chiark / gitweb /
provide \nge and \nle (which \not uses)
[topbloke-formulae.git] / article.tex
index 4e114f280985d82f5c68d8ce1e2e639193cc560b..20ab3613b294a18dd8bf09d8f49e4f7bc9ab8700 100644 (file)
@@ -10,6 +10,8 @@
 
 \renewcommand{\ge}{\geqslant}
 \renewcommand{\le}{\leqslant}
+\newcommand{\nge}{\ngeqslant}
+\newcommand{\nle}{\nleqslant}
 
 \newcommand{\has}{\sqsupseteq}
 \newcommand{\isin}{\sqsubseteq}
 \newcommand{\py}{\pay{P}}
 \newcommand{\pn}{\pan{P}}
 
+\newcommand{\pr}{\pa{R}}
+\newcommand{\pry}{\pay{R}}
+\newcommand{\prn}{\pan{R}}
+
 %\newcommand{\hasparents}{\underaccent{1}{>}}
 %\newcommand{\hasparents}{{%
 %  \declareslashed{}{_{_1}}{0}{-0.8}{>}\slashed{>}}}
 \newcommand{\pancsof}[2]{\pancs ( #1 , #2 ) }
 \newcommand{\pendsof}[2]{\pends ( #1 , #2 ) }
 
-\newcommand{\patchof}[1]{{\mathcal P} ( #1 ) }
-\newcommand{\baseof}[1]{{\mathcal B} ( #1 ) }
+\newcommand{\merge}[4]{{\mathcal M}(#1,#2,#3,#4)}
+%\newcommand{\merge}[4]{{#2 {{\frac{ #1 }{ #3 } #4}}}}
+
+\newcommand{\patch}{{\mathcal P}}
+\newcommand{\base}{{\mathcal B}}
+
+\newcommand{\patchof}[1]{\patch ( #1 ) }
+\newcommand{\baseof}[1]{\base ( #1 ) }
 
 \newcommand{\eqn}[2]{ #2 \tag*{\mbox{\bf #1}} }
 \newcommand{\corrolary}[1]{ #1 \tag*{\mbox{\it Corrolary.}} }
@@ -142,6 +154,17 @@ patch is applied to a non-Topbloke branch and then bubbles back to
 the Topbloke patch itself, we hope that git's merge algorithm will
 DTRT or that the user will no longer care about the Topbloke patch.
 
+\item[ $\displaystyle \merge{C}{L}{M}{R} $ ]
+The contents of a git merge result:
+
+$\displaystyle D \isin C \equiv
+  \begin{cases}
+    (D \isin L \land D \isin R) \lor D = C : & \true \\
+    (D \not\isin L \land D \not\isin R) \land D \neq C : & \false \\
+    \text{otherwise} : & D \not\isin M
+  \end{cases}
+$ 
+
 \end{basedescript}
 \newpage
 \section{Invariants}
@@ -227,15 +250,46 @@ by the LHS.  And $A \le A''$.
 \[ \eqn{Calculation Of Ends:}{
   \bigforall_{C \hasparents \set A}
     \pendsof{C}{\set P} =
-       \Bigl\{ E \Big|
+       \left\{ E \Big|
            \Bigl[ \Largeexists_{A \in \set A} 
                        E \in \pendsof{A}{\set P} \Bigr] \land
            \Bigl[ \Largenexists_{B \in \set A} 
                        E \neq B \land E \le B \Bigr]
-       \Bigr\}
+       \right\}
 }\]
 XXX proof TBD.
 
+\subsection{No Replay for Merge Results}
+
+If we are constructing $C$, given
+\gathbegin
+  \merge{C}{L}{M}{R}
+\gathnext
+  L \le C
+\gathnext
+  R \le C
+\end{gather}
+No Replay is preserved.  {\it Proof:}
+
+\subsubsection{For $D=C$:} $D \isin C, D \le C$.  OK.
+
+\subsubsection{For $D \isin L \land D \isin R$:}
+$D \isin C$.  And $D \isin L \implies D \le L \implies D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
+$D \not\isin C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \not\isin M$:}
+$D \isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
+R$ so $D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \isin M$:}
+$D \not\isin C$.  OK.
+
+$\qed$
+
 \section{Commit annotation}
 
 We annotate each Topbloke commit $C$ with:
@@ -334,6 +388,60 @@ $\qed$
 If $D = C$, trivial.  For $D \neq C$:
 $D \isin C \equiv D \isin A \equiv D \le A \equiv D \le C$.  $\qed$
 
+\section{Anticommit}
+
+Given $L, R^+, R^-$ where
+$R^+ \in \pry, R^- = \baseof{R^+}$.  
+Construct $C$ which has $\pr$ removed.
+Used for removing a branch dependency.
+\gathbegin
+ C \hasparents \{ L \}
+\gathnext
+ \patchof{C} = \patchof{L}
+\gathnext
+ \merge{C}{L}{R^+}{R^-}
+\end{gather}
+
+\subsection{Conditions}
+
+\[ \eqn{ Unique Tip }{
+ \pendsof{L}{\pry} = \{ R^+ \}
+}\]
+\[ \eqn{ Currently Included }{
+ L \haspatch \pry
+}\]
+\[ \eqn{ Not Self }{
+ L \not\in \{ R^+ \}
+}\]
+
+\subsection{No Replay}
+
+By Unique Tip, $R^+ \le L$.  By definition of $\base$, $R^- \le R^+$
+so $R^- \le L$.  So $R^+ \le C$ and $R^- \le C$ and No Replay for
+Merge Results applies. $\qed$
+
+\subsection{Desired Contents}
+
+\[ $D \isin C \equiv [ D \not\in \pry \land D \isin L$ ] \lor D = C \]
+{\it Proof.}
+
+\subsubsection{For $D = C$:}
+
+Trivially $D \isin C$.  OK.
+
+\subsubsection{For $D \not\le C$:}
+
+
+
+\subsubsection{For $D \in R^+$:}
+By Currently Included, 
+
+\subsection{Unique Base}
+
+Need to consider only $C \in \py$, ie $L \in \py$.
+
+xxx tbd
+
 \section{Merge}
 
 Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$):
@@ -342,12 +450,7 @@ Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$):
 \gathnext
  \patchof{C} = \patchof{L}
 \gathnext
- D \isin C \equiv
-  \begin{cases}
-    (D \isin L \land D \isin R) \lor D = C : & \true \\
-    (D \not\isin L \land D \not\isin R) \land D \neq C : & \false \\
-    \text{otherwise} : & D \not\isin M
-  \end{cases}
+ \merge{C}{L}{M}{R}
 \end{gather}
 
 \subsection{Conditions}
@@ -365,28 +468,7 @@ Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$):
 
 \subsection{No Replay}
 
-\subsubsection{For $D=C$:} $D \isin C, D \le C$.  OK.
-
-\subsubsection{For $D \isin L \land D \isin R$:}
-$D \isin C$.  And $D \isin L \implies D \le L \implies D \le C$.  OK.
-
-\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
-$D \not\isin C$.  OK.
-
-\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
-$D \not\isin C$.  OK.
-
-\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
- \land D \not\isin M$:}
-$D \isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
-R$ so $D \le C$.  OK.
-
-\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
- \land D \isin M$:}
-$D \not\isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
-R$ so $D \le C$.  OK.
-
-$\qed$
+See No Replay for Merge Results.
 
 \subsection{Unique Base}
 
@@ -394,9 +476,9 @@ Need to consider only $C \in \py$, ie $L \in \py$,
 and calculate $\pendsof{C}{\pn}$.  So we will consider some
 putative ancestor $A \in \pn$ and see whether $A \le C$.
 
-$A \le C \equiv A \le L \lor A \le R \lor A = C$.
+By Exact Ancestors for C, $A \le C \equiv A \le L \lor A \le R \lor A = C$.
 But $C \in py$ and $A \in \pn$ so $A \neq C$.  
-Thus $fixme this is not really the right thing A \le L \lor A \le R$.
+Thus $A \le C \equiv A \le L \lor A \le R$.
 
 By Unique Base of L and Transitive Ancestors,
 $A \le L \equiv A \le \baseof{L}$.
@@ -409,33 +491,17 @@ $A \le R \equiv A \le \baseof{R}$.
 But by Tip Merge condition on $\baseof{R}$,
 $A \le \baseof{L} \implies A \le \baseof{R}$, so
 $A \le \baseof{R} \lor A \le \baseof{L} \equiv A \le \baseof{R}$.
-Thus $A \le C \equiv A \le \baseof{R}$.  Ie, $\baseof{C} =
-\baseof{R}$.
+Thus $A \le C \equiv A \le \baseof{R}$.  
+That is, $\baseof{C} = \baseof{R}$.
 
 \subsubsection{For $R \in \pn$:}
 
-UP TO HERE
-
-By Tip Merge, $A \le $
+By Tip Merge condition on $R$,
+$A \le \baseof{L} \implies A \le R$, so
+$A \le R \lor A \le \baseof{L} \equiv A \le R$.  
+Thus $A \le C \equiv A \le R$.  
+That is, $\baseof{C} = R$.
 
-Let $S =
-   \begin{cases} 
-     R \in \py : & \baseof{R} \\
-     R \in \pn : & R
-   \end{cases}$.  
-Then by Tip Merge $S \ge \baseof{L}$, and $R \ge S$ so $C \ge S$.
-   
-Consider some $A \in \pn$.  If $A \le S$ then $A \le C$.
-If $A \not\le S$ then 
-
-Let $A \in \pends{C}{\pn}$.  
-Then by Calculation Of Ends $A \in \pendsof{L,\pn} \lor A \in
-\pendsof{R,\pn}$.
-
-
-
-%$\pends{C,
-
-%%\subsubsection{For $R \in \py$:}
+$\qed$
 
 \end{document}