chiark / gitweb /
wip experiment merge
[topbloke-formulae.git] / article.tex
index 4cb6c96b79aa3fb9c5b7039feb222305a8e06ce6..fde6e2f5cccd274528791679a0be616000352cca 100644 (file)
@@ -1,4 +1,5 @@
 \documentclass[a4paper,leqno]{strayman}
+\errorcontextlines=50
 \let\numberwithin=\notdef
 \usepackage{amsmath}
 \usepackage{mathabx}
 \newcommand{\haspatch}{\sqSupset}
 \newcommand{\patchisin}{\sqSubset}
 
-\newcommand{\set}[1]{\mathbb #1}
-\newcommand{\pa}[1]{\varmathbb #1}
+        \newif\ifhidehack\hidehackfalse
+        \DeclareRobustCommand\hidefromedef[2]{%
+          \hidehacktrue\ifhidehack#1\else#2\fi\hidehackfalse}
+        \newcommand{\pa}[1]{\hidefromedef{\varmathbb{#1}}{#1}}
+
+\newcommand{\set}[1]{\mathbb{#1}}
 \newcommand{\pay}[1]{\pa{#1}^+}
 \newcommand{\pan}[1]{\pa{#1}^-}
 
 \newcommand{\py}{\pay{P}}
 \newcommand{\pn}{\pan{P}}
 
+\newcommand{\pr}{\pa{R}}
+\newcommand{\pry}{\pay{R}}
+\newcommand{\prn}{\pan{R}}
+
 %\newcommand{\hasparents}{\underaccent{1}{>}}
 %\newcommand{\hasparents}{{%
 %  \declareslashed{}{_{_1}}{0}{-0.8}{>}\slashed{>}}}
 
 \newcommand{\pancs}{{\mathcal A}}
 \newcommand{\pends}{{\mathcal E}}
+\newcommand{\merge}{{\mathcal M}}
 
 \newcommand{\pancsof}[2]{\pancs ( #1 , #2 ) }
 \newcommand{\pendsof}[2]{\pends ( #1 , #2 ) }
+\newcommand{\mergeof}[3]{\merge ( #1 , #2, #3 ) }
 
 \newcommand{\patchof}[1]{{\mathcal P} ( #1 ) }
 \newcommand{\baseof}[1]{{\mathcal B} ( #1 ) }
     {\hbox{\scriptsize$\forall$}}}%
 }
 
-\newcommand{\proof}[1]{{\it Proof.} #1 $\square$}
+\newcommand{\Largeexists}{\mathop{\hbox{\Large$\exists$}}}
+\newcommand{\Largenexists}{\mathop{\hbox{\Large$\nexists$}}}
+
+\newcommand{\qed}{\square}
+\newcommand{\proof}[1]{{\it Proof.} #1 $\qed$}
+
+\newcommand{\gathbegin}{\begin{gather} \tag*{}}
+\newcommand{\gathnext}{\\ \tag*{}}
+
+\newcommand{\true}{t}
+\newcommand{\false}{f}
 
 \begin{document}
 
@@ -106,13 +127,13 @@ which are in $\set P$.
 \item[ $ \pendsof{C}{\set P} $ ]
 $ \{ E \; | \; E \in \pancsof{C}{\set P}
   \land \mathop{\not\exists}_{A \in \pancsof{C}{\set P}}
-  A \neq E \land E \le A \} $ 
+  E \neq A \land E \le A \} $ 
 i.e. all $\le$-maximal commits in $\pancsof{C}{\set P}$.
 
 \item[ $ \baseof{C} $ ]
 $ \pendsof{C}{\pn} = \{ \baseof{C} \} $ where $ C \in \py $.
 A partial function from commits to commits.
-See ``unique base'', below.
+See Unique Base, below.
 
 \item[ $ C \haspatch \p $ ]
 $\displaystyle \bigforall_{D \in \py} D \isin C \equiv D \le C $.
@@ -127,6 +148,15 @@ patch is applied to a non-Topbloke branch and then bubbles back to
 the Topbloke patch itself, we hope that git's merge algorithm will
 DTRT or that the user will no longer care about the Topbloke patch.
 
+\item[ $ \mergeof{L}{M}{R} $ ]
+$\displaystyle \left\{ C \middle|
+  \begin{cases}
+    (D \isin L \land D \isin R) \lor D = C : & \true \\
+    (D \not\isin L \land D \not\isin R) \land D \neq C : & \false \\
+    \text{otherwise} : & D \not\isin M
+  \end{cases}
+ \right\} $
+
 \end{basedescript}
 \newpage
 \section{Invariants}
@@ -209,16 +239,30 @@ in which case we repeat for $A'$.  Since there are finitely many
 commits, this terminates with $A'' \in \pends()$, ie $A'' \le M$
 by the LHS.  And $A \le A''$.
 }
+\[ \eqn{Calculation Of Ends:}{
+  \bigforall_{C \hasparents \set A}
+    \pendsof{C}{\set P} =
+       \Bigl\{ E \Big|
+           \Bigl[ \Largeexists_{A \in \set A} 
+                       E \in \pendsof{A}{\set P} \Bigr] \land
+           \Bigl[ \Largenexists_{B \in \set A} 
+                       E \neq B \land E \le B \Bigr]
+       \Bigr\}
+}\]
+XXX proof TBD.
 
 \section{Commit annotation}
 
 We annotate each Topbloke commit $C$ with:
-\begin{gather}
-\tag*{} \patchof{C} \\
-\tag*{} \baseof{C}, \text{ if } C \in \py \\
-\tag*{} \bigforall_{\pa{Q}} 
-        \text{ either } C \haspatch \pa{Q} \text{ or } C \nothaspatch \pa{Q} \\
-\tag*{} \bigforall_{\pay{Q} \not\ni C} \pendsof{C}{\pay{Q}}
+\gathbegin
+ \patchof{C}
+\gathnext
+ \baseof{C}, \text{ if } C \in \py
+\gathnext
+ \bigforall_{\pa{Q}} 
+   \text{ either } C \haspatch \pa{Q} \text{ or } C \nothaspatch \pa{Q}
+\gathnext
+ \bigforall_{\pay{Q} \not\ni C} \pendsof{C}{\pay{Q}}
 \end{gather}
 
 We do not annotate $\pendsof{C}{\py}$ for $C \in \py$.  Doing so would
@@ -226,16 +270,194 @@ make it wrong to make plain commits with git because the recorded $\pends$
 would have to be updated.  The annotation is not needed because
 $\forall_{\py \ni C} \; \pendsof{C}{\py} = \{C\}$.
 
-\section{Test more symbols}
+\section{Simple commit}
+
+A simple single-parent forward commit $C$ as made by git-commit.
+\begin{gather}
+\tag*{} C \hasparents \{ A \} \\
+\tag*{} \patchof{C} = \patchof{A} \\
+\tag*{} D \isin C \equiv D \isin A \lor D = C
+\end{gather}
+
+\subsection{No Replay}
+Trivial.
+
+\subsection{Unique Base}
+If $A, C \in \py$ then $\baseof{C} = \baseof{A}$. $\qed$
+
+\subsection{Tip Contents}
+We need to consider only $A, C \in \py$.  From Tip Contents for $A$:
+\[ D \isin A \equiv D \isin \baseof{A} \lor ( D \in \py \land D \le A ) \]
+Substitute into the contents of $C$:
+\[ D \isin C \equiv D \isin \baseof{A} \lor ( D \in \py \land D \le A )
+    \lor D = C \]
+Since $D = C \implies D \in \py$, 
+and substituting in $\baseof{C}$, this gives:
+\[ D \isin C \equiv D \isin \baseof{C} \lor
+    (D \in \py \land D \le A) \lor
+    (D = C \land D \in \py) \]
+\[ \equiv D \isin \baseof{C} \lor
+   [ D \in \py \land ( D \le A \lor D = C ) ] \]
+So by Exact Ancestors:
+\[ D \isin C \equiv D \isin \baseof{C} \lor ( D \in \py \land D \le C
+) \]
+$\qed$
+
+\subsection{Base Acyclic}
+
+Need to consider only $A, C \in \pn$.  
+
+For $D = C$: $D \in \pn$ so $D \not\in \py$. OK.
+
+For $D \neq C$: $D \isin C \equiv D \isin A$, so by Base Acyclic for
+$A$, $D \isin C \implies D \not\in \py$. $\qed$
+
+\subsection{Coherence and patch inclusion}
+
+Need to consider $D \in \py$
+
+\subsubsection{For $A \haspatch P, D = C$:}
+
+Ancestors of $C$:
+$ D \le C $.
+
+Contents of $C$:
+$ D \isin C \equiv \ldots \lor \true \text{ so } D \haspatch C $.
+
+\subsubsection{For $A \haspatch P, D \neq C$:}
+Ancestors: $ D \le C \equiv D \le A $.
+
+Contents: $ D \isin C \equiv D \isin A \lor f $
+so $ D \isin C \equiv D \isin A $.
+
+So:
+\[ A \haspatch P \implies C \haspatch P \]
+
+\subsubsection{For $A \nothaspatch P$:}
+
+Firstly, $C \not\in \py$ since if it were, $A \in \py$.  
+Thus $D \neq C$.
+
+Now by contents of $A$, $D \notin A$, so $D \notin C$.
+
+So:
+\[ A \nothaspatch P \implies C \nothaspatch P \]
+$\qed$
+
+\subsection{Foreign inclusion:}
+
+If $D = C$, trivial.  For $D \neq C$:
+$D \isin C \equiv D \isin A \equiv D \le A \equiv D \le C$.  $\qed$
+
+\section{Anticommit}
+
+Given $L, R^+, R^-$ where
+$\patchof{R^+} = \pry, \patchof{R^-} = \prn$.  
+Construct $C$ which has $\pr$ removed.
+Used for removing a branch dependency.
+\gathbegin
+ C \hasparents \{ L \}
+\gathnext
+ \patchof{C} = \patchof{L}
+\gathnext
+ D \isin C \equiv
+   \begin{cases}
+      R \in \py : & \baseof{R} \ge \baseof{L}
+              \land [\baseof{L} = M \lor \baseof{L} = \baseof{M}] \\
+      R \in \pn : & R \ge \baseof{L}
+              \land M = \baseof{L} \\
+      \text{otherwise} : & \false
+   \end{cases}
+\end{gather}
+
+xxx want to prove $D \isin C \equiv D \not\in pry \land D \isin L$.
+
+\section{Merge}
+
+Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$):
+\gathbegin
+ C \hasparents \{ L, R \}
+\gathnext
+ \patchof{C} = \patchof{L}
+\gathnext
+ D \isin C \equiv
+  \begin{cases}
+    (D \isin L \land D \isin R) \lor D = C : & \true \\
+    (D \not\isin L \land D \not\isin R) \land D \neq C : & \false \\
+    \text{otherwise} : & D \not\isin M
+  \end{cases}
+\end{gather}
+
+\subsection{Conditions}
+
+\[ \eqn{ Tip Merge }{
+ L \in \py \implies
+   \begin{cases}
+      R \in \py : & \baseof{R} \ge \baseof{L}
+              \land [\baseof{L} = M \lor \baseof{L} = \baseof{M}] \\
+      R \in \pn : & R \ge \baseof{L}
+              \land M = \baseof{L} \\
+      \text{otherwise} : & \false
+   \end{cases}
+}\]
+
+\subsection{No Replay}
+
+\subsubsection{For $D=C$:} $D \isin C, D \le C$.  OK.
+
+\subsubsection{For $D \isin L \land D \isin R$:}
+$D \isin C$.  And $D \isin L \implies D \le L \implies D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
+$D \not\isin C$.  OK.
+
+\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
+$D \not\isin C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \not\isin M$:}
+$D \isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
+R$ so $D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \isin M$:}
+$D \not\isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
+R$ so $D \le C$.  OK.
+
+$\qed$
+
+\subsection{Unique Base}
+
+Need to consider only $C \in \py$, ie $L \in \py$,
+and calculate $\pendsof{C}{\pn}$.  So we will consider some
+putative ancestor $A \in \pn$ and see whether $A \le C$.
+
+By Exact Ancestors for C, $A \le C \equiv A \le L \lor A \le R \lor A = C$.
+But $C \in py$ and $A \in \pn$ so $A \neq C$.  
+Thus $A \le C \equiv A \le L \lor A \le R$.
+
+By Unique Base of L and Transitive Ancestors,
+$A \le L \equiv A \le \baseof{L}$.
+
+\subsubsection{For $R \in \py$:}
 
-$ C \haspatch \p $
+By Unique Base of $R$ and Transitive Ancestors,
+$A \le R \equiv A \le \baseof{R}$.
 
-$ C \nothaspatch \p $
+But by Tip Merge condition on $\baseof{R}$,
+$A \le \baseof{L} \implies A \le \baseof{R}$, so
+$A \le \baseof{R} \lor A \le \baseof{L} \equiv A \le \baseof{R}$.
+Thus $A \le C \equiv A \le \baseof{R}$.  
+That is, $\baseof{C} = \baseof{R}$.
 
-$ \p \patchisin C $
+\subsubsection{For $R \in \pn$:}
 
-$ \p \notpatchisin C $
+By Tip Merge condition on $R$,
+$A \le \baseof{L} \implies A \le R$, so
+$A \le R \lor A \le \baseof{L} \equiv A \le R$.  
+Thus $A \le C \equiv A \le R$.  
+That is, $\baseof{C} = R$.
 
-$ \{ B \} \areparents C $
+$\qed$
 
 \end{document}