X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?p=topbloke-formulae.git;a=blobdiff_plain;f=merge.tex;h=7a48a25cf994a282b5c1d74d019af0f45aafb7d2;hp=fd45642df697518317032ed9c9956c62baf7c1dd;hb=dbc2fa88cece12d33ca5788ad5d359f77676a802;hpb=5d0609c1fcad5f04f3dbac80335577173d038ce4 diff --git a/merge.tex b/merge.tex index fd45642..7a48a25 100644 --- a/merge.tex +++ b/merge.tex @@ -59,10 +59,11 @@ branch without Topbloke's assistance, it is also forbidden to merge any Topbloke-controlled branch into any plain git branch. Given those conditions, Tip Merge and Merge Acyclic do not apply. -And by Foreign Contents for (wlog) Y, $\forall_{\p, D \in \py} D \not\le Y$ -so then by No Replay $D \not\isin Y$ -so $\neg [ Y \haspatch \p ]$ so neither -Merge Ends condition applies. +By Foreign Contents of $L$, $\patchof{M} = \bot$ as well. +So by Foreign Contents for any $A \in \{L,M,R\}$, +$\forall_{\p, D \in \py} D \not\le A$ +so $\pendsof{A}{\py} = \{ \}$ and the RHS of both Merge Ends +conditions are satisifed. So a plain git merge of non-Topbloke branches meets the conditions and is therefore consistent with our model. @@ -110,19 +111,29 @@ $\qed$ \subsection{Coherence and Patch Inclusion} -Need to determine $C \haspatch \p$ based on $L,M,R \haspatch \p$. -This involves considering $D \in \py$. +$$ +\begin{cases} + L \nothaspatch \p \land R \nothaspatch \p : & C \nothaspatch \p \\ + L \haspatch \p \land R \haspatch \p : & C \haspatch \p \\ + \text{otherwise} \land M \haspatch \p : & C \nothaspatch \p \\ + \text{otherwise} \land M \nothaspatch \p : & C \haspatch \p +\end{cases} +$$ +\proofstarts +~ Consider $D \in \py$. \subsubsection{For $L \nothaspatch \p, R \nothaspatch \p$:} $D \not\isin L \land D \not\isin R$. $C \not\in \py$ (otherwise $L -\in \py$ ie $L \haspatch \p$ by Tip Self Inpatch for $L$). So $D \neq C$. +\in \py$ ie $L \haspatch \p$ by Tip Own Contents for $L$). +So $D \neq C$. Applying $\merge$ gives $D \not\isin C$ i.e. $C \nothaspatch \p$. +OK. \subsubsection{For $L \haspatch \p, R \haspatch \p$:} $D \isin L \equiv D \le L$ and $D \isin R \equiv D \le R$. (Likewise $D \isin X \equiv D \le X$ and $D \isin Y \equiv D \le Y$.) -Consider $D = C$: $D \isin C$, $D \le C$, OK for $C \haspatch \p$. +Consider $D = C$: $D \isin C$, $D \le C$, OK for $C \zhaspatch \p$. For $D \neq C$: $D \le C \equiv D \le L \lor D \le R \equiv D \isin L \lor D \isin R$. @@ -130,40 +141,40 @@ For $D \neq C$: $D \le C \equiv D \le L \lor D \le R Consider $D \neq C, D \isin X \land D \isin Y$: By $\merge$, $D \isin C$. Also $D \le X$ -so $D \le C$. OK for $C \haspatch \p$. +so $D \le C$. OK for $C \zhaspatch \p$. Consider $D \neq C, D \not\isin X \land D \not\isin Y$: By $\merge$, $D \not\isin C$. And $D \not\le X \land D \not\le Y$ so $D \not\le C$. -OK for $C \haspatch \p$. +OK for $C \zhaspatch \p$. Remaining case, wlog, is $D \not\isin X \land D \isin Y$. $D \not\le X$ so $D \not\le M$ so $D \not\isin M$. Thus by $\merge$, $D \isin C$. And $D \le Y$ so $D \le C$. -OK for $C \haspatch \p$. +OK for $C \zhaspatch \p$. -So indeed $L \haspatch \p \land R \haspatch \p \implies C \haspatch \p$. +So, in all cases, $C \zhaspatch \p$. +And by $L \haspatch \p$, $\exists_{F \in \py} F \le L$ +and this $F \le C$ so indeed $C \haspatch \p$. \subsubsection{For (wlog) $X \not\haspatch \p, Y \haspatch \p$:} -$M \haspatch \p \implies C \nothaspatch \p$. -$M \nothaspatch \p \implies C \haspatch \p$. - -\proofstarts - One of the Merge Ends conditions applies. Recall that we are considering $D \in \py$. $D \isin Y \equiv D \le Y$. $D \not\isin X$. We will show for each of -various cases that $D \isin C \equiv M \nothaspatch \p \land D \le C$ -(which suffices by definition of $\haspatch$ and $\nothaspatch$). - -Consider $D = C$: Thus $C \in \py, L \in \py$. By Tip Contents -for $L$, $L \isin L$ so $\neg [ L \nothaspatch \p ]$. -Therefore we must have $L=Y$, $R=X$. +various cases that +if $M \haspatch \p$, $D \not\isin C$, +whereas if $M \nothaspatch \p$, $D \isin C \equiv D \le C$. +And by $Y \haspatch \p$, $\exists_{F \in \py} F \le Y$ and this +$F \le C$ so this suffices. + +Consider $D = C$: Thus $C \in \py, L \in \py$. +By Tip Own Contents, $\neg[ L \nothaspatch \p ]$ so $L \neq X$, +therefore we must have $L=Y$, $R=X$. By Tip Merge $M = \baseof{L}$ so $M \in \pn$ so by Base Acyclic $M \nothaspatch \p$. By $\merge$, $D \isin C$, -and $D \le C$, consistent with $C \haspatch \p$. OK. +and $D \le C$. OK. Consider $D \neq C, M \nothaspatch \p, D \isin Y$: $D \le Y$ so $D \le C$.