X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?a=blobdiff_plain;f=main.c;h=da9e5fa089503f9c3dfdbb44507316824f113fbd;hb=f4a5716e75bb34407a452675ef662e8d8c95c67f;hp=6465f9be57ed5ae331363a28ecd78271248c1c7e;hpb=ba89f161b9bc185cb1d6ce236fdfdb71f42e6a86;p=matchsticks-search.git diff --git a/main.c b/main.c index 6465f9b..da9e5fa 100644 --- a/main.c +++ b/main.c @@ -1,42 +1,162 @@ +/* + * Searches for "good" ways to divide n matchsticks up and reassemble them + * into m matchsticks. "Good" means the smallest fragment is as big + * as possible. + * + * Invoke as ./main n m + * + * The algorithm is faster if the arguments are ordered so that n > m. + */ + +/* + * matchsticks/main.c Copyright 2014 Ian Jackson + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ #include #include #include +#include +#include +#include +#include #include #include +#include + +/* + * Algorithm. + * + * Each input match contributes, or does not contribute, to each + * output match; we do not need to consider multiple fragments + * relating to the same input/output pair this gives an n*m adjacency + * matrix (bitmap). Given such an adjacency matrix, the problem of + * finding the best sizes for the fragments can be expressed as a + * linear programming problem. + * + * We search all possible adjacency matrices, and for each one we run + * GLPK's simplex solver. We represent the adjacency matrix as an + * array of bitmaps. + * + * However, there are a couple of wrinkles: + * + * To best represent the problem as a standard LP problem, we separate + * out the size of each fragment into a common minimum size variable, + * plus a fragment-specific extra size variable. This reduces the LP + * problem size at the cost of making the problem construction, and + * interpretation of the results, a bit fiddly. + * + * Many of the adjacency matrices are equivalent. In particular, + * permutations of the columns, or of the rows, do not change the + * meaning. It is only necessasry to consider any one permutation. + * We make use of this by considering only adjacency matrices whose + * bitmap array contains bitmap words whose numerical values are + * nondecreasing in array order. + * + * Once we have a solution, we also avoid considering any candidate + * which involves dividing one of the output sticks into so many + * fragment that the smallest fragment would necessarily be no bigger + * than our best solution. That is, we reject candidates where any of + * the hamming weights of the adjacency bitmap words are too large. + * + * And, we want to do the search in order of increasing maximum + * hamming weight. This is because in practice optimal solutions tend + * to have low hamming weight, and having found a reasonable solution + * early allows us to eliminate a lot of candidates without doing the + * full LP. + */ typedef uint32_t AdjWord; #define PRADJ "08"PRIx32 -static int n, m; +static int n, m, maxhamweight; static AdjWord *adjmatrix; static AdjWord adjall; static double best; +static glp_prob *best_prob; +static AdjWord *best_adjmatrix; + +static unsigned printcounter; + +static int ncpus = 1; + +static AdjWord *xalloc_adjmatrix(void) { + return xmalloc(sizeof(*adjmatrix)*n); +} static void prep(void) { adjall = ~((~(AdjWord)0) << m); - adjmatrix = xmalloc(sizeof(*adjmatrix)*n); + adjmatrix = xalloc_adjmatrix(); + glp_term_out(GLP_OFF); +} + +static AdjWord one_adj_bit(int bitnum) { + return (AdjWord)1 << bitnum; } static int count_set_adj_bits(AdjWord w) { int j, total; for (j=0, total=0; j minimum (lower bound 0) * - * The objective function is simply to maximise x_minimum + * The objective function is simply + * maximise x_minimum + * + * We use X_ and Y_ to refer to GLPK's (1-based) column and row indices. + * ME_ refers to entries in the list of constraint matrix elements + * which we build up as we go. */ - printf("nyi\n"); + prob = glp_create_prob(); + + int Y_totals_i = glp_add_rows(prob, n); + int Y_totals_j = glp_add_rows(prob, m); + int X_minimum = glp_add_cols(prob, 1); + + { + int next_matrix_entry = 1; /* wtf GLPK! */ + int matrix_entries_size = next_matrix_entry + n + m + totalfrags*2; + double matrix_entries[matrix_entries_size]; + int matrix_entries_XY[2][matrix_entries_size]; + +#define ADD_MATRIX_ENTRY(Y,X) ({ \ + assert(next_matrix_entry < matrix_entries_size); \ + matrix_entries_XY[0][next_matrix_entry] = (X); \ + matrix_entries_XY[1][next_matrix_entry] = (Y); \ + matrix_entries[next_matrix_entry] = 0; \ + next_matrix_entry++; \ + }) + + int ME_totals_i__minimum = next_matrix_entry; + for (i=0; i= 0 */ + glp_set_col_bnds(prob, X_minimum, GLP_LO, 0, 0); + glp_set_col_name(prob, X_minimum, "minimum"); + + /* objective is maximising x_minimum */ + glp_set_obj_dir(prob, GLP_MAX); + glp_set_obj_coef(prob, X_minimum, 1); + + for (i=0; i= 0 */ + int X_morefrag_i_j = glp_add_cols(prob, 1); + glp_set_col_bnds(prob, X_morefrag_i_j, GLP_LO, 0, 0); + if (doprint) { + char buf[255]; + snprintf(buf,sizeof(buf),"mf %d,%d",i,j); + glp_set_col_name(prob, X_morefrag_i_j, buf); + } + + /* x_total_i += x_morefrag_i_j */ + /* x_total_j += x_morefrag_i_j */ + int ME_totals_i__mf_i_j = ADD_MATRIX_ENTRY(Y_totals_i+i, X_morefrag_i_j); + int ME_totals_j__mf_i_j = ADD_MATRIX_ENTRY(Y_totals_j+j, X_morefrag_i_j); + matrix_entries[ME_totals_i__mf_i_j] = 1; + matrix_entries[ME_totals_j__mf_i_j] = 1; + } + } + + assert(next_matrix_entry == matrix_entries_size); + + glp_load_matrix(prob, matrix_entries_size-1, + matrix_entries_XY[1], matrix_entries_XY[0], + matrix_entries); + + int r = glp_simplex(prob, NULL); + PRINTF(" glp=%d", r); + +#define OKERR(e) \ + case e: PRINTF(" " #e ); goto out; +#define BADERR(e) \ + case e: HAVE_PRINTED; printf(" " #e " CRASHING\n"); exit(-1); +#define DEFAULT \ + default: HAVE_PRINTED; printf(" ! CRASHING\n"); exit(-1); + + switch (r) { + OKERR(GLP_ESING); + OKERR(GLP_ECOND); + OKERR(GLP_EBOUND); + OKERR(GLP_EFAIL); + OKERR(GLP_ENOPFS); + OKERR(GLP_ENODFS); + BADERR(GLP_EBADB); + BADERR(GLP_EOBJLL); + BADERR(GLP_EOBJUL); + BADERR(GLP_EITLIM); + BADERR(GLP_ETMLIM); + BADERR(GLP_EINSTAB); + BADERR(GLP_ENOCVG); + case 0: break; + DEFAULT; + } + + r = glp_get_status(prob); + PRINTF(" status=%d", r); + + switch (r) { + OKERR(GLP_NOFEAS); + OKERR(GLP_UNDEF); + BADERR(GLP_FEAS); + BADERR(GLP_INFEAS); + BADERR(GLP_UNBND); + case GLP_OPT: break; + DEFAULT; + } + + double got = glp_get_obj_val(prob); + PRINTF(" %g", got); + if (got <= best) + goto out; + + HAVE_PRINTED; + + best = got; + + if (best_prob) glp_delete_prob(best_prob); + best_prob = prob; + + free(best_adjmatrix); + best_adjmatrix = xalloc_adjmatrix(); + memcpy(best_adjmatrix, adjmatrix, sizeof(*adjmatrix)*n); + + PRINTF(" BEST \n"); + return; + + } + out: + if (prob) + glp_delete_prob(prob); + if (doprint) { PRINTF(" \r"); fflush(stdout); } } static void iterate_recurse(int i, AdjWord min) { if (i >= n) { - optimise(); + printcounter++; + optimise(!(printcounter & 0xfff)); return; } for (adjmatrix[i] = min; ; adjmatrix[i]++) { + if (count_set_adj_bits(adjmatrix[i]) > maxhamweight) + goto again; + if (i == 0 && (adjmatrix[i] & (1+adjmatrix[i]))) + goto again; + iterate_recurse(i+1, adjmatrix[i]); + + again: if (adjmatrix[i] == adjall) return; } } static void iterate(void) { - iterate_recurse(0, 1); + for (maxhamweight=1; maxhamweight<=m; maxhamweight++) { + double maxminsize = (double)m / maxhamweight; + if (maxminsize <= best) + continue; + + iterate_recurse(0, 1); + } } +static void report(void) { + fprintf(stderr, "\n"); + if (best_prob) { + double min = glp_get_obj_val(best_prob); + double a[n][m]; + int i, j, cols; + for (i = 0; i < n; i++) + for (j = 0; j < m; j++) + a[i][j] = 0; + cols = glp_get_num_cols(best_prob); + for (i = 1; i <= cols; i++) { + int x, y; + if (2 != sscanf(glp_get_col_name(best_prob, i), "mf %d,%d", &x, &y)) + continue; + a[x][y] = min + glp_get_col_prim(best_prob, i); + } + printf("%d into %d: min fragment %g\n", n, m, min); + for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) { + if (a[i][j]) + printf(" %9.3f", a[i][j]); + else + printf(" "); + } + printf("\n"); + } + } + if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } +} + int main(int argc, char **argv) { + int opt; + while ((opt = getopt(argc,argv,"j:")) >= 0) { + switch (opt) { + case 'j': ncpus = atoi(optarg); break; + case '+': assert(!"bad option"); + default: abort(); + } + } + argc -= optind-1; + argv += optind-1; + assert(argc==3); n = atoi(argv[1]); m = atoi(argv[2]); + prep(); iterate(); - if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } + report(); return 0; }