Global Optimization using Branch-and-Bound

Kaj Madsen and Serguei Zertchaninov:
Department of Mathematical Modelling
Technical University of Denmark

1 Introduction

Many technical and economic problems can be formulated as mathematical
programming problems, i.e. as the minimization of a function f : D — R
where D C R"™. Very often the function f has several local minima only one
of those being interesting, however, namely the smallest one:

fr=inf{f(x) |z e D} (1)

f* is called the global minimum and the set of points where it is attained is
called the set of global minimizers.

The problem of constructing an automatic machine (i.e. a computer pro-
gram) which is guaranteed to find this set has not been solved, and it prob-
ably never will be. Interval analytic methods solve the problem for a limited
class of problems, as mentioned below. Most other methods either give no
guarantee for convergence or convergence is so slow that it in general (i.e. for
larger dimensions) is unrealistic. Some techniques are semi-automatic, i.e. it
is required that a skilled engineer uses his insight into the technical problem
which is modelled by the optimization problem to "help’ the optimization
method. Often this can lead to solutions which could not have been found
by fully automatic optimization methods. An example of such a technique
is given in [1].

In this paper we intend to develop an automatic optimization method. Hav-
ing the exponential complexity of the global optimization problem in mind

YUniversity of Nizhni Novgorod, Russia

we don’t intend to guarantee the solution is found, but rather to try to get
the best possible out of a given amount of computational ressources. Thus
the user should specify how much computer time and storage he will spend
rather than specifying some epsilon accuracy as required by many traditional
approaches.
Since the classical deterministic method based on interval arithmetic has
been very successful (see e.g. the book of Eldon Hansen, [4]) we base our
new technique on the same general branch-and-bound principle, but without
the requirement that interval arithmetic must be applicable. Thus the new
method is a strategy for managing local methods (like quasi-Newton meth-
ods) in a branch-and-bound search for global minimizers.
The basic interval strategy is the following: At any stage of the procedure
we assume to have a finite number of

subsets D; C D

lower bounds, LB(D;), on min{f(x) | x € D;}

upper bounds, UB(D;), on max{f(z) | z € D;}
with the property that any global minimizer is contained in the union of all
D;.

Following the interval arithmetic method we assume throughout the pa-
per that D is a compact right parallelipiped parallel to the coordinate axes
(denoted a box). This assumption could be weakened but it makes the tech-
nique much simpler. Furthermore we assume that f is a smooth function
(i.e. twice continuously differentiable).

In Section 2 the general branch-and-bound scheme is given, and two realiza-
tions of the scheme are described:

(a) The interval method which has guaranteed convergence to the set of
global minimizers. Drawback: It is required that an explicit expression for
calculating function values f(z) can be supplied.

(b) A new stochastic strategy intended to estimate the interval method with-
out having the need of being rigorous. This method is generally applicable
(i.e. finding f(z) may be considered a black box calculation). Drawback:
The guaranteed convergence property may be lost.

In Section 3 the new algorithm, based on (b), is presented. Section 7?7 de-
scribes numerical experiments and comparisons with other methods.

2 The general Branch-and-Bound Scheme

We wish to find the global minimum f* as well as all points x* for which
f(z*) = f*. Using the notation

fX)={ftz) e X}, XCD 2)
for the range of f over X the problem can be formulated as follows,

find fr=mf{f(D)}
and X' ={zeD|fz)= '} 3)

Futhermore, we use the notation C for a finite set of subsets D;,i =1, ..., p,
of D with the properties

D; is a box
X*Ccus=U_D;CD (4)

US is denoted the candidate set and the Branch-and-Bound Scheme aims to
reduce US and make it converge to X*. In our description we shall use the
notations P; = D; if D; is a point (a degenerate box) and B; = D; otherwise,
so C={D;} ={P}U{B;}.

Initially C' = {D} = { B} assuming the problem is non-trivial. Now the idea
is to consider the ”"smallest” (in some sense related to the function values)
non-trivial element B; from C and try to reduce it without violating (4) . If no
reduction takes place, however, then B; is subdivided into two or more non-
trivial pieces. In any case B; is removed from C', and either the reduced set
or the pieces (denoted result below) is added to C. Furthermore, a dynamic
threshold value fbound is used to reduce C: fbound is an upper limit for f*
so if for some value of i LB(D;) > fbound then D; can be removed from C.
Therefore the global minimum is included as follows

min{LB(D;) | D; € C} < f* < fbound (5)
Thus the model algorithm is the following

model algorithm: (6)

initialize — C, fbound
while not stop do

remove-best(C) — B

reduce-or-subdivide(B) — result, fbound

C = CU{result}

for D; € C do if LB(D;) > fbound then C = C'\ D;
end

Of course the for-statement needs not always search the whole of C'. This
depends on the data structure used. Futhermore, it only needs to be executed
when fbound has been changed. stop is a function which returns true when
all elements of C' are points or the inclusion (5) of the minimum is sufficiently
narrow. Since any known function value can be used as fbound (f* < f(x)
for any z € D) fbound is reduced every time a better function value is found.
This basic algorithm was first published by Stig Skelboe [10] who used it
in an interval analytic implementation for minimizing rational functions by
bisection of subdomains.

2.1 Interval Version

Interval arithmetic and analysis was introduced during the 1960’ies and the
standard introductary textbook was authored by Ramon E. Moore, [6]. In in-
terval arithmetic the basic arithmetic operations {4, —, %, /} on real numbers
are replaced by corresponding operations on real intervals. Furthermore rou-
tines for calculating ranges of the standard functions (sin(zx), cos(x), exp(z),
etc.) are supplied. Therefore, if a real function value f(b),b € R" can be
calculated by a finite number of these operations and standard functions it is
straight forward to insert intervals instead of real numbers in the calculation.
This provides an interval function value F(B) (where B is a box) with the
properties

f(B) € F(B)
d(f(B), F(B)) = O(w(B)) (7)
where w(B) denotes the width of B,

B={b|b <b <b} (8)

and d is the distance between two intervals, i.e. the maximum of the dis-
tance between corresponding end points. Thus interval arithmetic provides
automatic calculation of lower and upper bounds on function ranges, and if
the width of B goes to zero then the overestimate disappears at a linear rate.
However, for large values of w(B) the overestimate can be quite severe.

The interval global optimization method was basically developed during the
1970%ies ([10],]7],[2],][3]) but since then many researchers have improved the
method. A thorough description including theoretical as well as practical as-
pects can be found in [4]. The basic principle is that lower and upper bounds
of function ranges are deducted from the interval function values, e.g. LB(B)
is defined as the lower bound of F(B) where F' is an interval extension of
f, and furthermore w(B) is forced to tend towards zero, if necessary. The
general scheme (6) is realized as follows

initialize: C' = {D}, fbound = maz{F(D)}

reduce — or — subdivide : 9)

if monotone then result:= mon(B)
else if Newton-reduction then result:= Newton(B)
else subdivide(B)— B!, B?
result:= { B, B*}

monotone: This is tested using an interval extension F” of the gradient f’ of
f. (... see report, page 4 ff. ... ")

Subdivide: B is divided into two non-trivial boxes, for instance by halving
the side of largest width.

2.2 Stochastic Version

This section describes a stochastic realization of the branch-and-bound scheme
(6) which was presented in [5]. The motivation is the success of the inter-
val realization of (6) which is very efficient when it is applicable and when
the problem dimension is relatively small. The purpose is to find a new
strategy which is applicable to all smooth problems (i.e. in contrast to the

5

interval method function and gradient calculations are now considered as
black boxes). The prize to be paid is that we loose the safety of the interval
method: Lower and upper bounds of function ranges cannot be calculated
exactly, they must be estimated. Furthermore, like the interval method, we
can can certainly not expect the strategy to find all global optimizers of large
problems in a realistic amount of time. This is of course due to the expo-
nential nature of the global optimization problem. In Section 3 we present a
practical method to cope with that problem.

We now describe the stochastic realization of (6). The variable fbound
will always contain the smallest function value which has been seen during
the iteration. The realization is the following:
remove-best: The box B; € S which has the smallest (known) function
value is chosen.
reduce-or-subdivide: The scheme (9) is used. It is realized as follows:
monotone: The gradient is calculated at the points m(B) (the mid point of
B) and m(B)j:%*w(B(j)), j=1,n, where B = BW x ... x B™ and w is the
width and at a user specified number of random points in B. Furthermore
we calculate the gradient at the point where the line of mean antigradient
for all tested points intersects with the border of B.

If there exists at least one coordinate x; for which 0f/0z;(x) has constant
sign for all points x in consideration, then we decide that no stationary point
exists in B. If this decision is correct then the minimum of f over B is
attained at one of the sides of B (x; constant). If this side is interior in D
then B can be discarded from further consideration. Otherwise B it can be
reduced to the side in question, i.e. the dimension is reduced by one.
Newton-test: In this test a quasi-Newton iteration is used to locate possible
local minima in B.

The iteration is started at a number of points, and the idea is as follows: If
all iteration sequences go out of B then it is decided that B has no stationary
point, and B is discarded or reduced as described above. On the other hand,
if all starting points lead to iteration sequences converging to the same point
x € B then we decide that B has exactly one stationary point, and therefore
B is discarded and P = {z} is added to result. A quasi-Newton iteration is
not stopped until it either has converged or the iterate is "well out of” B,
which in our implementation means

35,1 <j<n: zlgj) — m(BY) |> 0.55 « w(BY) (10)

Subdivide: B is divided into two as in the interval version.

LB(B): We use the available information to estimate a lower bound on the
function values over a box B. This is done as follows:

Assume p local minima, 29, j = 1,...,p, have been located in B, and let
est = min{f(x")) | j = 1,...,p}. Let t be a user specified positive integer. If
p >t then LB(B) = min{f(z")|j=1,...,p} else LB(B) = —cc.

3 The New Method

This section describes the new method which is based on a version of the
stochastic strategy of subsection 2.2. Based on our experiences this version
is greatly improved as compared with [5] so the convergence is faster and
more safe. Furthermore the safety is increased by incorporating the stochastic
strategy in an infinite loop where we keep an outer candidate set which always
includes the whole of D. Thus we never eliminate boxes in the reduce-and-
subdivide step of (6), but if result only covers a subset of B then B is added to
a garbadge collector (the outer candidate set) supplied with the information
we have found about local minima in B. In the outer iteration the garbadge
collector forms the basis for a re-defintion of the inner candidate set C: For
each box B in the garbadge collector we use the available information about
the local mimizers of B in a device which perhaps splits B into several boxes
which are all added to C.

The purpose of the outer loop is to provide the possibility of letting the
programme run for as long as the user wants. The programme can be stopped
at any time providing the best estimate of the global optimizers that has been
found. The longer time used, the better result should be expected. For small
dimensions, however, the whole set of global minimizers should normally
found in a rather modest amount of computer time.

Thus the structure of the new algorithm is the following;:

new algorithm: (11)

initialize — C| fbound, G
while true do
while C # () do
remove-best(C) — B

reduce-or-subdivide(B) — result, fbound, garbadge
C = C U {result}
G = G U {garbadge}

end

while G # () do
remove(G) — B
split-or-reduce(B) — result
C = CU{result}

end

end

The first while-loop differs from the stochastic strategy at the following
points:

reduce-or-subdivide: The scheme (9) is used.

monotone: We skip the monotonicity test because this has proved most ef-
ficient in our tests. The reason for this is probably the following: After the
first loop each full rank box in C' contains at least one local minimum (be-
cause of subdivide below), and thus f is not likely to be monotone in any of
these boxes.

Newton-test: The strategy from subsection 2.2 is used. The local method
used in our tests is a version of the dog-leg method, [8], which allows for an
easy control of the step lengths.

If all iteration sequences go out of B then B is added to garbadge. If all start-
ing points lead to iteration sequences converging to the same point x € B
then {z} is added to result and B is added to garbadge. If none of the two
situations take place then we have found several local minima in B and noth-
ing has been added to C' or G.

Subdivide: B must contain several known local minima, and the splitting into
two is done so each new box contains (known) local minima.

LB(B): First assume p > 1 local minima, V), j = 1,..., p, have been located
in B. In this case we estimate the Lipschitz constant corresponding to f as

follows,
(@) = f@))
Lip = max [20) — 20|

(12)

We use the available information to estimate a lower bound on the func-
tion values over a box B. This is done as follows:

Assume p local minima, zU),j = 1,...,p, have been located in B, and let
est = min{ f(x")) | j = 1,...,p}. Let t be a user specified positive integer. If
p >t then LB(B) = min{f(z")|j=1,..,p} else LB(B) = —cc.

4 Computational Experiments

4.1 Test functions
4.1.1 Box & Betts exponential quadratic sum

Dimension: n =3
Interval: X = ([0.9,1.2],[9,11.2],[0.9,1.2])
Formula:

10

f(z) = [exp(—0.1izy) — exp(—0.lizy) — (exp(—0.1i) — exp(—i))zs)?
i=1
Global minimum: 0
Set of minimizers: (1,10,1)

4.1.2 Rosenbrock function

Dimension: n =2
Interval: X = [-10,10]"
Formula:
f(z) =100(zy — 22)* + (1 — 21)?
Global minimum: 0
Set of minimizers: (1,1)

4.1.3 Shubert function

Dimension: n =2
Interval: X = [-10,10]"

Formula:
n 5

fle) == jsin((j +)i + j)
i=1 j=1
Global minimum: —24.062499
Set of minimizers:

(—6.774576, —6.774576) (—6.774576,—0.491391) (—6.774576,5.791794)
(—0.491391, —6.774576) (—0.491391,—0.491391) (—0.491391,5.791794)
(5.791794, —6.774576) (5.791794, —0.491391) (5.791794,5.791794)

10

4.1.4 Paviani function

Dimension: n = 10
Interval: X = [2.001,9.999]"
Formula:

f(z) zgjl(m (i = 2) + In*(10 — 2;)) — (ﬁx>2

Global minimum: —45.778470
Set of minimizers: (9.350266,9.350266, ...,9.350266)

4.1.5 Hansen function

Dimension: n =2
Interval: X = [-10,10]"
Formula:

5
chos i—1)xy +1) chos (j+ D+ J)
=1 7=1

Global minimum: —176.541793

Set of minimizers:
(—7.589893, —7.708314) (—7.589893, —1.425128) (—7.589893,4.858057)

(—1.306708, —7.708314) (—1.306708, —1.425128) (—1.306708,4.858057)
(4.976478, —7.708314) (4.976478,—1.425128) (4.976478,4.858057)

4.1.6 Levy function

Dimension: n=4—-7
Interval:
for n=4: X =[-10,10]"
for n=5-7: X = [-5,5]"
Formula:

n—1

f(z) = sin®*(3mwy) + Z:(xZ —1)*(1+sin*(37zi41)) + (20 — 1) (14 sin*(271,,))

11

Global minimum:

for n=4: —21.502356

for n=5-7: —11.504403

Set of minimizers:

for n=4: (1,1,1, —9.752356)
for n=5-7: (1,...,1, —4.754402)

4.1.7 McCormick function

Dimension: n =2
Interval: X = ([—1.5,4],[—3,4])
Formula:

f(x) = sin(wy + 29) + (x1 — 22)* — 1.5z + 2.5m9 + 1

Global minimum: —1.9133
Set of minimizers: (—0.54719, —1.54719)

4.1.8 Shekel function

Dimension: n =4
Interval: X = [0, 10]"
Formula:

A =(4,4,4,4) =01 Ag=(2,9,2,9) s = 0.6
Ay =(1,1,1,1) =02 A, =(5,5,3,3) cr = 0.3
A;=(8,8,8,8) ¢c3=02 As=(8,1,8,1) cs = 0.7
Ay =(6,6,6,6) ¢, =04 Ag=(6,2,6,2) co = 0.5
As=(3,7,3,7) ¢5=04 A= (7,3.6,7,3.6) c10=0.5

Global minimum: *
Set of minimizers: (x)

12

4.1.9 Griewank function

Dimension: n = 10
Interval: X = [—500,700]"

Formula: . .
f(x) =" 27/4000 —]| cos <&> +1
i=1 i=1 Vi

Global minimum: 0
Set of minimizers: (0,0, ...,0)

4.1.10 High-dimensional function

Dimension: n = 30
Interval: X = [-20,30]"
Formula:

Global minimum: —1.0
Set of minimizers: (0,0, ...,0)

4.2 First and last global minima found

Here we offer a table which contains the best results we obtained for the given
number of test functions. The table is to show capability of the method to
find the solution in case when parameters were chosen to provide the best
performance. Although we do not say that these results are the best possible
as we have not tested all the reasonable combinations of parameters.

13

Function Dim. LE FS Start First(F :dF) Last(F :dF)
4.1.1 3 n n 1 13:7 13:7
4.1.2 2 n n 1 60 : 52 60 : 52
413 2 y oy 2 31 : 28 5400 : 4650
4.1.4 10 n n 1 31:11 31:11
4.1.5 2 Yy n 3 182 : 172 2946 : 5550
4.1.6 4 n n 9 232 :232 232 :232
4.1.6 d n oy 3 645 : 597 645 : 597
4.1.6 6 n n 5 321 : 305 321 : 305
4.1.6 7 n oy 1 2680 : 2680 2680 : 2680
4.1.7 2 n n 1 15:11 15:11
4.1.8 4 n n 1 28 : 20 28 : 20
4.1.9 10 n n 3 337 : 301 337 : 301

Using certain uniformity in choosing parameters, namely setting 2N+1 points
to start search sequences, and disabling lower bound estimation and fast split-
ting, we have the following results, which illustrate the case when the best
combination of parameters is unknown to the user.

Function Dim. Total Found First(F:dF) Last(F :dF)
4.1.1 3 1 1 69 : 69 69 : 69
4.1.2 2 1 1 247 : 247 247 1 247
4.1.3 2 9 8 62 : 62 5733 : 5733
4.1.4 10 1 1 403 : 403 403 : 403
4.1.5 2 9 7 1740 : 1740 11710 : 11710
4.1.6 4 1 1 232:232 232 :232
4.1.6 d 1 1 11010 : 11010 11010 : 11010
4.1.6 6 1 1 2972 : 2972 2972 : 2972
4.1.6 7 1 1 4474 - 4474 4474 - 4474
4.1.7 2 1 1 41 : 41 41 : 41
4.1.8 4 1 1 214 : 214 214 : 214
4.1.9 10 1 1 3412 : 3412 3412 : 3412
Where:

Function - test function number

Dim. - dimensionality

LE - using lower function value estimation
F'S - using fast split

14

Start - number of points to start search sequences

First (F:dF) - number of function:derivative calls to find first minimum
Last (F:dF) - number of function:derivative calls to find last minimum
Total - total number of global minima

Found - number of found global minima

4.3 Analizing parameters

To illustrate how behaviour of the method depends on the parameters... We
use function 4.1.3 as an example.

Start Random LE FS First(F:dF) Last(F :dF)

2 0 n n 31:28 9175 : 7864
2 0 n 31:28 6738 : 5787
2 0 Y n 31:28 6441 : 5547
2 0 Y Y 31:28 5400 : 4650
5 5 n n 65 : 60 8341 : 7536
5 5 n Y 65 : 60 16580 : 14930
5 5 Y n 65 : 60 8341 : 7536
5 5 Y Yy 65 : 60 16580 : 14930

For 4-dimensional function 4.1.6 were used 4 starting points...

LE FS First(F :dF)
non 8254 : 7809

n oy 379 : 359
Y n 8254 : 7809
Y Y 379 : 359

For function 4.1.5 (y,n) ...

Start First(F :dF) Last(F :dF)
2 54 : 48 6435 : 5475
3 182 : 172 5946 : 5550

Now we will try to form some general recommendations on choosing param-
eters. User shouldn’t assume that we give an ultimate strategy, but we base

15

our suggestions on the computational experiments we have carried out.

In case of having an unimodal function to be optimized, it is clear that
search sequences, ideally, can lead to no more than one point. Hence using
lower bound estimation and fast splitting usually makes no sence. User is
free to choose the number of random and starting points, but usually it’s
not necessary to use random sampling, and just a few (even one) starting
points are needed to find the solution.

Let us consider multimodal functions. We subdivide them into two classes,
first containing functions with unique global minimum, and second contain-
ing the rest. Within each class we consider the number of local minima, and
separate functions, having relatively few local minima in the region of search,
and the rest.

For the functions with unique global minimum and a few local minima,
we recommend to use fast splitting combined with small amount of start-
ing points. Using lower bound estimation is usually unnecessary. For the
case with many local minima lower bound estimation is more desirable, but
fast splitting is not always the best way. Number of starting points can be
increased, and random sampling sometimes leads to significant speed up.

For the functions with many global minima method with fast splitting
usually finds the first global minimum faster, but slows down in finding the
rest. Lower bound estimation sometimes helps to improve this, though it
may lead to loosing some of the solutions. Number of starting points should
be relatively bigger than in previous cases, and using random points is a good
aproach as well.

One significant disadvantage of this method should be pointed out, that
is, if object function has a great flatness in the neibourhoods of solution,
usually method is unable to reach the prescribed accuracy.

16

References

1]

2]

[10]

J.W. Bandler, R. Biernacki, S. Chen, R. Hemmers, and K. Madsen
(1995) Electromagnetic Optimization Exploiting Aggressive Space Map-
ping. IEEE Trans. Microwave Theory Tech., MTT-43, 2874-2882.

E. Hansen (1978) A global convergent interval analytic method for com-
puting and bounding real roots BIT 18, 415-424.

E. Hansen (1978) Global optimization using interval analysis - the mul-
tidimentional case Numerische Mathematik 34, 247-270.

E. Hansen (1992) Global Optimization using Interval Analysis. Marcel
Dekker, Inc., New York. 230 pages.

K. Madsen (1996) Real versus Interval Methods for Global Optimiza-
tion. Presentation at the Conference ”Celebrating the 60th Birthday of
M.J.D. Powell”, Cambridge, July 1996.

R.E. Moore (1966) Interval Analysis. Prentice-Hall, 142 pages.

R.E. Moore (1966) A test for existence of solutions to non-linear sys-
tems. STAM Journal on Numerical Analysis 14, 611-615.

M.J.D. Powell (1970) A Hybrid Method for Non-Linear Equations.
in ”Numerical Methods for Nonlinear Algebraic Equations”, P. Rabi-
nowitz, ed. 87-114.

A.G.H. Rinnooy Kan and G.T. Timmer (1989) Global Optimization. In
"Handbook in Operations Research Vol 1: Optimization”, Nemhauser
et.al., eds. 631-659.

S. Skelboe (1974) Computation of Rational Interval Functions. BIT 14,
87-95.

17

