X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?p=topbloke-formulae.git;a=blobdiff_plain;f=article.tex;h=1e42670e628e92e064dd162a960f8ba65b5c8c81;hp=32f79205a8567f3d0efbfded7c9d8d889ff3baa1;hb=ccf7587e375d7ce3571835653844974550112cdc;hpb=3d1111b8b0f9f80fab557ecd0e9faf8aab04f6a9 diff --git a/article.tex b/article.tex index 32f7920..1e42670 100644 --- a/article.tex +++ b/article.tex @@ -1,4 +1,5 @@ \documentclass[a4paper,leqno]{strayman} +\errorcontextlines=50 \let\numberwithin=\notdef \usepackage{amsmath} \usepackage{mathabx} @@ -18,8 +19,12 @@ \newcommand{\haspatch}{\sqSupset} \newcommand{\patchisin}{\sqSubset} -\newcommand{\set}[1]{\mathbb #1} -\newcommand{\pa}[1]{\varmathbb #1} + \newif\ifhidehack\hidehackfalse + \DeclareRobustCommand\hidefromedef[2]{% + \hidehacktrue\ifhidehack#1\else#2\fi\hidehackfalse} + \newcommand{\pa}[1]{\hidefromedef{\varmathbb{#1}}{#1}} + +\newcommand{\set}[1]{\mathbb{#1}} \newcommand{\pay}[1]{\pa{#1}^+} \newcommand{\pan}[1]{\pa{#1}^-} @@ -59,6 +64,8 @@ {\hbox{\scriptsize$\forall$}}}% } +\newcommand{\Largeexists}{\mathop{\hbox{\Large$\exists$}}} +\newcommand{\Largenexists}{\mathop{\hbox{\Large$\nexists$}}} \newcommand{\qed}{\square} \newcommand{\proof}[1]{{\it Proof.} #1 $\qed$} @@ -114,7 +121,7 @@ which are in $\set P$. \item[ $ \pendsof{C}{\set P} $ ] $ \{ E \; | \; E \in \pancsof{C}{\set P} \land \mathop{\not\exists}_{A \in \pancsof{C}{\set P}} - A \neq E \land E \le A \} $ + E \neq A \land E \le A \} $ i.e. all $\le$-maximal commits in $\pancsof{C}{\set P}$. \item[ $ \baseof{C} $ ] @@ -217,6 +224,17 @@ in which case we repeat for $A'$. Since there are finitely many commits, this terminates with $A'' \in \pends()$, ie $A'' \le M$ by the LHS. And $A \le A''$. } +\[ \eqn{Calculation Of Ends:}{ + \bigforall_{C \hasparents \set A} + \pendsof{C}{\set P} = + \Bigl\{ E \Big| + \Bigl[ \Largeexists_{A \in \set A} + E \in \pendsof{A}{\set P} \Bigr] \land + \Bigl[ \Largenexists_{B \in \set A} + E \neq B \land E \le B \Bigr] + \Bigr\} +}\] +XXX proof TBD. \section{Commit annotation} @@ -318,7 +336,7 @@ $D \isin C \equiv D \isin A \equiv D \le A \equiv D \le C$. $\qed$ \section{Merge} -Given commits $L$, $R$, $M$: +Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$): \gathbegin C \hasparents \{ L, R \} \gathnext @@ -332,9 +350,76 @@ Given commits $L$, $R$, $M$: \end{cases} \end{gather} -Conditions -\gathbegin - M < L, M < R -\end{gather} +\subsection{Conditions} + +\[ \eqn{ Tip Merge }{ + L \in \py \implies + \begin{cases} + R \in \py : & \baseof{R} \ge \baseof{L} + \land [\baseof{L} = M \lor \baseof{L} = \baseof{M}] \\ + R \in \pn : & R \ge \baseof{L} + \land M = \baseof{L} \\ + \text{otherwise} : & \false + \end{cases} +}\] + +\subsection{No Replay} + +\subsubsection{For $D=C$:} $D \isin C, D \le C$. OK. + +\subsubsection{For $D \isin L \land D \isin R$:} +$D \isin C$. And $D \isin L \implies D \le L \implies D \le C$. OK. + +\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} +$D \not\isin C$. OK. + +\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} +$D \not\isin C$. OK. + +\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) + \land D \not\isin M$:} +$D \isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le +R$ so $D \le C$. OK. + +\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) + \land D \isin M$:} +$D \not\isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le +R$ so $D \le C$. OK. + +$\qed$ + +\subsection{Unique Base} + +Need to consider only $C \in \py$, ie $L \in \py$, +and calculate $\pendsof{C}{\pn}$. So we will consider some +putative ancestor $A \in \pn$ and see whether $A \le C$. + +By Exact Ancestors for C, $A \le C \equiv A \le L \lor A \le R \lor A = C$. +But $C \in py$ and $A \in \pn$ so $A \neq C$. +Thus $A \le C \equiv A \le L \lor A \le R$. + +By Unique Base of L and Transitive Ancestors, +$A \le L \equiv A \le \baseof{L}$. + +\subsubsection{For $R \in \py$:} + +By Unique Base of $R$ and Transitive Ancestors, +$A \le R \equiv A \le \baseof{R}$. + +But by Tip Merge condition on $\baseof{R}$, +$A \le \baseof{L} \implies A \le \baseof{R}$, so +$A \le \baseof{R} \lor A \le \baseof{L} \equiv A \le \baseof{R}$. +Thus $A \le C \equiv A \le \baseof{R}$. +That is, $\baseof{C} = \baseof{R}$. + +\subsubsection{For $R \in \pn$:} + +By Tip Merge condition on $R$, +$A \le \baseof{L} \implies A \le R$, so +$A \le R \lor A \le \baseof{L} \equiv A \le R$. +Thus $A \le C \equiv A \le R$. +That is, $\baseof{C} = R$. + +$\qed$ \end{document}