=DEFAULT_Ki;\r
- float Kd=DEFAULT_Kd;\r
- float Kc=DEFAULT_Kc;\r
-#endif //PIDTEMP\r
-\r
-#ifdef MINTEMP\r
-int minttemp = temp2analog(MINTEMP);\r
-#endif //MINTEMP\r
-#ifdef MAXTEMP\r
-int maxttemp = temp2analog(MAXTEMP);\r
-#endif //MAXTEMP\r
-\r
-#ifdef BED_MINTEMP\r
-int bed_minttemp = temp2analog(BED_MINTEMP);\r
-#endif //BED_MINTEMP\r
-#ifdef BED_MAXTEMP\r
-int bed_maxttemp = temp2analog(BED_MAXTEMP);\r
-#endif //BED_MAXTEMP\r
-\r
-void manage_heater()\r
-{\r
-#ifdef USE_WATCHDOG\r
- wd_reset();\r
-#endif\r
- \r
- float pid_input;\r
- float pid_output;\r
- if(temp_meas_ready != true) //better readability\r
- return; \r
-\r
-CRITICAL_SECTION_START;\r
- temp_meas_ready = false;\r
-CRITICAL_SECTION_END;\r
-\r
-#ifdef PIDTEMP\r
- pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND]);\r
-\r
-#ifndef PID_OPENLOOP\r
- pid_error = pid_setpoint - pid_input;\r
- if(pid_error > 10){\r
- pid_output = PID_MAX;\r
- pid_reset = true;\r
- }\r
- else if(pid_error < -10) {\r
- pid_output = 0;\r
- pid_reset = true;\r
- }\r
- else {\r
- if(pid_reset == true) {\r
- temp_iState = 0.0;\r
- pid_reset = false;\r
- }\r
- pTerm = Kp * pid_error;\r
- temp_iState += pid_error;\r
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);\r
- iTerm = Ki * temp_iState;\r
- //K1 defined in Configuration.h in the PID settings\r
- #define K2 (1.0-K1)\r
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);\r
- temp_dState = pid_input;\r
- #ifdef PID_ADD_EXTRUSION_RATE\r
- pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high\r
- #endif\r
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);\r
- }\r
-#endif //PID_OPENLOOP\r
-#ifdef PID_DEBUG\r
- Serial.print(" Input ");\r
- Serial.print(pid_input);\r
- Serial.print(" Output ");\r
- Serial.print(pid_output); \r
- Serial.print(" pTerm ");\r
- Serial.print(pTerm); \r
- Serial.print(" iTerm ");\r
- Serial.print(iTerm); \r
- Serial.print(" dTerm ");\r
- Serial.print(dTerm); \r
- Serial.println();\r
-#endif //PID_DEBUG\r
- analogWrite(HEATER_0_PIN, pid_output);\r
-#endif //PIDTEMP\r
-\r
-#ifndef PIDTEMP\r
- if(current_raw[0] >= target_raw[0])\r
- {\r
- WRITE(HEATER_0_PIN,LOW);\r
- }\r
- else \r
- {\r
- WRITE(HEATER_0_PIN,HIGH);\r
- }\r
-#endif\r
- \r
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)\r
- return;\r
- previous_millis_bed_heater = millis();\r
- \r
- #if TEMP_1_PIN > -1\r
- if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])\r
- {\r
- WRITE(HEATER_1_PIN,LOW);\r
- }\r
- else \r
- {\r
- WRITE(HEATER_1_PIN,HIGH);\r
- }\r
- #endif\r
- }\r
-\r
-// Takes hot end temperature value as input and returns corresponding raw value. \r
-// For a thermistor, it uses the RepRap thermistor temp table.\r
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
-float temp2analog(int celsius) {\r
- #ifdef HEATER_USES_THERMISTOR_1\r
- int raw = 0;\r
- byte i;\r
- \r
- for (i=1; i<NUMTEMPS_HEATER_1; i++)\r
- {\r
- if (temptable_1[i][1] < celsius)\r
- {\r
- raw = temptable_1[i-1][0] + \r
- (celsius - temptable_1[i-1][1]) * \r
- (temptable_1[i][0] - temptable_1[i-1][0]) /\r
- (temptable_1[i][1] - temptable_1[i-1][1]);\r
- \r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == NUMTEMPS_1) raw = temptable_1[i-1][0];\r
-\r
- return (1023 * OVERSAMPLENR) - raw;\r
- #elif defined HEATER_1_USES_AD595\r
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Takes bed temperature value as input and returns corresponding raw value. \r
-// For a thermistor, it uses the RepRap thermistor temp table.\r
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
-float temp2analogBed(int celsius) {\r
- #ifdef BED_USES_THERMISTOR\r
-\r
- int raw = 0;\r
- byte i;\r
- \r
- for (i=1; i<BNUMTEMPS; i++)\r
- {\r
- if (bedtemptable[i][1] < celsius)\r
- {\r
- raw = bedtemptable[i-1][0] + \r
- (celsius - bedtemptable[i-1][1]) * \r
- (bedtemptable[i][0] - bedtemptable[i-1][0]) /\r
- (bedtemptable[i][1] - bedtemptable[i-1][1]);\r
- \r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];\r
-\r
- return (1023 * OVERSAMPLENR) - raw;\r
- #elif defined BED_USES_AD595\r
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Derived from RepRap FiveD extruder::getTemperature()\r
-// For hot end temperature measurement.\r
-float analog2temp(int raw) {\r
- #ifdef HEATER_1_USES_THERMISTOR\r
- int celsius = 0;\r
- byte i; \r
- raw = (1023 * OVERSAMPLENR) - raw;\r
- for (i=1; i<NUMTEMPS_HEATER_1; i++)\r
- {\r
- if (temptable_1[i][0] > raw)\r
- {\r
- celsius = temptable_1[i-1][1] + \r
- (raw - temptable_1[i-1][0]) * \r
- (temptable_1[i][1] - temptable_1[i-1][1]) /\r
- (temptable_1[i][0] - temptable_1[i-1][0]);\r
-\r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == NUMTEMPS_HEATER_1) celsius = temptable_1[i-1][1];\r
-\r
- return celsius;\r
- #elif defined HEATER_1_USES_AD595\r
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Derived from RepRap FiveD extruder::getTemperature()\r
-// For bed temperature measurement.\r
-float analog2tempBed(int raw) {\r
- #ifdef BED_USES_THERMISTOR\r
- int celsius = 0;\r
- byte i;\r
-\r
- raw = (1023 * OVERSAMPLENR) - raw;\r
-\r
- for (i=1; i<BNUMTEMPS; i++)\r
- {\r
- if (bedtemptable[i][0] > raw)\r
- {\r
- celsius = bedtemptable[i-1][1] + \r
- (raw - bedtemptable[i-1][0]) * \r
- (bedtemptable[i][1] - bedtemptable[i-1][1]) /\r
- (bedtemptable[i][0] - bedtemptable[i-1][0]);\r
-\r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];\r
-\r
- return celsius;\r
- \r
- #elif defined BED_USES_AD595\r
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-void tp_init()\r
-{\r
-#if (HEATER_0_PIN > -1) \r
- SET_OUTPUT(HEATER_0_PIN);\r
-#endif \r
-#if (HEATER_1_PIN > -1) \r
- SET_OUTPUT(HEATER_1_PIN);\r
-#endif \r
-#if (HEATER_2_PIN > -1) \r
- SET_OUTPUT(HEATER_2_PIN);\r
-#endif \r
-\r
-#ifdef PIDTEMP\r
- temp_iState_min = 0.0;\r
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;\r
-#endif //PIDTEMP\r
-\r
-// Set analog inputs\r
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;\r
- \r
-// Use timer0 for temperature measurement\r
-// Interleave temperature interrupt with millies interrupt\r
- OCR0B = 128;\r
- TIMSK0 |= (1<<OCIE0B); \r
-}\r
-\r
-\r
-\r
-// Timer 0 is shared with millies\r
-ISR(TIMER0_COMPB_vect)\r
-{\r
- //these variables are only accesible from the ISR, but static, so they don't loose their value\r
- static unsigned char temp_count = 0;\r
- static unsigned long raw_temp_0_value = 0;\r
- static unsigned long raw_temp_1_value = 0;\r
- static unsigned long raw_temp_2_value = 0;\r
- static unsigned char temp_state = 0;\r
- \r
- switch(temp_state) {\r
- case 0: // Prepare TEMP_0\r
- #if (TEMP_0_PIN > -1)\r
- #if TEMP_0_PIN < 8\r
- DIDR0 = 1 << TEMP_0_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_0_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 1;\r
- break;\r
- case 1: // Measure TEMP_0\r
- #if (TEMP_0_PIN > -1)\r
- raw_temp_0_value += ADC;\r
- #endif\r
- temp_state = 2;\r
- break;\r
- case 2: // Prepare TEMP_1\r
- #if (TEMP_1_PIN > -1)\r
- #if TEMP_1_PIN < 7\r
- DIDR0 = 1<<TEMP_1_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_1_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 3;\r
- break;\r
- case 3: // Measure TEMP_1\r
- #if (TEMP_1_PIN > -1)\r
- raw_temp_1_value += ADC;\r
- #endif\r
- temp_state = 4;\r
- break;\r
- case 4: // Prepare TEMP_2\r
- #if (TEMP_2_PIN > -1)\r
- #if TEMP_2_PIN < 7\r
- DIDR0 = 1 << TEMP_2_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_2_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 5;\r
- break;\r
- case 5: // Measure TEMP_2\r
- #if (TEMP_2_PIN > -1)\r
- raw_temp_2_value += ADC;\r
- #endif\r
- temp_state = 0;\r
- temp_count++;\r
- break;\r
- default:\r
- Serial.println("!! Temp measurement error !!");\r
- break;\r
- }\r
- \r
- if(temp_count >= 16) // 6 ms * 16 = 96ms.\r
- {\r
- #ifdef HEATER_1_USES_AD595\r
- current_raw[0] = raw_temp_0_value;\r
- #else\r
- current_raw[0] = 16383 - raw_temp_0_value;\r
- #endif\r
- \r
- #ifdef HEATER_2_USES_AD595\r
- current_raw[2] = raw_temp_2_value;\r
- #else\r
- current_raw[2] = 16383 - raw_temp_2_value;\r
- #endif\r
- \r
- #ifdef BED_USES_AD595\r
- current_raw[1] = raw_temp_1_value;\r
- #else\r
- current_raw[1] = 16383 - raw_temp_1_value;\r
- #endif\r
- \r
- temp_meas_ready = true;\r
- temp_count = 0;\r
- raw_temp_0_value = 0;\r
- raw_temp_1_value = 0;\r
- raw_temp_2_value = 0;\r
-#ifdef MAXTEMP\r
- #if (HEATER_0_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND] >= maxttemp) {\r
- target_raw[TEMPSENSOR_HOTEND] = 0;\r
- analogWrite(HEATER_0_PIN, 0);\r
- Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");\r
- }\r
- #endif\r
- #if (HEATER_2_PIN > -1)\r
- if(current_raw[TEMPSENSOR_AUX] >= maxttemp) {\r
- target_raw[TEMPSENSOR_AUX] = 0;\r
- analogWrite(HEATER_2_PIN, 0);\r
- Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");\r
- }\r
- #endif\r
-#endif //MAXTEMP\r
-#ifdef MINTEMP\r
- #if (HEATER_0_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND] <= minttemp) {\r
- target_raw[TEMPSENSOR_HOTEND] = 0;\r
- analogWrite(HEATER_0_PIN, 0);\r
- Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");\r
- }\r
- #endif\r
- #if (HEATER_2_PIN > -1)\r
- if(current_raw[TEMPSENSOR_AUX] <= minttemp) {\r
- target_raw[TEMPSENSOR_AUX] = 0;\r
- analogWrite(HEATER_2_PIN, 0);\r
- Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");\r
- }\r
- #endif\r
-#endif //MAXTEMP\r
-#ifdef BED_MINTEMP\r
- #if (HEATER_1_PIN > -1)\r
- if(current_raw[1] <= bed_minttemp) {\r
- target_raw[1] = 0;\r
- WRITE(HEATER_1_PIN, 0);\r
- Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");\r
- }\r
- #endif\r
-#endif\r
-#ifdef BED_MAXTEMP\r
- #if (HEATER_1_PIN > -1)\r
- if(current_raw[1] >= bed_maxttemp) {\r
- target_raw[1] = 0;\r
- WRITE(HEATER_1_PIN, 0);\r
- Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");\r
- }\r
- #endif\r
-#endif\r
- }\r
-}\r
+/*
+ temperature.c - temperature control
+ Part of Marlin
+
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+
+ This firmware is optimized for gen6 electronics.
+ */
+
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "temperature.h"
+
+int target_bed_raw = 0;
+int current_bed_raw = 0;
+
+int target_raw[3] = {0, 0, 0};
+int current_raw[3] = {0, 0, 0};
+unsigned char temp_meas_ready = false;
+
+unsigned long previous_millis_heater, previous_millis_bed_heater;
+
+#ifdef PIDTEMP
+ double temp_iState = 0;
+ double temp_dState = 0;
+ double pTerm;
+ double iTerm;
+ double dTerm;
+ //int output;
+ double pid_error;
+ double temp_iState_min;
+ double temp_iState_max;
+ double pid_setpoint = 0.0;
+ double pid_input;
+ double pid_output;
+ bool pid_reset;
+ float HeaterPower;
+
+ float Kp=DEFAULT_Kp;
+ float Ki=DEFAULT_Ki;
+ float Kd=DEFAULT_Kd;
+ float Kc=DEFAULT_Kc;
+#endif //PIDTEMP
+
+#ifdef HEATER_0_MINTEMP
+int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
+#endif //MINTEMP
+#ifdef HEATER_0_MAXTEMP
+int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
+#endif //MAXTEMP
+
+#ifdef HEATER_1_MINTEMP
+int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
+#endif //MINTEMP
+#ifdef HEATER_1_MAXTEMP
+int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
+#endif //MAXTEMP
+
+#ifdef BED_MINTEMP
+int bed_minttemp = temp2analog(BED_MINTEMP);
+#endif //BED_MINTEMP
+#ifdef BED_MAXTEMP
+int bed_maxttemp = temp2analog(BED_MAXTEMP);
+#endif //BED_MAXTEMP
+
+void manage_heater()
+{
+#ifdef USE_WATCHDOG
+ wd_reset();
+#endif
+
+ float pid_input;
+ float pid_output;
- if(temp_meas_ready == true) {
++ if(temp_meas_ready != true) //better readability
++ return;
+
+CRITICAL_SECTION_START;
+ temp_meas_ready = false;
+CRITICAL_SECTION_END;
+
+#ifdef PIDTEMP
- pid_input = analog2temp(current_raw[0]);
++ pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
+
+#ifndef PID_OPENLOOP
+ pid_error = pid_setpoint - pid_input;
+ if(pid_error > 10){
+ pid_output = PID_MAX;
+ pid_reset = true;
+ }
+ else if(pid_error < -10) {
+ pid_output = 0;
+ pid_reset = true;
+ }
+ else {
+ if(pid_reset == true) {
+ temp_iState = 0.0;
+ pid_reset = false;
+ }
+ pTerm = Kp * pid_error;
+ temp_iState += pid_error;
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
+ iTerm = Ki * temp_iState;
- #define K1 0.95
++ //K1 defined in Configuration.h in the PID settings
+ #define K2 (1.0-K1)
+ dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
+ temp_dState = pid_input;
++ #ifdef PID_ADD_EXTRUSION_RATE
++ pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
++ #endif
+ pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
+ }
+#endif //PID_OPENLOOP
+#ifdef PID_DEBUG
+ Serial.print(" Input ");
+ Serial.print(pid_input);
+ Serial.print(" Output ");
+ Serial.print(pid_output);
+ Serial.print(" pTerm ");
+ Serial.print(pTerm);
+ Serial.print(" iTerm ");
+ Serial.print(iTerm);
+ Serial.print(" dTerm ");
+ Serial.print(dTerm);
+ Serial.println();
+#endif //PID_DEBUG
+ analogWrite(HEATER_0_PIN, pid_output);
+#endif //PIDTEMP
+
+#ifndef PIDTEMP
+ if(current_raw[0] >= target_raw[0])
+ {
+ WRITE(HEATER_0_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_0_PIN,HIGH);
+ }
+#endif
+
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
+ return;
+ previous_millis_bed_heater = millis();
+
+ #if TEMP_1_PIN > -1
- if(current_raw[1] >= target_raw[1])
++ if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
+ {
+ WRITE(HEATER_1_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_1_PIN,HIGH);
+ }
+ #endif
+ }
- }
+
+// Takes hot end temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+int temp2analog(int celsius) {
+ #ifdef HEATER_0_USES_THERMISTOR
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)
+ {
+ if (heater_0_temptable[i][1] < celsius)
+ {
+ raw = heater_0_temptable[i-1][0] +
+ (celsius - heater_0_temptable[i-1][1]) *
+ (heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
+ (heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS_0) raw = heater_0_temptable[i-1][0];
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined HEATER_0_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Takes bed temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+int temp2analogBed(int celsius) {
+ #ifdef BED_USES_THERMISTOR
+
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (bedtemptable[i][1] < celsius)
+ {
+ raw = bedtemptable[i-1][0] +
+ (celsius - bedtemptable[i-1][1]) *
+ (bedtemptable[i][0] - bedtemptable[i-1][0]) /
+ (bedtemptable[i][1] - bedtemptable[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined BED_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For hot end temperature measurement.
+float analog2temp(int raw) {
+ #ifdef HEATER_0_USES_THERMISTOR
+ float celsius = 0;
+ byte i;
+ raw = (1023 * OVERSAMPLENR) - raw;
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)
+ {
+ if (heater_0_temptable[i][0] > raw)
+ {
+ celsius = heater_0_temptable[i-1][1] +
+ (raw - heater_0_temptable[i-1][0]) *
+ (float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
+ (float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
+
+ return celsius;
+ #elif defined HEATER_0_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For bed temperature measurement.
+float analog2tempBed(int raw) {
+ #ifdef BED_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+
+ raw = (1023 * OVERSAMPLENR) - raw;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (bedtemptable[i][0] > raw)
+ {
+ celsius = bedtemptable[i-1][1] +
+ (raw - bedtemptable[i-1][0]) *
+ (bedtemptable[i][1] - bedtemptable[i-1][1]) /
+ (bedtemptable[i][0] - bedtemptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
+
+ return celsius;
+
+ #elif defined BED_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+void tp_init()
+{
+#if (HEATER_0_PIN > -1)
+ SET_OUTPUT(HEATER_0_PIN);
+#endif
+#if (HEATER_1_PIN > -1)
+ SET_OUTPUT(HEATER_1_PIN);
+#endif
+#if (HEATER_2_PIN > -1)
+ SET_OUTPUT(HEATER_2_PIN);
+#endif
+
+#ifdef PIDTEMP
+ temp_iState_min = 0.0;
+ temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
+#endif //PIDTEMP
+
+// Set analog inputs
+ ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
+
+// Use timer0 for temperature measurement
+// Interleave temperature interrupt with millies interrupt
+ OCR0B = 128;
+ TIMSK0 |= (1<<OCIE0B);
+}
+
- static unsigned char temp_count = 0;
- static unsigned long raw_temp_0_value = 0;
- static unsigned long raw_temp_1_value = 0;
- static unsigned long raw_temp_2_value = 0;
- static unsigned char temp_state = 0;
++
+
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPB_vect)
+{
++ //these variables are only accesible from the ISR, but static, so they don't loose their value
++ static unsigned char temp_count = 0;
++ static unsigned long raw_temp_0_value = 0;
++ static unsigned long raw_temp_1_value = 0;
++ static unsigned long raw_temp_2_value = 0;
++ static unsigned char temp_state = 0;
++
+ switch(temp_state) {
+ case 0: // Prepare TEMP_0
+ #if (TEMP_0_PIN > -1)
+ #if TEMP_0_PIN < 8
+ DIDR0 = 1 << TEMP_0_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_0_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 1;
+ break;
+ case 1: // Measure TEMP_0
+ #if (TEMP_0_PIN > -1)
+ raw_temp_0_value += ADC;
+ #endif
+ temp_state = 2;
+ break;
+ case 2: // Prepare TEMP_1
+ #if (TEMP_1_PIN > -1)
+ #if TEMP_1_PIN < 7
+ DIDR0 = 1<<TEMP_1_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_1_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 3;
+ break;
+ case 3: // Measure TEMP_1
+ #if (TEMP_1_PIN > -1)
+ raw_temp_1_value += ADC;
+ #endif
+ temp_state = 4;
+ break;
+ case 4: // Prepare TEMP_2
+ #if (TEMP_2_PIN > -1)
+ #if TEMP_2_PIN < 7
+ DIDR0 = 1 << TEMP_2_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_2_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 5;
+ break;
+ case 5: // Measure TEMP_2
+ #if (TEMP_2_PIN > -1)
+ raw_temp_2_value += ADC;
+ #endif
+ temp_state = 0;
+ temp_count++;
+ break;
+ default:
+ Serial.println("!! Temp measurement error !!");
+ break;
+ }
+
+ if(temp_count >= 16) // 6 ms * 16 = 96ms.
+ {
+ #ifdef HEATER_0_USES_AD595
+ current_raw[0] = raw_temp_0_value;
+ #else
+ current_raw[0] = 16383 - raw_temp_0_value;
+ #endif
+
+ #ifdef HEATER_1_USES_AD595
+ current_raw[2] = raw_temp_2_value;
+ #else
+ current_raw[2] = 16383 - raw_temp_2_value;
+ #endif
+
+ #ifdef BED_USES_AD595
+ current_raw[1] = raw_temp_1_value;
+ #else
+ current_raw[1] = 16383 - raw_temp_1_value;
+ #endif
+
+ temp_meas_ready = true;
+ temp_count = 0;
+ raw_temp_0_value = 0;
+ raw_temp_1_value = 0;
+ raw_temp_2_value = 0;
+#ifdef HEATER_0_MAXTEMP
+ #if (HEATER_0_PIN > -1)
- if(current_raw[0] >= maxttemp_0) {
- target_raw[0] = 0;
++ if(current_raw[TEMPSENSOR_HOTEND] >= maxttemp) {
++ target_raw[TEMPSENSOR_HOTEND] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
+ kill();
+ }
+ #endif
+#endif
- #ifdef HEATER_1_MAXTEMP
- #if (HEATER_1_PIN > -1)
++ if(current_raw[TEMPSENSOR_AUX] >= maxttemp) {
++ target_raw[TEMPSENSOR_AUX] = 0;
+ if(current_raw[2] >= maxttemp_1) {
- target_raw[2] = 0;
+ analogWrite(HEATER_2_PIN, 0);
+ Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
+ kill()
+ }
+ #endif
+#endif //MAXTEMP
+#ifdef HEATER_0_MINTEMP
+ #if (HEATER_0_PIN > -1)
- if(current_raw[0] <= minttemp_0) {
- target_raw[0] = 0;
++ if(current_raw[TEMPSENSOR_HOTEND] <= minttemp) {
++ target_raw[TEMPSENSOR_HOTEND] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+#endif
+#ifdef HEATER_1_MINTEMP
+ #if (HEATER_2_PIN > -1)
- if(current_raw[2] <= minttemp_1) {
- target_raw[2] = 0;
++ if(current_raw[TEMPSENSOR_AUX] <= minttemp) {
++ target_raw[TEMPSENSOR_AUX] = 0;
+ analogWrite(HEATER_2_PIN, 0);
+ Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+#endif //MAXTEMP
+#ifdef BED_MINTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] <= bed_minttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+#endif
+#ifdef BED_MAXTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] >= bed_maxttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
+ kill();
+ }
+ #endif
+#endif
+ }
+}
-/*\r
- temperature.h - temperature controller\r
- Part of Marlin\r
-\r
- Copyright (c) 2011 Erik van der Zalm\r
-\r
- Grbl is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
-\r
- Grbl is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
-\r
- You should have received a copy of the GNU General Public License\r
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.\r
-*/\r
-\r
-#ifndef temperature_h\r
-#define temperature_h \r
-\r
-#include "Marlin.h"\r
-#ifdef PID_ADD_EXTRUSION_RATE\r
- #include "stepper.h"\r
-#endif\r
-void tp_init();\r
-void manage_heater();\r
-//int temp2analogu(int celsius, const short table[][2], int numtemps);\r
-//float analog2tempu(int raw, const short table[][2], int numtemps);\r
-float temp2analog(int celsius);\r
-float temp2analogBed(int celsius);\r
-float analog2temp(int raw);\r
-float analog2tempBed(int raw);\r
-\r
-#ifdef HEATER_USES_THERMISTOR\r
- #define HEATERSOURCE 1\r
-#endif\r
-#ifdef BED_USES_THERMISTOR\r
- #define BEDSOURCE 1\r
-#endif\r
-\r
-//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)\r
-//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS\r
-\r
-\r
-extern float Kp;\r
-extern float Ki;\r
-extern float Kd;\r
-extern float Kc;\r
-\r
-enum {TEMPSENSOR_HOTEND=0,TEMPSENSOR_BED=1, TEMPSENSOR_AUX=2};\r
-extern int target_raw[3];\r
-extern int current_raw[3];\r
-extern double pid_setpoint;\r
-\r
-#endif\r
+/*
+ temperature.h - temperature controller
+ Part of Marlin
+
+ Copyright (c) 2011 Erik van der Zalm
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef temperature_h
+#define temperature_h
+
- void manage_inactivity(byte debug);
-
++#include "Marlin.h"
++#ifdef PID_ADD_EXTRUSION_RATE
++ #include "stepper.h"
++#endif
+void tp_init();
+void manage_heater();
+//int temp2analogu(int celsius, const short table[][2], int numtemps);
+//float analog2tempu(int raw, const short table[][2], int numtemps);
+int temp2analog(int celsius);
+int temp2analogBed(int celsius);
+float analog2temp(int raw);
+float analog2tempBed(int raw);
+
+#ifdef HEATER_USES_THERMISTOR
+ #define HEATERSOURCE 1
+#endif
+#ifdef BED_USES_THERMISTOR
+ #define BEDSOURCE 1
+#endif
+
+//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
+//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
+
+
+extern float Kp;
+extern float Ki;
+extern float Kd;
+extern float Kc;
+
++enum {TEMPSENSOR_HOTEND=0,TEMPSENSOR_BED=1, TEMPSENSOR_AUX=2};
+extern int target_raw[3];
+extern int current_raw[3];
+extern double pid_setpoint;
+
+#endif
-#ifndef THERMISTORTABLES_H_\r
-#define THERMISTORTABLES_H_\r
-\r
-#define OVERSAMPLENR 16\r
-\r
-#if (THERMISTORHEATER_1 == 1) || (THERMISTORHEATER_2 == 1) || (THERMISTORBED == 1) //100k bed thermistor\r
-\r
-#define NUMTEMPS_1 61\r
-const short temptable_1[NUMTEMPS_1][2] = {\r
-{ 23*OVERSAMPLENR , 300 },\r
-{ 25*OVERSAMPLENR , 295 },\r
-{ 27*OVERSAMPLENR , 290 },\r
-{ 28*OVERSAMPLENR , 285 },\r
-{ 31*OVERSAMPLENR , 280 },\r
-{ 33*OVERSAMPLENR , 275 },\r
-{ 35*OVERSAMPLENR , 270 },\r
-{ 38*OVERSAMPLENR , 265 },\r
-{ 41*OVERSAMPLENR , 260 },\r
-{ 44*OVERSAMPLENR , 255 },\r
-{ 48*OVERSAMPLENR , 250 },\r
-{ 52*OVERSAMPLENR , 245 },\r
-{ 56*OVERSAMPLENR , 240 },\r
-{ 61*OVERSAMPLENR , 235 },\r
-{ 66*OVERSAMPLENR , 230 },\r
-{ 71*OVERSAMPLENR , 225 },\r
-{ 78*OVERSAMPLENR , 220 },\r
-{ 84*OVERSAMPLENR , 215 },\r
-{ 92*OVERSAMPLENR , 210 },\r
-{ 100*OVERSAMPLENR , 205 },\r
-{ 109*OVERSAMPLENR , 200 },\r
-{ 120*OVERSAMPLENR , 195 },\r
-{ 131*OVERSAMPLENR , 190 },\r
-{ 143*OVERSAMPLENR , 185 },\r
-{ 156*OVERSAMPLENR , 180 },\r
-{ 171*OVERSAMPLENR , 175 },\r
-{ 187*OVERSAMPLENR , 170 },\r
-{ 205*OVERSAMPLENR , 165 },\r
-{ 224*OVERSAMPLENR , 160 },\r
-{ 245*OVERSAMPLENR , 155 },\r
-{ 268*OVERSAMPLENR , 150 },\r
-{ 293*OVERSAMPLENR , 145 },\r
-{ 320*OVERSAMPLENR , 140 },\r
-{ 348*OVERSAMPLENR , 135 },\r
-{ 379*OVERSAMPLENR , 130 },\r
-{ 411*OVERSAMPLENR , 125 },\r
-{ 445*OVERSAMPLENR , 120 },\r
-{ 480*OVERSAMPLENR , 115 },\r
-{ 516*OVERSAMPLENR , 110 },\r
-{ 553*OVERSAMPLENR , 105 },\r
-{ 591*OVERSAMPLENR , 100 },\r
-{ 628*OVERSAMPLENR , 95 },\r
-{ 665*OVERSAMPLENR , 90 },\r
-{ 702*OVERSAMPLENR , 85 },\r
-{ 737*OVERSAMPLENR , 80 },\r
-{ 770*OVERSAMPLENR , 75 },\r
-{ 801*OVERSAMPLENR , 70 },\r
-{ 830*OVERSAMPLENR , 65 },\r
-{ 857*OVERSAMPLENR , 60 },\r
-{ 881*OVERSAMPLENR , 55 },\r
-{ 903*OVERSAMPLENR , 50 },\r
-{ 922*OVERSAMPLENR , 45 },\r
-{ 939*OVERSAMPLENR , 40 },\r
-{ 954*OVERSAMPLENR , 35 },\r
-{ 966*OVERSAMPLENR , 30 },\r
-{ 977*OVERSAMPLENR , 25 },\r
-{ 985*OVERSAMPLENR , 20 },\r
-{ 993*OVERSAMPLENR , 15 },\r
-{ 999*OVERSAMPLENR , 10 },\r
-{ 1004*OVERSAMPLENR , 5 },\r
-{ 1008*OVERSAMPLENR , 0 } //safety\r
-};\r
-#endif\r
-#if (THERMISTORHEATER_1 == 2) || (THERMISTORHEATER_2 == 2) || (THERMISTORBED == 2) //200k bed thermistor\r
-#define NUMTEMPS_2 21\r
-const short temptable_2[NUMTEMPS_2][2] = {\r
- {1*OVERSAMPLENR, 848},\r
- {54*OVERSAMPLENR, 275},\r
- {107*OVERSAMPLENR, 228},\r
- {160*OVERSAMPLENR, 202},\r
- {213*OVERSAMPLENR, 185},\r
- {266*OVERSAMPLENR, 171},\r
- {319*OVERSAMPLENR, 160},\r
- {372*OVERSAMPLENR, 150},\r
- {425*OVERSAMPLENR, 141},\r
- {478*OVERSAMPLENR, 133},\r
- {531*OVERSAMPLENR, 125},\r
- {584*OVERSAMPLENR, 118},\r
- {637*OVERSAMPLENR, 110},\r
- {690*OVERSAMPLENR, 103},\r
- {743*OVERSAMPLENR, 95},\r
- {796*OVERSAMPLENR, 86},\r
- {849*OVERSAMPLENR, 77},\r
- {902*OVERSAMPLENR, 65},\r
- {955*OVERSAMPLENR, 49},\r
- {1008*OVERSAMPLENR, 17},\r
- {1020*OVERSAMPLENR, 0} //safety\r
-};\r
-\r
-#endif\r
-#if (THERMISTORHEATER_1 == 3) || (THERMISTORHEATER_2 == 3) || (THERMISTORBED == 3) //mendel-parts\r
-#define NUMTEMPS_3 28\r
-const short temptable_3[NUMTEMPS_3][2] = {\r
- {1*OVERSAMPLENR,864},\r
- {21*OVERSAMPLENR,300},\r
- {25*OVERSAMPLENR,290},\r
- {29*OVERSAMPLENR,280},\r
- {33*OVERSAMPLENR,270},\r
- {39*OVERSAMPLENR,260},\r
- {46*OVERSAMPLENR,250},\r
- {54*OVERSAMPLENR,240},\r
- {64*OVERSAMPLENR,230},\r
- {75*OVERSAMPLENR,220},\r
- {90*OVERSAMPLENR,210},\r
- {107*OVERSAMPLENR,200},\r
- {128*OVERSAMPLENR,190},\r
- {154*OVERSAMPLENR,180},\r
- {184*OVERSAMPLENR,170},\r
- {221*OVERSAMPLENR,160},\r
- {265*OVERSAMPLENR,150},\r
- {316*OVERSAMPLENR,140},\r
- {375*OVERSAMPLENR,130},\r
- {441*OVERSAMPLENR,120},\r
- {513*OVERSAMPLENR,110},\r
- {588*OVERSAMPLENR,100},\r
- {734*OVERSAMPLENR,80},\r
- {856*OVERSAMPLENR,60},\r
- {938*OVERSAMPLENR,40},\r
- {986*OVERSAMPLENR,20},\r
- {1008*OVERSAMPLENR,0},\r
- {1018*OVERSAMPLENR,-20}\r
- };\r
-\r
-#endif\r
-#if (THERMISTORHEATER_1 == 4) || (THERMISTORHEATER_2 == 4) || (THERMISTORBED == 4) //10k thermistor\r
-\r
-#define NUMTEMPS_4 20\r
-short temptable_4[NUMTEMPS_4][2] = {\r
- {1*OVERSAMPLENR, 430},\r
- {54*OVERSAMPLENR, 137},\r
- {107*OVERSAMPLENR, 107},\r
- {160*OVERSAMPLENR, 91},\r
- {213*OVERSAMPLENR, 80},\r
- {266*OVERSAMPLENR, 71},\r
- {319*OVERSAMPLENR, 64},\r
- {372*OVERSAMPLENR, 57},\r
- {425*OVERSAMPLENR, 51},\r
- {478*OVERSAMPLENR, 46},\r
- {531*OVERSAMPLENR, 41},\r
- {584*OVERSAMPLENR, 35},\r
- {637*OVERSAMPLENR, 30},\r
- {690*OVERSAMPLENR, 25},\r
- {743*OVERSAMPLENR, 20},\r
- {796*OVERSAMPLENR, 14},\r
- {849*OVERSAMPLENR, 7},\r
- {902*OVERSAMPLENR, 0},\r
- {955*OVERSAMPLENR, -11},\r
- {1008*OVERSAMPLENR, -35}\r
-};\r
-#endif\r
-\r
-#if (THERMISTORHEATER_1 == 5) || (THERMISTORHEATER_2 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)\r
-\r
-#define NUMTEMPS_5 61\r
-const short temptable_5[NUMTEMPS_5][2] = {\r
-{1*OVERSAMPLENR, 713},\r
-{18*OVERSAMPLENR, 316},\r
-{35*OVERSAMPLENR, 266},\r
-{52*OVERSAMPLENR, 239},\r
-{69*OVERSAMPLENR, 221},\r
-{86*OVERSAMPLENR, 208},\r
-{103*OVERSAMPLENR, 197},\r
-{120*OVERSAMPLENR, 188},\r
-{137*OVERSAMPLENR, 181},\r
-{154*OVERSAMPLENR, 174},\r
-{171*OVERSAMPLENR, 169},\r
-{188*OVERSAMPLENR, 163},\r
-{205*OVERSAMPLENR, 159},\r
-{222*OVERSAMPLENR, 154},\r
-{239*OVERSAMPLENR, 150},\r
-{256*OVERSAMPLENR, 147},\r
-{273*OVERSAMPLENR, 143},\r
-{290*OVERSAMPLENR, 140},\r
-{307*OVERSAMPLENR, 136},\r
-{324*OVERSAMPLENR, 133},\r
-{341*OVERSAMPLENR, 130},\r
-{358*OVERSAMPLENR, 128},\r
-{375*OVERSAMPLENR, 125},\r
-{392*OVERSAMPLENR, 122},\r
-{409*OVERSAMPLENR, 120},\r
-{426*OVERSAMPLENR, 117},\r
-{443*OVERSAMPLENR, 115},\r
-{460*OVERSAMPLENR, 112},\r
-{477*OVERSAMPLENR, 110},\r
-{494*OVERSAMPLENR, 108},\r
-{511*OVERSAMPLENR, 106},\r
-{528*OVERSAMPLENR, 103},\r
-{545*OVERSAMPLENR, 101},\r
-{562*OVERSAMPLENR, 99},\r
-{579*OVERSAMPLENR, 97},\r
-{596*OVERSAMPLENR, 95},\r
-{613*OVERSAMPLENR, 92},\r
-{630*OVERSAMPLENR, 90},\r
-{647*OVERSAMPLENR, 88},\r
-{664*OVERSAMPLENR, 86},\r
-{681*OVERSAMPLENR, 84},\r
-{698*OVERSAMPLENR, 81},\r
-{715*OVERSAMPLENR, 79},\r
-{732*OVERSAMPLENR, 77},\r
-{749*OVERSAMPLENR, 75},\r
-{766*OVERSAMPLENR, 72},\r
-{783*OVERSAMPLENR, 70},\r
-{800*OVERSAMPLENR, 67},\r
-{817*OVERSAMPLENR, 64},\r
-{834*OVERSAMPLENR, 61},\r
-{851*OVERSAMPLENR, 58},\r
-{868*OVERSAMPLENR, 55},\r
-{885*OVERSAMPLENR, 52},\r
-{902*OVERSAMPLENR, 48},\r
-{919*OVERSAMPLENR, 44},\r
-{936*OVERSAMPLENR, 40},\r
-{953*OVERSAMPLENR, 34},\r
-{970*OVERSAMPLENR, 28},\r
-{987*OVERSAMPLENR, 20},\r
-{1004*OVERSAMPLENR, 8},\r
-{1021*OVERSAMPLENR, 0}\r
-};\r
-#endif\r
-\r
-#if (THERMISTORHEATER_1 == 6) || (THERMISTORHEATER_2 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor\r
-#define NUMTEMPS_6 36\r
-const short temptable_6[NUMTEMPS_6][2] = {\r
- {28*OVERSAMPLENR, 250},\r
- {31*OVERSAMPLENR, 245},\r
- {35*OVERSAMPLENR, 240},\r
- {39*OVERSAMPLENR, 235},\r
- {42*OVERSAMPLENR, 230},\r
- {44*OVERSAMPLENR, 225},\r
- {49*OVERSAMPLENR, 220},\r
- {53*OVERSAMPLENR, 215},\r
- {62*OVERSAMPLENR, 210},\r
- {73*OVERSAMPLENR, 205},\r
- {72*OVERSAMPLENR, 200},\r
- {94*OVERSAMPLENR, 190},\r
- {102*OVERSAMPLENR, 185},\r
- {116*OVERSAMPLENR, 170},\r
- {143*OVERSAMPLENR, 160},\r
- {183*OVERSAMPLENR, 150},\r
- {223*OVERSAMPLENR, 140},\r
- {270*OVERSAMPLENR, 130},\r
- {318*OVERSAMPLENR, 120},\r
- {383*OVERSAMPLENR, 110},\r
- {413*OVERSAMPLENR, 105},\r
- {439*OVERSAMPLENR, 100},\r
- {484*OVERSAMPLENR, 95},\r
- {513*OVERSAMPLENR, 90},\r
- {607*OVERSAMPLENR, 80},\r
- {664*OVERSAMPLENR, 70},\r
- {781*OVERSAMPLENR, 60},\r
- {810*OVERSAMPLENR, 55},\r
- {849*OVERSAMPLENR, 50},\r
- {914*OVERSAMPLENR, 45},\r
- {914*OVERSAMPLENR, 40},\r
- {935*OVERSAMPLENR, 35},\r
- {954*OVERSAMPLENR, 30},\r
- {970*OVERSAMPLENR, 25},\r
- {978*OVERSAMPLENR, 22},\r
- {1008*OVERSAMPLENR, 3}\r
-};\r
-#endif\r
-\r
-#if (THERMISTORHEATER_1 == 7) || (THERMISTORHEATER_2 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01\r
-#define NUMTEMPS_7 54\r
-const short temptable_7[NUMTEMPS_7][2] = {\r
- {46*OVERSAMPLENR, 270},\r
- {50*OVERSAMPLENR, 265},\r
- {54*OVERSAMPLENR, 260},\r
- {58*OVERSAMPLENR, 255},\r
- {62*OVERSAMPLENR, 250},\r
- {67*OVERSAMPLENR, 245},\r
- {72*OVERSAMPLENR, 240},\r
- {79*OVERSAMPLENR, 235},\r
- {85*OVERSAMPLENR, 230},\r
- {91*OVERSAMPLENR, 225},\r
- {99*OVERSAMPLENR, 220},\r
- {107*OVERSAMPLENR, 215},\r
- {116*OVERSAMPLENR, 210},\r
- {126*OVERSAMPLENR, 205},\r
- {136*OVERSAMPLENR, 200},\r
- {149*OVERSAMPLENR, 195},\r
- {160*OVERSAMPLENR, 190},\r
- {175*OVERSAMPLENR, 185},\r
- {191*OVERSAMPLENR, 180},\r
- {209*OVERSAMPLENR, 175},\r
- {224*OVERSAMPLENR, 170},\r
- {246*OVERSAMPLENR, 165},\r
- {267*OVERSAMPLENR, 160},\r
- {293*OVERSAMPLENR, 155},\r
- {316*OVERSAMPLENR, 150},\r
- {340*OVERSAMPLENR, 145},\r
- {364*OVERSAMPLENR, 140},\r
- {396*OVERSAMPLENR, 135},\r
- {425*OVERSAMPLENR, 130},\r
- {460*OVERSAMPLENR, 125},\r
- {489*OVERSAMPLENR, 120},\r
- {526*OVERSAMPLENR, 115},\r
- {558*OVERSAMPLENR, 110},\r
- {591*OVERSAMPLENR, 105},\r
- {628*OVERSAMPLENR, 100},\r
- {660*OVERSAMPLENR, 95},\r
- {696*OVERSAMPLENR, 90},\r
- {733*OVERSAMPLENR, 85},\r
- {761*OVERSAMPLENR, 80},\r
- {794*OVERSAMPLENR, 75},\r
- {819*OVERSAMPLENR, 70},\r
- {847*OVERSAMPLENR, 65},\r
- {870*OVERSAMPLENR, 60},\r
- {892*OVERSAMPLENR, 55},\r
- {911*OVERSAMPLENR, 50},\r
- {929*OVERSAMPLENR, 45},\r
- {944*OVERSAMPLENR, 40},\r
- {959*OVERSAMPLENR, 35},\r
- {971*OVERSAMPLENR, 30},\r
- {981*OVERSAMPLENR, 25},\r
- {989*OVERSAMPLENR, 20},\r
- {994*OVERSAMPLENR, 15},\r
- {1001*OVERSAMPLENR, 10},\r
- {1005*OVERSAMPLENR, 5}\r
-};\r
-#endif\r
-\r
-\r
-\r
-#if THERMISTORHEATER_1 == 1\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_1\r
-#define temptable_1 temptable_1\r
-#elif THERMISTORHEATER_1 == 2\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_2\r
-#define temptable_1 temptable_2\r
-#elif THERMISTORHEATER_1 == 3\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_3\r
-#define temptable_1 temptable_3\r
-#elif THERMISTORHEATER_1 == 4\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_4\r
-#define temptable_1 temptable_4\r
-#elif THERMISTORHEATER_1 == 5\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_5\r
-#define temptable_1 temptable_5\r
-#elif THERMISTORHEATER_1 == 6\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_6\r
-#define temptable_1 temptable_6\r
-#elif THERMISTORHEATER_1 == 7\r
-#define NUMTEMPS_HEATER_1 NUMTEMPS_7\r
-#define temptable_1 temptable_7\r
-#elif defined HEATER_1_USES_THERMISTOR\r
-#error No heater 1 thermistor table specified\r
-#endif\r
-\r
-#if THERMISTORHEATER_2 == 1\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_1\r
-#define temptable_2 temptable_1\r
-#elif THERMISTORHEATER_2 == 2\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_2\r
-#define temptable_2 temptable_2\r
-#elif THERMISTORHEATER_2 == 3\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_3\r
-#define temptable_2 temptable_3\r
-#elif THERMISTORHEATER_2 == 4\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_4\r
-#define temptable_2 temptable_4\r
-#elif THERMISTORHEATER_2 == 5\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_5\r
-#define temptable_2 temptable_5\r
-#elif THERMISTORHEATER_2 == 6\r
-#define NUMTEMPS_HEATER_2 NUMTEMPS_6\r
-#define temptable_2 temptable_6\r
-#elif THERMISTORHEATER_2 == 7\r
-#define NUMTEMPS_HEATER22 NUMTEMPS_7\r
-#define temptable_2 temptable_7\r
-#elif defined HEATER_2_USES_THERMISTOR\r
-#error No heater 2 thermistor table specified\r
-#endif\r
-\r
-\r
-#if THERMISTORBED == 1\r
-#define BNUMTEMPS NUMTEMPS_1\r
-#define bedtemptable temptable_1\r
-#elif THERMISTORBED == 2\r
-#define BNUMTEMPS NUMTEMPS_2\r
-#define bedtemptable temptable_2\r
-#elif THERMISTORBED == 3\r
-#define BNUMTEMPS NUMTEMPS_3\r
-#define bedtemptable temptable_3\r
-#elif THERMISTORBED == 4\r
-#define BNUMTEMPS NUMTEMPS_4\r
-#define bedtemptable temptable_4\r
-#elif THERMISTORBED == 5\r
-#define BNUMTEMPS NUMTEMPS_5\r
-#define bedtemptable temptable_5\r
-#elif THERMISTORBED == 6\r
-#define BNUMTEMPS NUMTEMPS_6\r
-#define bedtemptable temptable_6\r
-#elif THERMISTORBED == 7\r
-#define BNUMTEMPS NUMTEMPS_7\r
-#define bedtemptable temptable_7\r
-#elif defined BED_USES_THERMISTOR\r
-#error No bed thermistor table specified\r
-#endif\r
-\r
-#endif //THERMISTORTABLES_H_\r
-\r
+#ifndef THERMISTORTABLES_H_
+#define THERMISTORTABLES_H_
+
+#define OVERSAMPLENR 16
+
+#if (THERMISTORHEATER_0 == 1) || (THERMISTORHEATER_1 == 1) || (THERMISTORBED == 1) //100k bed thermistor
+
+#define NUMTEMPS_1 61
+const short temptable_1[NUMTEMPS_1][2] = {
- { 23*OVERSAMPLENR , 300 },
- { 25*OVERSAMPLENR , 295 },
- { 27*OVERSAMPLENR , 290 },
- { 28*OVERSAMPLENR , 285 },
- { 31*OVERSAMPLENR , 280 },
- { 33*OVERSAMPLENR , 275 },
- { 35*OVERSAMPLENR , 270 },
- { 38*OVERSAMPLENR , 265 },
- { 41*OVERSAMPLENR , 260 },
- { 44*OVERSAMPLENR , 255 },
- { 48*OVERSAMPLENR , 250 },
- { 52*OVERSAMPLENR , 245 },
- { 56*OVERSAMPLENR , 240 },
- { 61*OVERSAMPLENR , 235 },
- { 66*OVERSAMPLENR , 230 },
- { 71*OVERSAMPLENR , 225 },
- { 78*OVERSAMPLENR , 220 },
- { 84*OVERSAMPLENR , 215 },
- { 92*OVERSAMPLENR , 210 },
- { 100*OVERSAMPLENR , 205 },
- { 109*OVERSAMPLENR , 200 },
- { 120*OVERSAMPLENR , 195 },
- { 131*OVERSAMPLENR , 190 },
- { 143*OVERSAMPLENR , 185 },
- { 156*OVERSAMPLENR , 180 },
- { 171*OVERSAMPLENR , 175 },
- { 187*OVERSAMPLENR , 170 },
- { 205*OVERSAMPLENR , 165 },
- { 224*OVERSAMPLENR , 160 },
- { 245*OVERSAMPLENR , 155 },
- { 268*OVERSAMPLENR , 150 },
- { 293*OVERSAMPLENR , 145 },
- { 320*OVERSAMPLENR , 140 },
- { 348*OVERSAMPLENR , 135 },
- { 379*OVERSAMPLENR , 130 },
- { 411*OVERSAMPLENR , 125 },
- { 445*OVERSAMPLENR , 120 },
- { 480*OVERSAMPLENR , 115 },
- { 516*OVERSAMPLENR , 110 },
- { 553*OVERSAMPLENR , 105 },
- { 591*OVERSAMPLENR , 100 },
- { 628*OVERSAMPLENR , 95 },
- { 665*OVERSAMPLENR , 90 },
- { 702*OVERSAMPLENR , 85 },
- { 737*OVERSAMPLENR , 80 },
- { 770*OVERSAMPLENR , 75 },
- { 801*OVERSAMPLENR , 70 },
- { 830*OVERSAMPLENR , 65 },
- { 857*OVERSAMPLENR , 60 },
- { 881*OVERSAMPLENR , 55 },
- { 903*OVERSAMPLENR , 50 },
- { 922*OVERSAMPLENR , 45 },
- { 939*OVERSAMPLENR , 40 },
- { 954*OVERSAMPLENR , 35 },
- { 966*OVERSAMPLENR , 30 },
- { 977*OVERSAMPLENR , 25 },
- { 985*OVERSAMPLENR , 20 },
- { 993*OVERSAMPLENR , 15 },
- { 999*OVERSAMPLENR , 10 },
- { 1004*OVERSAMPLENR , 5 },
- { 1008*OVERSAMPLENR , 0 } //safety
++{ 23*OVERSAMPLENR , 300 },
++{ 25*OVERSAMPLENR , 295 },
++{ 27*OVERSAMPLENR , 290 },
++{ 28*OVERSAMPLENR , 285 },
++{ 31*OVERSAMPLENR , 280 },
++{ 33*OVERSAMPLENR , 275 },
++{ 35*OVERSAMPLENR , 270 },
++{ 38*OVERSAMPLENR , 265 },
++{ 41*OVERSAMPLENR , 260 },
++{ 44*OVERSAMPLENR , 255 },
++{ 48*OVERSAMPLENR , 250 },
++{ 52*OVERSAMPLENR , 245 },
++{ 56*OVERSAMPLENR , 240 },
++{ 61*OVERSAMPLENR , 235 },
++{ 66*OVERSAMPLENR , 230 },
++{ 71*OVERSAMPLENR , 225 },
++{ 78*OVERSAMPLENR , 220 },
++{ 84*OVERSAMPLENR , 215 },
++{ 92*OVERSAMPLENR , 210 },
++{ 100*OVERSAMPLENR , 205 },
++{ 109*OVERSAMPLENR , 200 },
++{ 120*OVERSAMPLENR , 195 },
++{ 131*OVERSAMPLENR , 190 },
++{ 143*OVERSAMPLENR , 185 },
++{ 156*OVERSAMPLENR , 180 },
++{ 171*OVERSAMPLENR , 175 },
++{ 187*OVERSAMPLENR , 170 },
++{ 205*OVERSAMPLENR , 165 },
++{ 224*OVERSAMPLENR , 160 },
++{ 245*OVERSAMPLENR , 155 },
++{ 268*OVERSAMPLENR , 150 },
++{ 293*OVERSAMPLENR , 145 },
++{ 320*OVERSAMPLENR , 140 },
++{ 348*OVERSAMPLENR , 135 },
++{ 379*OVERSAMPLENR , 130 },
++{ 411*OVERSAMPLENR , 125 },
++{ 445*OVERSAMPLENR , 120 },
++{ 480*OVERSAMPLENR , 115 },
++{ 516*OVERSAMPLENR , 110 },
++{ 553*OVERSAMPLENR , 105 },
++{ 591*OVERSAMPLENR , 100 },
++{ 628*OVERSAMPLENR , 95 },
++{ 665*OVERSAMPLENR , 90 },
++{ 702*OVERSAMPLENR , 85 },
++{ 737*OVERSAMPLENR , 80 },
++{ 770*OVERSAMPLENR , 75 },
++{ 801*OVERSAMPLENR , 70 },
++{ 830*OVERSAMPLENR , 65 },
++{ 857*OVERSAMPLENR , 60 },
++{ 881*OVERSAMPLENR , 55 },
++{ 903*OVERSAMPLENR , 50 },
++{ 922*OVERSAMPLENR , 45 },
++{ 939*OVERSAMPLENR , 40 },
++{ 954*OVERSAMPLENR , 35 },
++{ 966*OVERSAMPLENR , 30 },
++{ 977*OVERSAMPLENR , 25 },
++{ 985*OVERSAMPLENR , 20 },
++{ 993*OVERSAMPLENR , 15 },
++{ 999*OVERSAMPLENR , 10 },
++{ 1004*OVERSAMPLENR , 5 },
++{ 1008*OVERSAMPLENR , 0 } //safety
+};
+#endif
+#if (THERMISTORHEATER_0 == 2) || (THERMISTORHEATER_1 == 2) || (THERMISTORBED == 2) //200k bed thermistor
+#define NUMTEMPS_2 21
+const short temptable_2[NUMTEMPS_2][2] = {
+ {1*OVERSAMPLENR, 848},
+ {54*OVERSAMPLENR, 275},
+ {107*OVERSAMPLENR, 228},
+ {160*OVERSAMPLENR, 202},
+ {213*OVERSAMPLENR, 185},
+ {266*OVERSAMPLENR, 171},
+ {319*OVERSAMPLENR, 160},
+ {372*OVERSAMPLENR, 150},
+ {425*OVERSAMPLENR, 141},
+ {478*OVERSAMPLENR, 133},
+ {531*OVERSAMPLENR, 125},
+ {584*OVERSAMPLENR, 118},
+ {637*OVERSAMPLENR, 110},
+ {690*OVERSAMPLENR, 103},
+ {743*OVERSAMPLENR, 95},
+ {796*OVERSAMPLENR, 86},
+ {849*OVERSAMPLENR, 77},
+ {902*OVERSAMPLENR, 65},
+ {955*OVERSAMPLENR, 49},
+ {1008*OVERSAMPLENR, 17},
+ {1020*OVERSAMPLENR, 0} //safety
+};
+
+#endif
+#if (THERMISTORHEATER_0 == 3) || (THERMISTORHEATER_1 == 3) || (THERMISTORBED == 3) //mendel-parts
+#define NUMTEMPS_3 28
+const short temptable_3[NUMTEMPS_3][2] = {
- {1*OVERSAMPLENR,864},
- {21*OVERSAMPLENR,300},
- {25*OVERSAMPLENR,290},
- {29*OVERSAMPLENR,280},
- {33*OVERSAMPLENR,270},
- {39*OVERSAMPLENR,260},
- {46*OVERSAMPLENR,250},
- {54*OVERSAMPLENR,240},
- {64*OVERSAMPLENR,230},
- {75*OVERSAMPLENR,220},
- {90*OVERSAMPLENR,210},
- {107*OVERSAMPLENR,200},
- {128*OVERSAMPLENR,190},
- {154*OVERSAMPLENR,180},
- {184*OVERSAMPLENR,170},
- {221*OVERSAMPLENR,160},
- {265*OVERSAMPLENR,150},
- {316*OVERSAMPLENR,140},
- {375*OVERSAMPLENR,130},
- {441*OVERSAMPLENR,120},
- {513*OVERSAMPLENR,110},
- {588*OVERSAMPLENR,100},
- {734*OVERSAMPLENR,80},
- {856*OVERSAMPLENR,60},
- {938*OVERSAMPLENR,40},
- {986*OVERSAMPLENR,20},
- {1008*OVERSAMPLENR,0},
- {1018*OVERSAMPLENR,-20}
- };
++ {1*OVERSAMPLENR,864},
++ {21*OVERSAMPLENR,300},
++ {25*OVERSAMPLENR,290},
++ {29*OVERSAMPLENR,280},
++ {33*OVERSAMPLENR,270},
++ {39*OVERSAMPLENR,260},
++ {46*OVERSAMPLENR,250},
++ {54*OVERSAMPLENR,240},
++ {64*OVERSAMPLENR,230},
++ {75*OVERSAMPLENR,220},
++ {90*OVERSAMPLENR,210},
++ {107*OVERSAMPLENR,200},
++ {128*OVERSAMPLENR,190},
++ {154*OVERSAMPLENR,180},
++ {184*OVERSAMPLENR,170},
++ {221*OVERSAMPLENR,160},
++ {265*OVERSAMPLENR,150},
++ {316*OVERSAMPLENR,140},
++ {375*OVERSAMPLENR,130},
++ {441*OVERSAMPLENR,120},
++ {513*OVERSAMPLENR,110},
++ {588*OVERSAMPLENR,100},
++ {734*OVERSAMPLENR,80},
++ {856*OVERSAMPLENR,60},
++ {938*OVERSAMPLENR,40},
++ {986*OVERSAMPLENR,20},
++ {1008*OVERSAMPLENR,0},
++ {1018*OVERSAMPLENR,-20}
++ };
+
+#endif
+#if (THERMISTORHEATER_0 == 4) || (THERMISTORHEATER_1 == 4) || (THERMISTORBED == 4) //10k thermistor
+
+#define NUMTEMPS_4 20
+short temptable_4[NUMTEMPS_4][2] = {
+ {1*OVERSAMPLENR, 430},
+ {54*OVERSAMPLENR, 137},
+ {107*OVERSAMPLENR, 107},
+ {160*OVERSAMPLENR, 91},
+ {213*OVERSAMPLENR, 80},
+ {266*OVERSAMPLENR, 71},
+ {319*OVERSAMPLENR, 64},
+ {372*OVERSAMPLENR, 57},
+ {425*OVERSAMPLENR, 51},
+ {478*OVERSAMPLENR, 46},
+ {531*OVERSAMPLENR, 41},
+ {584*OVERSAMPLENR, 35},
+ {637*OVERSAMPLENR, 30},
+ {690*OVERSAMPLENR, 25},
+ {743*OVERSAMPLENR, 20},
+ {796*OVERSAMPLENR, 14},
+ {849*OVERSAMPLENR, 7},
+ {902*OVERSAMPLENR, 0},
+ {955*OVERSAMPLENR, -11},
+ {1008*OVERSAMPLENR, -35}
+};
+#endif
+
+#if (THERMISTORHEATER_0 == 5) || (THERMISTORHEATER_1 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
+
+#define NUMTEMPS_5 61
+const short temptable_5[NUMTEMPS_5][2] = {
+{1*OVERSAMPLENR, 713},
+{18*OVERSAMPLENR, 316},
+{35*OVERSAMPLENR, 266},
+{52*OVERSAMPLENR, 239},
+{69*OVERSAMPLENR, 221},
+{86*OVERSAMPLENR, 208},
+{103*OVERSAMPLENR, 197},
+{120*OVERSAMPLENR, 188},
+{137*OVERSAMPLENR, 181},
+{154*OVERSAMPLENR, 174},
+{171*OVERSAMPLENR, 169},
+{188*OVERSAMPLENR, 163},
+{205*OVERSAMPLENR, 159},
+{222*OVERSAMPLENR, 154},
+{239*OVERSAMPLENR, 150},
+{256*OVERSAMPLENR, 147},
+{273*OVERSAMPLENR, 143},
+{290*OVERSAMPLENR, 140},
+{307*OVERSAMPLENR, 136},
+{324*OVERSAMPLENR, 133},
+{341*OVERSAMPLENR, 130},
+{358*OVERSAMPLENR, 128},
+{375*OVERSAMPLENR, 125},
+{392*OVERSAMPLENR, 122},
+{409*OVERSAMPLENR, 120},
+{426*OVERSAMPLENR, 117},
+{443*OVERSAMPLENR, 115},
+{460*OVERSAMPLENR, 112},
+{477*OVERSAMPLENR, 110},
+{494*OVERSAMPLENR, 108},
+{511*OVERSAMPLENR, 106},
+{528*OVERSAMPLENR, 103},
+{545*OVERSAMPLENR, 101},
+{562*OVERSAMPLENR, 99},
+{579*OVERSAMPLENR, 97},
+{596*OVERSAMPLENR, 95},
+{613*OVERSAMPLENR, 92},
+{630*OVERSAMPLENR, 90},
+{647*OVERSAMPLENR, 88},
+{664*OVERSAMPLENR, 86},
+{681*OVERSAMPLENR, 84},
+{698*OVERSAMPLENR, 81},
+{715*OVERSAMPLENR, 79},
+{732*OVERSAMPLENR, 77},
+{749*OVERSAMPLENR, 75},
+{766*OVERSAMPLENR, 72},
+{783*OVERSAMPLENR, 70},
+{800*OVERSAMPLENR, 67},
+{817*OVERSAMPLENR, 64},
+{834*OVERSAMPLENR, 61},
+{851*OVERSAMPLENR, 58},
+{868*OVERSAMPLENR, 55},
+{885*OVERSAMPLENR, 52},
+{902*OVERSAMPLENR, 48},
+{919*OVERSAMPLENR, 44},
+{936*OVERSAMPLENR, 40},
+{953*OVERSAMPLENR, 34},
+{970*OVERSAMPLENR, 28},
+{987*OVERSAMPLENR, 20},
+{1004*OVERSAMPLENR, 8},
+{1021*OVERSAMPLENR, 0}
+};
+#endif
+
+#if (THERMISTORHEATER_0 == 6) || (THERMISTORHEATER_1 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
+#define NUMTEMPS_6 36
+const short temptable_6[NUMTEMPS_6][2] = {
+ {28*OVERSAMPLENR, 250},
+ {31*OVERSAMPLENR, 245},
+ {35*OVERSAMPLENR, 240},
+ {39*OVERSAMPLENR, 235},
+ {42*OVERSAMPLENR, 230},
+ {44*OVERSAMPLENR, 225},
+ {49*OVERSAMPLENR, 220},
+ {53*OVERSAMPLENR, 215},
+ {62*OVERSAMPLENR, 210},
+ {73*OVERSAMPLENR, 205},
+ {72*OVERSAMPLENR, 200},
+ {94*OVERSAMPLENR, 190},
+ {102*OVERSAMPLENR, 185},
+ {116*OVERSAMPLENR, 170},
+ {143*OVERSAMPLENR, 160},
+ {183*OVERSAMPLENR, 150},
+ {223*OVERSAMPLENR, 140},
+ {270*OVERSAMPLENR, 130},
+ {318*OVERSAMPLENR, 120},
+ {383*OVERSAMPLENR, 110},
+ {413*OVERSAMPLENR, 105},
+ {439*OVERSAMPLENR, 100},
+ {484*OVERSAMPLENR, 95},
+ {513*OVERSAMPLENR, 90},
+ {607*OVERSAMPLENR, 80},
+ {664*OVERSAMPLENR, 70},
+ {781*OVERSAMPLENR, 60},
+ {810*OVERSAMPLENR, 55},
+ {849*OVERSAMPLENR, 50},
+ {914*OVERSAMPLENR, 45},
+ {914*OVERSAMPLENR, 40},
+ {935*OVERSAMPLENR, 35},
+ {954*OVERSAMPLENR, 30},
+ {970*OVERSAMPLENR, 25},
+ {978*OVERSAMPLENR, 22},
+ {1008*OVERSAMPLENR, 3}
+};
+#endif
+
+#if (THERMISTORHEATER_0 == 7) || (THERMISTORHEATER_1 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
+#define NUMTEMPS_7 54
+const short temptable_7[NUMTEMPS_7][2] = {
+ {46*OVERSAMPLENR, 270},
+ {50*OVERSAMPLENR, 265},
+ {54*OVERSAMPLENR, 260},
+ {58*OVERSAMPLENR, 255},
+ {62*OVERSAMPLENR, 250},
+ {67*OVERSAMPLENR, 245},
+ {72*OVERSAMPLENR, 240},
+ {79*OVERSAMPLENR, 235},
+ {85*OVERSAMPLENR, 230},
+ {91*OVERSAMPLENR, 225},
+ {99*OVERSAMPLENR, 220},
+ {107*OVERSAMPLENR, 215},
+ {116*OVERSAMPLENR, 210},
+ {126*OVERSAMPLENR, 205},
+ {136*OVERSAMPLENR, 200},
+ {149*OVERSAMPLENR, 195},
+ {160*OVERSAMPLENR, 190},
+ {175*OVERSAMPLENR, 185},
+ {191*OVERSAMPLENR, 180},
+ {209*OVERSAMPLENR, 175},
+ {224*OVERSAMPLENR, 170},
+ {246*OVERSAMPLENR, 165},
+ {267*OVERSAMPLENR, 160},
+ {293*OVERSAMPLENR, 155},
+ {316*OVERSAMPLENR, 150},
+ {340*OVERSAMPLENR, 145},
+ {364*OVERSAMPLENR, 140},
+ {396*OVERSAMPLENR, 135},
+ {425*OVERSAMPLENR, 130},
+ {460*OVERSAMPLENR, 125},
+ {489*OVERSAMPLENR, 120},
+ {526*OVERSAMPLENR, 115},
+ {558*OVERSAMPLENR, 110},
+ {591*OVERSAMPLENR, 105},
+ {628*OVERSAMPLENR, 100},
+ {660*OVERSAMPLENR, 95},
+ {696*OVERSAMPLENR, 90},
+ {733*OVERSAMPLENR, 85},
+ {761*OVERSAMPLENR, 80},
+ {794*OVERSAMPLENR, 75},
+ {819*OVERSAMPLENR, 70},
+ {847*OVERSAMPLENR, 65},
+ {870*OVERSAMPLENR, 60},
+ {892*OVERSAMPLENR, 55},
+ {911*OVERSAMPLENR, 50},
+ {929*OVERSAMPLENR, 45},
+ {944*OVERSAMPLENR, 40},
+ {959*OVERSAMPLENR, 35},
+ {971*OVERSAMPLENR, 30},
+ {981*OVERSAMPLENR, 25},
+ {989*OVERSAMPLENR, 20},
+ {994*OVERSAMPLENR, 15},
+ {1001*OVERSAMPLENR, 10},
+ {1005*OVERSAMPLENR, 5}
+};
+#endif
+
+
+
+#if THERMISTORHEATER_0 == 1
+#define NUMTEMPS_HEATER_0 NUMTEMPS_1
+#define heater_0_temptable temptable_1
+#elif THERMISTORHEATER_0 == 2
+#define NUMTEMPS_HEATER_0 NUMTEMPS_2
+#define heater_0_temptable temptable_2
+#elif THERMISTORHEATER_0 == 3
+#define NUMTEMPS_HEATER_0 NUMTEMPS_3
+#define heater_0_temptable temptable_3
+#elif THERMISTORHEATER_0 == 4
+#define NUMTEMPS_HEATER_0 NUMTEMPS_4
+#define heater_0_temptable temptable_4
+#elif THERMISTORHEATER_0 == 5
+#define NUMTEMPS_HEATER_0 NUMTEMPS_5
+#define heater_0_temptable temptable_5
+#elif THERMISTORHEATER_0 == 6
+#define NUMTEMPS_HEATER_0 NUMTEMPS_6
+#define heater_0_temptable temptable_6
+#elif THERMISTORHEATER_0 == 7
+#define NUMTEMPS_HEATER_0 NUMTEMPS_7
+#define heater_0_temptable temptable_7
+#elif defined HEATER_0_USES_THERMISTOR
+#error No heater 0 thermistor table specified
+#endif
+
+#if THERMISTORHEATER_1 == 1
+#define NUMTEMPS_HEATER_1 NUMTEMPS_1
+#define heater_1_temptable temptable_1
+#elif THERMISTORHEATER_1 == 2
+#define NUMTEMPS_HEATER_1 NUMTEMPS_2
+#define heater_1_temptable temptable_2
+#elif THERMISTORHEATER_1 == 3
+#define NUMTEMPS_HEATER_1 NUMTEMPS_3
+#define heater_1_temptable temptable_3
+#elif THERMISTORHEATER_1 == 4
+#define NUMTEMPS_HEATER_1 NUMTEMPS_4
+#define heater_1_temptable temptable_4
+#elif THERMISTORHEATER_1 == 5
+#define NUMTEMPS_HEATER_1 NUMTEMPS_5
+#define heater_1_temptable temptable_5
+#elif THERMISTORHEATER_1 == 6
+#define NUMTEMPS_HEATER_1 NUMTEMPS_6
+#define heater_1_temptable temptable_6
+#elif THERMISTORHEATER_1 == 7
+#define NUMTEMPS_HEATER_1 NUMTEMPS_7
+#define heater_1_temptable temptable_7
+#elif defined HEATER_1_USES_THERMISTOR
+#error No heater 1 thermistor table specified
+#endif
+
+
+#if THERMISTORBED == 1
+#define BNUMTEMPS NUMTEMPS_1
+#define bedtemptable temptable_1
+#elif THERMISTORBED == 2
+#define BNUMTEMPS NUMTEMPS_2
+#define bedtemptable temptable_2
+#elif THERMISTORBED == 3
+#define BNUMTEMPS NUMTEMPS_3
+#define bedtemptable temptable_3
+#elif THERMISTORBED == 4
+#define BNUMTEMPS NUMTEMPS_4
+#define bedtemptable temptable_4
+#elif THERMISTORBED == 5
+#define BNUMTEMPS NUMTEMPS_5
+#define bedtemptable temptable_5
+#elif THERMISTORBED == 6
+#define BNUMTEMPS NUMTEMPS_6
+#define bedtemptable temptable_6
+#elif THERMISTORBED == 7
+#define BNUMTEMPS NUMTEMPS_7
+#define bedtemptable temptable_7
+#elif defined BED_USES_THERMISTOR
+#error No bed thermistor table specified
+#endif
+
+#endif //THERMISTORTABLES_H_
+