X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?a=blobdiff_plain;ds=sidebyside;f=main.c;h=83728fa7a4aee7cb0168bbdc96d2bd689483669d;hb=3a1fd673483e2e2f17853cc73be3b7f4ffea459c;hp=6ccfea7bb0384f472c23befb0ec89bde375b0251;hpb=2e084dc7235e257b62d034b663e8466a2c7b6af0;p=matchsticks-search.git diff --git a/main.c b/main.c index 6ccfea7..83728fa 100644 --- a/main.c +++ b/main.c @@ -1,20 +1,84 @@ +/* + * Searches for "good" ways to divide n matchsticks up and reassemble them + * into m matchsticks. "Good" means the smallest fragment is as big + * as possible. + * + * Invoke as ./main n m + * + * The algorithm is faster if the arguments are ordered so that n > m. + */ + +/* + * matchsticks/main.c Copyright 2014 Ian Jackson + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ #include #include #include #include #include +#include #include #include #include +/* + * Algorithm. + * + * Each input match contributes, or does not contribute, to each + * output match; we do not need to consider multiple fragments + * relating to the same input/output pair this gives an n*m adjacency + * matrix (bitmap). Given such an adjacency matrix, the problem of + * finding the best sizes for the fragments can be expressed as a + * linear programming problem. + * + * We search all possible adjacency matrices, and for each one we run + * GLPK's simplex solver. We represent the adjacency matrix as an + * array of bitmaps. + * + * However, there are a couple of wrinkles: + * + * To best represent the problem as a standard LP problem, we separate + * out the size of each fragment into a common minimum size variable, + * plus a fragment-specific extra size variable. This reduces the LP + * problem size at the cost of making the problem construction, and + * interpretation of the results, a bit fiddly. + * + * Many of the adjacency matrices are equivalent. In particular, + * permutations of the columns, or of the rows, do not change the + * meaning. It is only necessasry to consider any one permutation. + * We make use of this by considering only adjacency matrices whose + * bitmap array contains bitmap words whose numerical values are + * nondecreasing in array order. + * + * Once we have a solution, we also avoid considering any candidate + * which involves dividing one of the output sticks into so many + * fragment that the smallest fragment would necessarily be no bigger + * than our best solution. That is, we reject candidates where any of + * the hamming weights of the adjacency bitmap words are too large. + * + * And, we want to do the search in order of increasing maximum + * hamming weight. This is because in practice optimal solutions tend + * to have low hamming weight, and having found a reasonable solution + * early allows us to eliminate a lot of candidates without doing the + * full LP. + */ + typedef uint32_t AdjWord; -#define PRADJ "04"PRIx32 +#define PRADJ "08"PRIx32 -static int n, m; -static AdjWord *adjmatrix_counters; -static AdjWord *adjmatrix_offsets; +static int n, m, maxhamweight; static AdjWord *adjmatrix; static AdjWord adjall; @@ -29,14 +93,9 @@ static AdjWord *xalloc_adjmatrix(void) { } static void prep(void) { - int i; adjall = ~((~(AdjWord)0) << m); adjmatrix = xalloc_adjmatrix(); - adjmatrix_counters = xalloc_adjmatrix(); - adjmatrix_offsets = xalloc_adjmatrix(); glp_term_out(GLP_OFF); - for (i=0; i= n) { - int ii; - for (ii=0; ii maxhamweight) + goto again; + + iterate_recurse(i+1, adjmatrix[i]); + + again: + if (adjmatrix[i] == adjall) return; } } static void iterate(void) { - iterate_recurse(0, 0); + for (maxhamweight=1; maxhamweight<=m; maxhamweight++) { + double maxminsize = (double)m / maxhamweight; + if (maxminsize <= best) + continue; + + iterate_recurse(0, 1); + } } int main(int argc, char **argv) { + assert(argc==3); n = atoi(argv[1]); m = atoi(argv[2]); prep(); iterate(); - printf("\n"); - if (best_prob) - glp_print_sol(best_prob,"/dev/stdout"); + fprintf(stderr, "\n"); + if (best_prob) { + double min = glp_get_obj_val(best_prob); + double a[n][m]; + int i, j, cols; + for (i = 0; i < n; i++) + for (j = 0; j < m; j++) + a[i][j] = 0; + cols = glp_get_num_cols(best_prob); + for (i = 1; i <= cols; i++) { + int x, y; + if (2 != sscanf(glp_get_col_name(best_prob, i), "mf %d,%d", &x, &y)) + continue; + a[x][y] = min + glp_get_col_prim(best_prob, i); + } + printf("%d into %d: min fragment %g\n", n, m, min); + for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) { + if (a[i][j]) + printf(" %9.3f", a[i][j]); + else + printf(" "); + } + printf("\n"); + } + } if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } return 0; }