X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?p=topbloke-formulae.git;a=blobdiff_plain;f=merge.tex;h=48e72702c780d17648ffe6ef5d5e5a6b1253fcce;hp=f6a3e9304b5cc404dd8121d08b39cc95d642b3c8;hb=03a40d446bbe0d0a7f8d7c2e4628b7eea9be3eec;hpb=f11a862c007560f325ac57e618aef52e3c03d61c diff --git a/merge.tex b/merge.tex index f6a3e93..48e7270 100644 --- a/merge.tex +++ b/merge.tex @@ -59,10 +59,11 @@ branch without Topbloke's assistance, it is also forbidden to merge any Topbloke-controlled branch into any plain git branch. Given those conditions, Tip Merge and Merge Acyclic do not apply. -And by Foreign Contents for (wlog) Y, $\forall_{\p, D \in \py} D \not\le Y$ -so then by No Replay $D \not\isin Y$ -so $\neg [ Y \haspatch \p ]$ so neither -Merge Ends condition applies. +By Foreign Contents of $L$, $\patchof{M} = \bot$ as well. +So by Foreign Contents for any $A \in \{L,M,R\}$, +$\forall_{\p, D \in \py} D \not\le A$ +so $\pendsof{A}{\py} = \{ \}$ and the RHS of both Merge Ends +conditions are satisifed. So a plain git merge of non-Topbloke branches meets the conditions and is therefore consistent with our model. @@ -110,19 +111,29 @@ $\qed$ \subsection{Coherence and Patch Inclusion} -Need to determine $C \haspatch \p$ based on $L,M,R \haspatch \p$. -This involves considering $D \in \py$. +$$ +\begin{cases} + L \nothaspatch \p \land R \nothaspatch \p : & C \nothaspatch \p \\ + L \haspatch \p \land R \haspatch \p : & C \haspatch \p \\ + \text{otherwise} \land M \haspatch \p : & C \nothaspatch \p \\ + \text{otherwise} \land M \nothaspatch \p : & C \haspatch \p +\end{cases} +$$ +\proofstarts +~ Consider $D \in \py$. \subsubsection{For $L \nothaspatch \p, R \nothaspatch \p$:} $D \not\isin L \land D \not\isin R$. $C \not\in \py$ (otherwise $L -\in \py$ ie $L \haspatch \p$ by Tip Self Inpatch for $L$). So $D \neq C$. +\in \py$ ie $L \haspatch \p$ by Tip Own Contents for $L$). +So $D \neq C$. Applying $\merge$ gives $D \not\isin C$ i.e. $C \nothaspatch \p$. +OK. \subsubsection{For $L \haspatch \p, R \haspatch \p$:} $D \isin L \equiv D \le L$ and $D \isin R \equiv D \le R$. (Likewise $D \isin X \equiv D \le X$ and $D \isin Y \equiv D \le Y$.) -Consider $D = C$: $D \isin C$, $D \le C$, OK for $C \haspatch \p$. +Consider $D = C$: $D \isin C$, $D \le C$, OK for $C \zhaspatch \p$. For $D \neq C$: $D \le C \equiv D \le L \lor D \le R \equiv D \isin L \lor D \isin R$. @@ -130,38 +141,41 @@ For $D \neq C$: $D \le C \equiv D \le L \lor D \le R Consider $D \neq C, D \isin X \land D \isin Y$: By $\merge$, $D \isin C$. Also $D \le X$ -so $D \le C$. OK for $C \haspatch \p$. +so $D \le C$. OK for $C \zhaspatch \p$. Consider $D \neq C, D \not\isin X \land D \not\isin Y$: By $\merge$, $D \not\isin C$. And $D \not\le X \land D \not\le Y$ so $D \not\le C$. -OK for $C \haspatch \p$. +OK for $C \zhaspatch \p$. Remaining case, wlog, is $D \not\isin X \land D \isin Y$. $D \not\le X$ so $D \not\le M$ so $D \not\isin M$. Thus by $\merge$, $D \isin C$. And $D \le Y$ so $D \le C$. -OK for $C \haspatch \p$. +OK for $C \zhaspatch \p$. -So indeed $L \haspatch \p \land R \haspatch \p \implies C \haspatch \p$. +So, in all cases, $C \zhaspatch \p$. +And by $L \haspatch \p$, $\exists_{F \in \py} F \le L$ +and this $F \le C$ so indeed $C \haspatch \p$. \subsubsection{For (wlog) $X \not\haspatch \p, Y \haspatch \p$:} -$M \haspatch \p \implies C \nothaspatch \p$. -$M \nothaspatch \p \implies C \haspatch \p$. - -\proofstarts - One of the Merge Ends conditions applies. Recall that we are considering $D \in \py$. $D \isin Y \equiv D \le Y$. $D \not\isin X$. We will show for each of -various cases that $D \isin C \equiv M \nothaspatch \p \land D \le C$ -(which suffices by definition of $\haspatch$ and $\nothaspatch$). - -Consider $D = C$: Thus $C \in \py, L \in \py$, and by Tip -Self Inpatch for $L$, $L \haspatch \p$, so $L=Y, R=X$. By Tip Merge, -$M=\baseof{L}$. So by Base Acyclic $D \not\isin M$, i.e. -$M \nothaspatch \p$. And indeed $D \isin C$ and $D \le C$. OK. +various cases that +if $M \haspatch \p$, $D \not\isin C$, +whereas if $M \nothaspatch \p$, $D \isin C \equiv D \le C$. +And by $Y \haspatch \p$, $\exists_{F \in \py} F \le Y$ and this +$F \le C$ so this suffices. + +Consider $D = C$: Thus $C \in \py, L \in \py$. +By Tip Own Contents, $L \haspatch \p$ so $L \neq X$, +therefore we must have $L=Y$, $R=X$. +Conversely $R \not\in \py$ +so by Tip Merge $M = \baseof{L}$. Thus $M \in \pn$ so +by Base Acyclic $M \nothaspatch \p$. By $\merge$, $D \isin C$, +and $D \le C$. OK. Consider $D \neq C, M \nothaspatch \p, D \isin Y$: $D \le Y$ so $D \le C$. @@ -218,8 +232,8 @@ $C \haspatch \p$ so by definition of $\haspatch$, $D \isin C \equiv D \subsubsection{For $D \not\in \py, R \not\in \py$:} $D \neq C$. By Tip Contents of $L$, -$D \isin L \equiv D \isin \baseof{L}$, and by Tip Merge condition, -$D \isin L \equiv D \isin M$. So by definition of $\merge$, $D \isin +$D \isin L \equiv D \isin \baseof{L}$, so by Tip Merge condition, +$D \isin L \equiv D \isin M$. So by $\merge$, $D \isin C \equiv D \isin R$. And $R = \baseof{C}$ by Unique Base of $C$. Thus $D \isin C \equiv D \isin \baseof{C}$. OK. @@ -231,14 +245,16 @@ By Tip Contents $D \isin L \equiv D \isin \baseof{L}$ and $D \isin R \equiv D \isin \baseof{R}$. +Apply Tip Merge condition. If $\baseof{L} = M$, trivially $D \isin M \equiv D \isin \baseof{L}.$ Whereas if $\baseof{L} = \baseof{M}$, by definition of $\base$, $\patchof{M} = \patchof{L} = \py$, so by Tip Contents of $M$, $D \isin M \equiv D \isin \baseof{M} \equiv D \isin \baseof{L}$. -So $D \isin M \equiv D \isin L$ and by $\merge$, +So $D \isin M \equiv D \isin L$ so by $\merge$, $D \isin C \equiv D \isin R$. But from Unique Base, -$\baseof{C} = R$ so $D \isin C \equiv D \isin \baseof{C}$. OK. +$\baseof{C} = \baseof{R}$. +Therefore $D \isin C \equiv D \isin \baseof{C}$. OK. $\qed$