chiark / gitweb /
3262b328ed9911c3cda45095bb852adc01889975
[cura.git] / Cura / util / mesh.py
1 from __future__ import absolute_import
2 __copyright__ = "Copyright (C) 2013 David Braam - Released under terms of the AGPLv3 License"
3
4 import time
5 import math
6
7 import numpy
8 numpy.seterr(all='ignore')
9
10 class printableObject(object):
11         def __init__(self):
12                 self._meshList = []
13                 self._position = numpy.array([0.0, 0.0])
14                 self._matrix = numpy.matrix([[1,0,0],[0,1,0],[0,0,1]], numpy.float64)
15                 self._transformedMin = None
16                 self._transformedMax = None
17                 self._transformedSize = None
18                 self._boundaryCircleSize = None
19                 self._drawOffset = None
20                 self._loadAnim = None
21
22         def copy(self):
23                 ret = printableObject()
24                 ret._matrix = self._matrix.copy()
25                 ret._transformedMin = self._transformedMin.copy()
26                 ret._transformedMax = self._transformedMin.copy()
27                 ret._transformedSize = self._transformedSize.copy()
28                 ret._boundaryCircleSize = self._boundaryCircleSize
29                 ret._drawOffset = self._drawOffset.copy()
30                 for m in self._meshList[:]:
31                         m2 = ret._addMesh()
32                         m2.vertexes = m.vertexes
33                         m2.vertexCount = m.vertexCount
34                         m2.vbo = m.vbo
35                         m2.vbo.incRef()
36                 return ret
37
38         def _addMesh(self):
39                 m = mesh(self)
40                 self._meshList.append(m)
41                 return m
42
43         def _postProcessAfterLoad(self):
44                 for m in self._meshList:
45                         m._calculateNormals()
46                 self.processMatrix()
47
48         def applyMatrix(self, m):
49                 self._matrix *= m
50                 self.processMatrix()
51
52         def processMatrix(self):
53                 self._transformedMin = numpy.array([999999999999,999999999999,999999999999], numpy.float64)
54                 self._transformedMax = numpy.array([-999999999999,-999999999999,-999999999999], numpy.float64)
55                 self._boundaryCircleSize = 0
56
57                 for m in self._meshList:
58                         transformedVertexes = m.getTransformedVertexes()
59                         transformedMin = transformedVertexes.min(0)
60                         transformedMax = transformedVertexes.max(0)
61                         for n in xrange(0, 3):
62                                 self._transformedMin[n] = min(transformedMin[n], self._transformedMin[n])
63                                 self._transformedMax[n] = max(transformedMax[n], self._transformedMax[n])
64
65                         #Calculate the boundary circle
66                         transformedSize = transformedMax - transformedMin
67                         center = transformedMin + transformedSize / 2.0
68                         boundaryCircleSize = round(math.sqrt(numpy.max(((transformedVertexes[::,0] - center[0]) * (transformedVertexes[::,0] - center[0])) + ((transformedVertexes[::,1] - center[1]) * (transformedVertexes[::,1] - center[1])) + ((transformedVertexes[::,2] - center[2]) * (transformedVertexes[::,2] - center[2])))), 3)
69                         self._boundaryCircleSize = max(self._boundaryCircleSize, boundaryCircleSize)
70                 self._transformedSize = self._transformedMax - self._transformedMin
71                 self._drawOffset = (self._transformedMax + self._transformedMin) / 2
72                 self._drawOffset[2] = self._transformedMin[2]
73                 self._transformedMax -= self._drawOffset
74                 self._transformedMin -= self._drawOffset
75
76         def getPosition(self):
77                 return self._position
78         def setPosition(self, newPos):
79                 self._position = newPos
80         def getMatrix(self):
81                 return self._matrix
82
83         def getMaximum(self):
84                 return self._transformedMax
85         def getMinimum(self):
86                 return self._transformedMin
87         def getSize(self):
88                 return self._transformedSize
89         def getDrawOffset(self):
90                 return self._drawOffset
91         def getBoundaryCircle(self):
92                 return self._boundaryCircleSize
93
94         def mirror(self, axis):
95                 matrix = [[1,0,0], [0, 1, 0], [0, 0, 1]]
96                 matrix[axis][axis] = -1
97                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
98
99         def getScale(self):
100                 return numpy.array([
101                         numpy.linalg.norm(self._matrix[::,0].getA().flatten()),
102                         numpy.linalg.norm(self._matrix[::,1].getA().flatten()),
103                         numpy.linalg.norm(self._matrix[::,2].getA().flatten())], numpy.float64);
104
105         def setScale(self, scale, axis, uniform):
106                 currentScale = numpy.linalg.norm(self._matrix[::,axis].getA().flatten())
107                 scale /= currentScale
108                 if scale == 0:
109                         return
110                 if uniform:
111                         matrix = [[scale,0,0], [0, scale, 0], [0, 0, scale]]
112                 else:
113                         matrix = [[1.0,0,0], [0, 1.0, 0], [0, 0, 1.0]]
114                         matrix[axis][axis] = scale
115                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
116
117         def setSize(self, size, axis, uniform):
118                 scale = self.getSize()[axis]
119                 scale = size / scale
120                 if scale == 0:
121                         return
122                 if uniform:
123                         matrix = [[scale,0,0], [0, scale, 0], [0, 0, scale]]
124                 else:
125                         matrix = [[1,0,0], [0, 1, 0], [0, 0, 1]]
126                         matrix[axis][axis] = scale
127                 self.applyMatrix(numpy.matrix(matrix, numpy.float64))
128
129         def resetScale(self):
130                 x = 1/numpy.linalg.norm(self._matrix[::,0].getA().flatten())
131                 y = 1/numpy.linalg.norm(self._matrix[::,1].getA().flatten())
132                 z = 1/numpy.linalg.norm(self._matrix[::,2].getA().flatten())
133                 self.applyMatrix(numpy.matrix([[x,0,0],[0,y,0],[0,0,z]], numpy.float64))
134
135         def resetRotation(self):
136                 x = numpy.linalg.norm(self._matrix[::,0].getA().flatten())
137                 y = numpy.linalg.norm(self._matrix[::,1].getA().flatten())
138                 z = numpy.linalg.norm(self._matrix[::,2].getA().flatten())
139                 self._matrix = numpy.matrix([[x,0,0],[0,y,0],[0,0,z]], numpy.float64)
140                 self.processMatrix()
141
142         def layFlat(self):
143                 transformedVertexes = self._meshList[0].getTransformedVertexes()
144                 minZvertex = transformedVertexes[transformedVertexes.argmin(0)[2]]
145                 dotMin = 1.0
146                 dotV = None
147                 for v in transformedVertexes:
148                         diff = v - minZvertex
149                         len = math.sqrt(diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2])
150                         if len < 5:
151                                 continue
152                         dot = (diff[2] / len)
153                         if dotMin > dot:
154                                 dotMin = dot
155                                 dotV = diff
156                 if dotV is None:
157                         return
158                 rad = -math.atan2(dotV[1], dotV[0])
159                 self._matrix *= numpy.matrix([[math.cos(rad), math.sin(rad), 0], [-math.sin(rad), math.cos(rad), 0], [0,0,1]], numpy.float64)
160                 rad = -math.asin(dotMin)
161                 self._matrix *= numpy.matrix([[math.cos(rad), 0, math.sin(rad)], [0,1,0], [-math.sin(rad), 0, math.cos(rad)]], numpy.float64)
162
163
164                 transformedVertexes = self._meshList[0].getTransformedVertexes()
165                 minZvertex = transformedVertexes[transformedVertexes.argmin(0)[2]]
166                 dotMin = 1.0
167                 dotV = None
168                 for v in transformedVertexes:
169                         diff = v - minZvertex
170                         len = math.sqrt(diff[1] * diff[1] + diff[2] * diff[2])
171                         if len < 5:
172                                 continue
173                         dot = (diff[2] / len)
174                         if dotMin > dot:
175                                 dotMin = dot
176                                 dotV = diff
177                 if dotV is None:
178                         return
179                 if dotV[1] < 0:
180                         rad = math.asin(dotMin)
181                 else:
182                         rad = -math.asin(dotMin)
183                 self.applyMatrix(numpy.matrix([[1,0,0], [0, math.cos(rad), math.sin(rad)], [0, -math.sin(rad), math.cos(rad)]], numpy.float64))
184
185         def scaleUpTo(self, size):
186                 vMin = self._transformedMin
187                 vMax = self._transformedMax
188
189                 scaleX1 = (size[0] / 2 - self._position[0]) / ((vMax[0] - vMin[0]) / 2)
190                 scaleY1 = (size[1] / 2 - self._position[1]) / ((vMax[1] - vMin[1]) / 2)
191                 scaleX2 = (self._position[0] + size[0] / 2) / ((vMax[0] - vMin[0]) / 2)
192                 scaleY2 = (self._position[1] + size[1] / 2) / ((vMax[1] - vMin[1]) / 2)
193                 scaleZ = size[2] / (vMax[2] - vMin[2])
194                 scale = min(scaleX1, scaleY1, scaleX2, scaleY2, scaleZ)
195                 if scale > 0:
196                         self.applyMatrix(numpy.matrix([[scale,0,0],[0,scale,0],[0,0,scale]], numpy.float64))
197
198         def split(self, callback):
199                 ret = []
200                 for oriMesh in self._meshList:
201                         ret += oriMesh.split(callback)
202                 return ret
203
204 class mesh(object):
205         def __init__(self, obj):
206                 self.vertexes = None
207                 self.vertexCount = 0
208                 self.vbo = None
209                 self._obj = obj
210
211         def _addFace(self, x0, y0, z0, x1, y1, z1, x2, y2, z2):
212                 n = self.vertexCount
213                 self.vertexes[n][0] = x0
214                 self.vertexes[n][1] = y0
215                 self.vertexes[n][2] = z0
216                 n += 1
217                 self.vertexes[n][0] = x1
218                 self.vertexes[n][1] = y1
219                 self.vertexes[n][2] = z1
220                 n += 1
221                 self.vertexes[n][0] = x2
222                 self.vertexes[n][1] = y2
223                 self.vertexes[n][2] = z2
224                 self.vertexCount += 3
225         
226         def _prepareFaceCount(self, faceNumber):
227                 #Set the amount of faces before loading data in them. This way we can create the numpy arrays before we fill them.
228                 self.vertexes = numpy.zeros((faceNumber*3, 3), numpy.float32)
229                 self.normal = numpy.zeros((faceNumber*3, 3), numpy.float32)
230                 self.vertexCount = 0
231
232         def _calculateNormals(self):
233                 #Calculate the normals
234                 tris = self.vertexes.reshape(self.vertexCount / 3, 3, 3)
235                 normals = numpy.cross( tris[::,1 ] - tris[::,0]  , tris[::,2 ] - tris[::,0] )
236                 lens = numpy.sqrt( normals[:,0]**2 + normals[:,1]**2 + normals[:,2]**2 )
237                 normals[:,0] /= lens
238                 normals[:,1] /= lens
239                 normals[:,2] /= lens
240                 
241                 n = numpy.zeros((self.vertexCount / 3, 9), numpy.float32)
242                 n[:,0:3] = normals
243                 n[:,3:6] = normals
244                 n[:,6:9] = normals
245                 self.normal = n.reshape(self.vertexCount, 3)
246                 self.invNormal = -self.normal
247
248         def _vertexHash(self, idx):
249                 v = self.vertexes[idx]
250                 return int(v[0] * 100) | int(v[1] * 100) << 10 | int(v[2] * 100) << 20
251
252         def _idxFromHash(self, map, idx):
253                 vHash = self._vertexHash(idx)
254                 for i in map[vHash]:
255                         if numpy.linalg.norm(self.vertexes[i] - self.vertexes[idx]) < 0.001:
256                                 return i
257
258         def getTransformedVertexes(self, applyOffsets = False):
259                 if applyOffsets:
260                         pos = self._obj._position.copy()
261                         pos.resize((3))
262                         pos[2] = self._obj.getSize()[2] / 2
263                         offset = self._obj._drawOffset.copy()
264                         offset[2] += self._obj.getSize()[2] / 2
265                         return (numpy.matrix(self.vertexes, copy = False) * numpy.matrix(self._obj._matrix, numpy.float32)).getA() - offset + pos
266                 return (numpy.matrix(self.vertexes, copy = False) * numpy.matrix(self._obj._matrix, numpy.float32)).getA()
267
268         def split(self, callback):
269                 vertexMap = {}
270
271                 vertexToFace = []
272                 for idx in xrange(0, self.vertexCount):
273                         if (idx % 100) == 0:
274                                 callback(idx * 100 / self.vertexCount)
275                         vHash = self._vertexHash(idx)
276                         if vHash not in vertexMap:
277                                 vertexMap[vHash] = []
278                         vertexMap[vHash].append(idx)
279                         vertexToFace.append([])
280
281                 faceList = []
282                 for idx in xrange(0, self.vertexCount, 3):
283                         if (idx % 100) == 0:
284                                 callback(idx * 100 / self.vertexCount)
285                         f = [self._idxFromHash(vertexMap, idx), self._idxFromHash(vertexMap, idx+1), self._idxFromHash(vertexMap, idx+2)]
286                         vertexToFace[f[0]].append(idx / 3)
287                         vertexToFace[f[1]].append(idx / 3)
288                         vertexToFace[f[2]].append(idx / 3)
289                         faceList.append(f)
290
291                 ret = []
292                 doneSet = set()
293                 for idx in xrange(0, len(faceList)):
294                         if idx in doneSet:
295                                 continue
296                         doneSet.add(idx)
297                         todoList = [idx]
298                         meshFaceList = []
299                         while len(todoList) > 0:
300                                 idx = todoList.pop()
301                                 meshFaceList.append(idx)
302                                 for n in xrange(0, 3):
303                                         for i in vertexToFace[faceList[idx][n]]:
304                                                 if not i in doneSet:
305                                                         doneSet.add(i)
306                                                         todoList.append(i)
307
308                         obj = printableObject()
309                         obj._matrix = self._obj._matrix.copy()
310                         m = obj._addMesh()
311                         m._prepareFaceCount(len(meshFaceList))
312                         for idx in meshFaceList:
313                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][0]]
314                                 m.vertexCount += 1
315                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][1]]
316                                 m.vertexCount += 1
317                                 m.vertexes[m.vertexCount] = self.vertexes[faceList[idx][2]]
318                                 m.vertexCount += 1
319                         obj._postProcessAfterLoad()
320                         ret.append(obj)
321                 return ret