A C++ Programme for Global Optimization

Serguei Zertchaninov*and Kaj Madsen

Abstract A stochastic Branch-and-Bound Method for global optimization over a com-
pact right parallelepiped, parallel to the coordinate axes, has been developed, described
and tested in ([1],[2]).

This report describes the C++ implementation of the method. Section 2 is a short descrip-
tion of the new method, Section 3 provides some implementation details, and Section 4
is a user’s guide to the programme.

The source code of the implementation is available on request to the authors.

1 Introduction

It is well known that many problems in industry and economy can be formulated as
mathematical programming problems, i.e. as the minimization of a function f : D — R
where D C R". Dimensionality n of such functions usually is quite large. Besides that,
very often the function f has several local minima in the region of interest. However, only
the smallest one is interesting:

f[r=mnf{f(x) |z e D} (1)

f* is called the global minimum and the set of points where it is attained is called the set
of global minimizers.

The problem of creating an algorithm (a computer program) which is guaranteed to
find this set has not been solved, and it probably will never be. Interval analytic methods
only solve the problem for a limited class of problems. Most other methods either give
no guarantee for convergence or convergence is so slow that for larger dimensions it is
unrealistic. Some techniques require "help’ of a skilled engineer who uses his insight into
the technical problem which is modeled. This can lead to solutions which could not have
been found by fully automatic optimization methods.

The purpose of this project is to develop an automatic optimization method. Having
the exponential complexity of the global optimization problem in mind we don’t intend
to guarantee the solution is found, but rather to try to get the best possible out of a given
amount of computational resources. The user should specify how much computer time
and storage he will spend rather than specifying some epsilon accuracy as required by
many traditional approaches.

Since the classical deterministic method based on interval arithmetic has been very
successful we base our new technique on the same general branch-and-bound principle,

*on leave from Informatics Department, Nizhnij Novgorod State University

but without the requirement that interval arithmetic must be applicable. Thus the new
method is a strategy for managing local methods (like quasi-Newton methods) in a branch-
and-bound search for global minimizers.

This report consists of several sections. In Section 2 we give a general description of
the new method. The details of implementation are given in Section 3. Recommendations
in Section 4 tell how to use this program. In Section ?? we provide some computational
results.

2 Description of the method

We start the description with introducing some terms which will be used in further mate-
rial. Let function be a given real function of n variables. Let box be an n-dimensional real
interval. We assume that function is defined in some box, i.e. has interval constraints.
Let C, or candidate set, be a set of boxes to test. Let GG, or garbage set, be a set of boxes
temporarily eliminated from the search. We define the value fbound which is the smallest
function value found during the search. Temporary value B is used to store a single box.
Thus the structure of the new algorithm is the following:

the algorithm: (2)

initialize — C, fbound, G
while true do
while C' # () do
remove-best(C) — B
reduce-or-subdivide(B) — result, fbound, garbage
C = CU {result}
G = G U {garbage}
end
while G # () do
remove(G) — B
split(B) — result
C = CU {result}
end
end

The initialize procedure is called when the method is started the first time, and every
time when the method runs out of memory. It clears both C' and G sets, then adds the
initial box together with the best points of minimum, found in the previous iterations, to
C set. Obviously, there are no such points when the method starts the first time. In this
case fbound value is also initialized.

The purpose of the outer while-loop is to let the program run for as long as the
user wants. When time is out the program stops providing the best estimate of the
global optimizers that has been found. The longer time used, the better result should
be expected. For small dimensions, however, the whole set of global minimizers should
normally be found in a rather modest amount of computer time.

Inside the first inner while-loop the actual search procedures are being performed.
remove-best procedure removes the best box from the candidate set and stores it in B.
reduce-or-subdivide performs two consequential actions. At first, using different testing
procedures such as monotonicity test and quasi-newton search, it determines whether box
should be eliminated from the candidate set or not. At second, using the conclusion
obtained on the first stage, it places the box to the garbage or splits it into two parts for
further exploration. Let us take a closer look at how reduce-or-subdivide works.

Sampling: To prepare the box for testing method samples a certain amount of points
inside the box. It uses two strategies for placing these points. The first way is to use
some regular distribution. Method places one point in the center of the box, and for each
coordinate it places two points, shifted from the center along the axes to the left and to
the right on the same value in percent to appropriate side length. Such point we will call
reqular. The second way is to use random points, uniformly distributed in the box. These
we will call random points. For each point the function value is calculated.

Monotonicity test: This test uses a certain number of sampled points to check the
monotonicity. If it proves function in the box is monotonous the box is placed to garbage.
But here we should mention that the monotonicity test is skipped in our implementation
because this has proved most efficient in our tests. The possible reason for inefficiency of
monotonicity test is the following: after the first loop each full rank box in C' contains
at least one local minimum (because of subdivide below), and thus f is not likely to be
monotone in any of these boxes.

Newton-test. From the given number of sampled points method starts local search
sequences to find stationary points located inside the box. The local technique used in
our tests is a version of the dog-leg method, [3], which allows for an easy control of the step
lengths. Gradient in every point generated by local method is used to update mazimal
gradient value. We distinguish three pictures of convergency: If all iteration sequences go
out of B then B is placed to garbage. If all starting points lead to iteration sequences
converging to the same point x € B then {x} is placed to result and B is added to garbage.
If none of the two situations take place then we have found several local minima in B.
Then method estimates the lower bound of the function in the box LB(B). It takes all
points, generated by sampling procedure, and maximal gradient value to calculate LB(B)
as follows:

LB(B) — i 2+ F(a) = margradjs, — x| 5
i#] 2

LB(B) is corrected if it is greater than the lowest minimum found in the box. Finally,

if LB(B) > fbound then box is added to garbage. Else subdivide procedure should be

performed.

Subdivide: In this case B contains several known local minima, and the splitting into
two is done so each new box contains (known) local minima. There are several ways of
achieving such a subdivision. We will give more detailed description in the next section.

The first while-loop runs until the candidate set is empty. It also can be interrupted if
method runs out of memory. In this case the initialization procedure is called. If method
runs out of time limit, it stops. If there was no interruption method proceeds with the
second inner while-loop.

In the second inner while-loop the garbage set is emptied. remove procedure takes
one box from the garbage set and stores it in B. Then this box is split into two parts
by split procedure. It uses different splitting approaches depending on the amount of
stationary points found in the box.

If there are no such points, the box is subdivided in two equal parts by plane, crossing
the center of the box and perpendicular to the side with the maximal length. If there
is only one stationary point in the box then method finds the coordinate for which the
distance from the point to the border is maximal. The splitting plane is chosen to be
perpendicular to this coordinate axis, and it is shifted from the point to a certain value
in the direction where distance to the border is maximal. In case of multiple stationary
points subdivide procedure from above is used.

The second while-loop runs until the garbage set is empty. It also can be interrupted
if method runs out of memory. In this case the initialization procedure is called. If method
runs out of time limit, it stops. If there was no interruption method proceeds with the
first inner while-loop, and so on.

3 Implementation

To implement this method C++ programming language was used. We organized all data
and procedures as C++ classes, each representing a quite independent part of the search
process. There are two groups of classes: main and supplementary. The main group
classes are the following: T'Problem - a class containing data and routines for calculating
function and first derivative values, and for managing the results output; T'Method -
a class providing procedures for box testing; Process - a class which contains all data
structures and procedures necessary for managing the search, including TProblem and
TMethod objects. The supplementary group contains storage classes: TTrial - a class to
represent a single point; T'Boz - a class representing a box with points inside; T'BoxList
- a class designed to store ordered list of boxes. There are also two classes to implement
vectors and matrices - T'Vector and T'Matriz, which will not be described here.

Let us consider a supplementary group of classes. We will not describe all data mem-
bers and functions but only the most important ones. First class is T'Trial - quite trivial
one as all data are public:

class T'Trial
{
public:
TVector XVal; - vector of real values, or a point
double FVal; - corresponding function value
PTTrial Next; - pointer to next TTrial in a list

TTrial(int); - constructor by size of XVal vector

TTrial(RTTrial); - copy constructor

RTTrial operator=(RTTrial); - assignment operator

int GetXDim(); - returns dimension of XVal vector

long int SizeOfTrial(); - returns memory required for storing TTrial

4

%

Function SizeOfTrial() returns amount of memory in sizeof(char) units required to store
one object of TTrial class. It is used in procedures responsible for memory checks. All
other functions and data members of T'Trial are quite obvious. Class TBox is the second
basic storage class, and it looks like following:

class TBox
{
public:

TVector Right; - vector of right boundaries
TVector Left; - vector of left boundaries
PTTrial Pts; - list of points located in the box
double CMin; - current minimum in the box
PTBox Next; - pointer to next TBox in a list

TBox(int); - constructor by dimensionality
TBox(RTBox); - copy constructor
TBox(); - destructor

int Insert(PTTrial); - inserts trial to the box

int AddCopy(PTTrial); - inserts copy of trial to the box
PTTrial GetBest(); - returns pointer to the best trial
PTTrial RemoveBest(); - removes the best trial from the list
void Clear(); - clears trials list

int GetAmount(); - returns number of trials in the list

int InBox(PTTrial); - returns TRUE if trial is inside the box

int GetXDim(); - returns dimension of the box

int GetType(); - returns type of the box

int NearToMin(PTTrial,double); - checks distance to the points
void Truncate(double); - discards trials with too high function values
double GetLongSide(); - returns length of the longest side

double GetShortSide(); - returns length of the shortest side
double GetMaxSlope(); - estimates maximal slope of function
double GetLBound(double); - estimates lower bound of function
long int SizeOfBox(); - returns memory required for storing TBox
static long int GetMemUsed(); - returns memory used for trials

%

There is a group of functions performing operations with the list of points. It is possible
to insert a point or a copy of the point into the list, obtain pointer to the best point in
the list, remove it from the list, get total number of points in the list, and clear the list
of points.

Function InBox(PTTrial tr) checks whether given point tr located inside the box or
not. Do not be confused - it does not check whether the point is in the list. Function

5

GetType() returns one of the predefined box type constants. There are three of them:
for empty box, for box containing only one point in its list, and for box with several
points inside. Function NearToMin(PTTrial tr,double dist) checks whether given point
tr located close to one of the points in the list or not. Parameter dist gives the distance
limit. Function Truncate(double band) removes points with function values greater than
CMin + band. Function GetMaxSlope() estimates maximal slope of the function in the
box using points from the list. The maximal slope is calculated as follows:

e L) = £

i# [l =]

(4)

Function GetLBound(double slope) estimates lower bound of the function in the box
using point from the list. Is uses Formula 3 for calculations, where mazgrad is given by
slope parameter. Function SizeOfBox() returns amount of memory in sizeof(char) units
required to store one object of TBox class. Function GetMemUsed() returns amount of
memory used by all T'Trial objects stored in all TBox objects available. Two last functions
are used in procedures responsible for memory checks.

Class TBoxList serves for storing ordered list of boxes. Boxes in the list are ordered
by their CMin values in increasing order. So the best box is always at the beginning of
the list. There are the same basic operations for including and removing a box as in class
TBox for points. Definition of TBoxList looks like following:

class TBoxList
{
PTBox List; - list of boxes
static long int BCount; - memory counter for stored boxes
public:
TBoxList(); - default constructor
TBoxList(); - destructor

int Insert(PTBox); - inserts box in the list

int AddCopy(PTBox); - inserts copy of the box in the list
PTBox GetBest(); - returns pointer to the best box
PTBox RemoveBest(); - removes the best box from the list
void Clear(); - clears list of boxes

int GetAmount(); - returns number of boxes in the list

int IsEmpty(); - returns TRUE if list is empty
static long int GetMemUsed(); - returns memory used for boxes

b

Function IsEmpty() returns boolean true in case when list of boxes is empty. Function
GetMemUsed() returns amount of memory used by all TBox objects stored in all TBoxList
objects available.

Let us consider now the main group of classes. There are three classes in this group,
and we start with class TProblem. As it was mentioned above TProblem contains data

and routines for calculating function and first derivative values, and for managing the
results output. It is defined like follows:

class TProblem

{

b

double FBand; - band for minimal function values
double CMin; - current estimation of minimum

long int FCount; - number of function calculations
long int DFCount; - number of derivative calculations

FILE* ResFile; - results file pointer
char* ResName; - results file name

protected:

int OpenResults(); - opens results file
int CloseResults(); - closes results file
int WriteResults(); - writes to results file

virtual void PureCalcF(PTTrial)=0; - calculates F(X)
virtual void PureCalcDF(PTTrial,PTVector)=0; - calculates F’(X)
virtual void PureCalcF _DF (PTTrial,PTVector)=0; - calculates F(X) and F’(X)

public:

TBox Bounds; - area of definition and points of minimum

TProblem(PTBox,double,char*); - constructor by bounds,fband,filename
virtual TProblem(); - destructor

int CalcF(PTTrial); - calculates F(X)

int CalcDF(PTTrial,PTVector); - calculates F’(X)

int CalcF_DF(PTTrial,PTVector); - calculates F(X) and F’(X)
int InBounds(PTTrial tr); - point is in bounds

int AddToResults(PTTrial); - adds trial to results list

int GetXDim(); - returns dimension of the function

double GetCMin(); - returns current minimum

double GetFBand(); - returns function band for minima

long int GetFCount(); - returns number of F(X) calculations
long int GetDFCount(); - returns number of F'(X) calculations

Within the definition of the class one can see three pure virtual functions. They were
introduced to allow for different implementation of function and first derivatives. User
needs to derive classes based on TProblem class where those virtual functions will be de-
fined. Currently we have two such classes ready to use: class TProblemFF for calculating
function given as a C procedure, and class T'ProblemDD for calculating first derivatives

7

using simple divided differences. They are incomplete classes because only function or
derivative calculations are implemented in each one. But to make a useful class we need
to combine these two calculations. So we created class TProblemFFDD derived from both
of them. This class is actually used in our program.

Let us return to the class TProblem. Functions PureCalcF(),PureCalcDF(), Pure-
CalcF_DF() are virtual functions calculating function and first derivative values without
any border checks and updating any internal variables. These checks and updates are
made by corresponding functions without Pure- prefix, from which those virtual func-
tions are called. Namely, they check given point for being located within given problem
boundaries, update current minimum value CMin, and increment corresponding counters
- FCount and DFCount.

Another group of procedures is responsible for creating the results output. ResFile
and ResName are results file pointer and results file name respectively. File is opened by
procedure OpenResults(), information is written by WriteResults(), and it is closed by
CloseResults().

The result this method provide is a set of stationary points with best function values
found during the search. This set of points is stored in the internal list of Bounds box. To
prevent TProblem from storing points with too high function values FBand data member
is used. Thus only points with function values less or equal to CMin + FBand will be
stored. It is recommended to set FBand to some small value, equal or close enough to the
method accuracy, in case if user wants to get only possible global minimizers as a result.
Function AddToResults() adds a point to the results list.

The second main class to consider is TMethod - a class providing procedures for box
testing. Its definition is following:

class TMethod
{
double Accuracy; - search accuracy
double AttractR; - radius of attraction
int RandAmnt; - number of random points
int NewtAmnt; - number of points to start newton search

int DogLegStep(PTProblem,PTBox,RTTrial, RT Vector,
RTMatrix,RTMatrix,double&); - performs dog-leg iteration

protected:
void FillRegular(PTProblem,PTBox); - samples regular points
void FillRandom(PTProblem,PTBox); - samples random points
virtual void FillBox(PTProblem,PTBox); - samples points in the box
virtual double DoSearch(PTProblem,PTBox,PTBox); - searches for minima

public:
TMethod(double,double,int,int); - constructor by accuracy,attr.R,random,start
int CheckBox(PTProblem,PTBox); - checks function behavior in the box
double GetAccuracy(); - returns accuracy

double GetAttractR(); - returns radius of attraction
int GetRandAmnt(); - returns number of random points
int GetNewtAmnt(); - returns number of starting points

b

There is only one single procedure which is called from TProcess object to check a box -
it is CheckBox(). It corresponds to reduce-or-subdivide procedure from Section 2. A
box to test is passed together with the problem to this function.

Sampling is made by function FillBox() which, in its turn, calls functions FillRegular()
and FillRandom() to sample regular and random points respectively. The number of
random points to sample is given by RandAmnt data member. We use standard library
random generator rand() with uniform distribution. FillBox is defined virtual to allow
user to implement some different sampling strategy.

Local search is done by function DoSearch() which starts search sequences from the
number of sampled points given by NewtAmnt data member. It takes only the best
NewtAmnt points to start. The first box in the parameters list is an original box, and all
stationary points, which will be found during the local search, are added to this box. The
second box is one with a set of sampled points. DoSearch() returns real value - maximal
gradient component found, later used to estimate the lower bound of the function in the
box. Data member Accuracy gives an accuracy of local search. AttractR data member
gives the radius of a hypersphere, surrounding each point of local minimum. It is needed
to prevent local search from converging to the same point several times. Its value depends
significantly on the technique for calculating derivatives, and on the local search method
itself. Ideally it should be equal to accuracy, but in our tests we used a greater value.
In this implementation we use divided differences for calculating derivatives and dog-leg
local search procedure.

The result of applying CheckBox() is one of the predefined constants describing what
should be done with the box. There are two possible actions: eliminate box from the
candidate set, or split it into two parts placing them back into candidate set. These
actions are carried out by TProcess object.

Class TProcess contains all data structures and procedures necessary for managing
the search, including TProblem and TMethod objects. It is defined like follows:

class TProcess

{
PTProblem Pr; - pointer to problem object
PTMethod Met; - pointer to method object

long int MaxBytes; - memory limit
long int MaxTime; - time limit
time_t StartTime; - start time

protected:
int SplitBox(PTBox); - splits given box in two

public:
TBoxList Unexplored; - candidate list
TBoxList Eliminated; - garbage list

TProcess(PTProblem,PTMethod,long int,long int);

- constructor by problem,method,memory,time
int Preparelists(); - prepares lists of boxes for performing a cycle
int Dolteration(); - performs one iteration of the method
int DoProcess(); - performs whole search process
int InMemory(); - returns memory status
int InTime(); - returns time status
long int GetMaxBytes(); - returns memory limit
long int GetMaxTime(); - returns time limit
long int GetMemory(); - returns amount of used memory
long int GetTime(); - returns time from start

b

Pointers to TProblem and TMethod objects are passed by constructor parameters and
stored afterwards in Pr and Met data members. Thus they should be created outside the
TProcess object. It gives a good flexibility as different problem and method implementa-
tions can be used.

There are two objects of TBoxList class in the public area - Unexplored and Eliminated.
They correspond to the candidate and garbage sets respectively. We have placed them
both in a public area in order to allow user to get access to the information they contain.

The main procedure which performs the whole search process is DoProcess(). It quits
when the time limit given by MaxTime data member is finished. Its internal structure is
quite simple and looks like that:

int DoProcess()
{
while (PrepareLists())
while (Dolteration());
return TRUE;

}

The outer while-loop here corresponds exactly to the outer loop in the description of
the method from Section 2. It runs until the value returned by PrepareLists() function
becomes false, which happens when the time limit is finished.

Function PrepareLists() contain both initialization procedure and second outer loop
described in Section 2. It initialize the internal data when it is necessary namely in case
if process starts the first time, or if it is restarted due to running out of memory. Then,
in a while-loop, it fetches boxes from the Eliminated list to split them and put into the
Unexplored list.

The inner while-loop here corresponds exactly to the first inner loop in the description
of the method from Section 2. All actions inside the loop are carried out by Dolteration()
procedure which is shown below:

10

int Dolteration()
{
if (!InTime() || InMemory()) return FALSE;
PTBox temp=Unexplored.RemoveBest();
if (temp==NULL) return FALSE;
if (Met->CheckBox(Pr,temp)==ACTION_SPLIT) SplitBox(temp);
else Eliminated.Insert(temp);
return TRUE;

}

The first if operator checks for time and memory conditions. In the second line the best
box from the candidate set is removed and stored in temporary variable. The second if
operator checks whether candidate set was empty or not, as a nill pointer is returned in
a case of empty set. The last if operator calls method function to check the box, and
a resulting value is compared with one of the predefined action constants. If returned
value is equal to ACTION_SPLIT then SplitBox() procedure is applied to the box. Else,
namely when returned value is equal to ACTION_ELIMINATE, the box is placed into
the garbage set.

Function SplitBox() is called every time a box has to be split, either from inside of
PrepareLists() function or Dolteration() function. It always splits a box in two parts
and places those into the candidate set. The initial box is deleted but all the points it
contained are distributed to new pair of boxes. The procedure recognizes three types of
boxes and applies different split subroutines for each type. Empty box is subdivided in
two equal parts by plane, crossing the center of the box and perpendicular to the side
with the maximal length. If there is only one stationary point in the box then coordinate,
for which the distance from the point to the border is maximal, is selected. The splitting
plane is chosen to be perpendicular to this coordinate axis, and it is shifted from the point
to a certain value in the direction where distance to the border is maximal.

In case of multiple stationary points several split strategies can be applied. We have
experimented with three of them. At first, we tried to use some kind of statistics. The
central point for all P stationary points in the box was computed by a simple formula:

1 P
Center = =Y X; (5)
P

Then a vector of relative deviations, or dispersions, was calculated for this central point:

P

1
Dispersion = 2 > (Center — X;)? (6)
i=1

Finally, the coordinate
k = argmax Dispersion]i]

was chosen. The box was subdivided in two by plane, crossing the Center point and
perpendicular to k-th coordinate axis. This strategy gave rather good results but it is
also a little bit expensive from computational point of view. Thus another approach was

11

introduced. Instead of using all P stationary points contained in a box for calculations
described above we suggested to consider only two of them with best function values. This
strategy is used by default in current implementation. At last, we tried an additional rule
which prevented splitting plane from intersecting with any stationary point in the box,
but it required even more computations than in the first case, and gave no significant
improvement as probability of such an intersection is very small.

4 How to use this program

In this section we illustrate how to write the complete program using our code. The short
example program is given below for the purpose:

001 #include "process.h”

002 extern const int DIM;

003 extern double F(TVector);

004 int main()

005 {

006 TBox Bounds(DIM);

007 Bounds.Right(0)=10.0;

008 Bounds.Left(0)=-10.0;

009 ..

010 long int Memory=640000;

011 long int Time=300;

012 char FileName[]="results.out”;

013 double Accuracy=0.001;

014 double ARadius=0.1;

015 double FBand=0.001;

016 double DFStep=0.0001;

017 int Random=0;

018 int Start=DIM;

019 TProblemFFDD Prob(F,&Bounds,FBand,DFStep,FileName);
020 TMethod Met(Accuracy,ARadius,Random,Start);
021 TProcess Proc(&Prob,&Met,Memory, Time);
022 Proc.DoProcess();

023 return TRUE;

024 }

In line 001 the header file process.h which contains all necessary declarations is included.
Lines 002 and 003 contain declarations of external objects: integer constant DIM - di-
mensionality of the problem, and real function F of TVector - function to be minimized.
Of course, it is not necessary to use dimensionality constant, and here it is given just for
illustrative purpose. Function can also be defined in the same file.

From line 004 C function main begins. In line 006 object Bounds of class TBox is
created. It will contain function constraints, which are assigned further in lines 007 and
008. Here we only show initialisation of the first component, and ellipsis in line 009

12

represents the part of code where the rest of components are initialized. Naturally, user
is free to choose how to perform initialisation of bounds: in linear part of code, in loop
or in some other way.

In the part of code from line 010 to line 018 all the parameters needed to start search
are defined. In this example we assign some values which are not essential and probably
they will be changed in a real application. Two integer values - Memory and Time
represent memory and time limits. Character string FileName contains a name of file
where results should be written. Two real values - Accuracy and A Radius define the local
search accuracy and radius of attraction respectively. Real values FBand and DFStep
give band for minimal function values and step for calculating first derivatives. And,
finally, integer values Random and Start represent number of random points and number
of points to start local search. We should note that it is not necessary to define special
variables for all these parameters but they can be written directly in the parameter lists
of constructors.

In line 019 object Prob of class TProblemFFDD is created. This class is derived from
class TProblem and supplies procedures for calculating function, given as a C function
(see line 003), and for calculating first derivatives by using divided differences. Parameters
of constructor are the following: function to minimize, pointer to bounds object, band for
minimal function values, step for calculating first derivatives and results file name.

Object Met of type TMethod is created in line 020. Parameters of its constructor are
the following: local search accuracy, radius of attraction, number of random points and
number of points to start local search.

The last object needed to start running is created in line 021 - object Proc of class
TProcess. The following parameters are passed to its constructor: pointer to problem
object, pointer to method object, memory limit and time limit.

The whole search process is performed by call of a single function in line 022 - function
DoProcess() of object Proc. It runs until the time limit is up. When the search is finished
all the information is available through object Proc, namely, the lists of boxes can be read
and modified, the solutions list and results file can be read and modified as well. After
modifying some data process can be restarted. The results file will contain sequential
blocks of data showing the progress in finding minimizers. Each block has the following
format:

NUMBER OF F(X) AND F’(X) CALCULATIONS
number of function and first derivative calculations on the moment
when the modification of the results list occured. Modified results
list is printed after this header.
RESULTS LIST
results list in format:
F(X) VALUE 1 : (X) VALUE 1
F(X) VALUE 2 : (X) VALUE 2

Function main exits in line 023 and returns boolean TRUE as a result. As one can see,
only about 30 lines of code are needed to write the complete program. We dare to assume

13

that our program is quite easy to use and it allows for an easy control of the search data.
For deeper understanding please refer to the program source code and header files. These
sources are available on request to the authors.

References

[1] Kaj Madsen and Serguei Zertchaninov (1998) A New Branch-and-Bound Method for
Global Optimization. IMM-REP-1998-05, Department of Mathematical Modeling,
Technical University of Denmark, DK-2800 Lyngby, Denmark.

[2] Kaj Madsen, Serguei Zertchaninov and Antanas Zilinskas (1998) Global Optimization
using Branch-and-Bound. Submitted to Global Optimization.

[3] M.J.D. Powell (1970) A Hybrid Method for Non-Linear Equations. in ”Numerical
Methods for Nonlinear Algebraic Equations”, P. Rabinowitz, ed. 87-114.

14

