chiark / gitweb /
Merge from existing archive branch
[pcre3.git] / sljit / sljitNativeTILEGX_64.c
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
5  *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modification, are
8  * permitted provided that the following conditions are met:
9  *
10  *   1. Redistributions of source code must retain the above copyright notice, this list of
11  *      conditions and the following disclaimer.
12  *
13  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
14  *      of conditions and the following disclaimer in the documentation and/or other materials
15  *      provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
20  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
23  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
25  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 /* TileGX architecture. */
29 /* Contributed by Tilera Corporation. */
30 #include "sljitNativeTILEGX-encoder.c"
31
32 #define SIMM_8BIT_MAX (0x7f)
33 #define SIMM_8BIT_MIN (-0x80)
34 #define SIMM_16BIT_MAX (0x7fff)
35 #define SIMM_16BIT_MIN (-0x8000)
36 #define SIMM_17BIT_MAX (0xffff)
37 #define SIMM_17BIT_MIN (-0x10000)
38 #define SIMM_32BIT_MAX (0x7fffffff)
39 #define SIMM_32BIT_MIN (-0x7fffffff - 1)
40 #define SIMM_48BIT_MAX (0x7fffffff0000L)
41 #define SIMM_48BIT_MIN (-0x800000000000L)
42 #define IMM16(imm) ((imm) & 0xffff)
43
44 #define UIMM_16BIT_MAX (0xffff)
45
46 #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
47 #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
48 #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
49 #define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
50 #define PIC_ADDR_REG TMP_REG2
51
52 static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
53         63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
54 };
55
56 #define SLJIT_LOCALS_REG_mapped 54
57 #define TMP_REG1_mapped 5
58 #define TMP_REG2_mapped 16
59 #define TMP_REG3_mapped 6
60 #define ADDR_TMP_mapped 7
61
62 /* Flags are keept in volatile registers. */
63 #define EQUAL_FLAG 8
64 /* And carry flag as well. */
65 #define ULESS_FLAG 9
66 #define UGREATER_FLAG 10
67 #define LESS_FLAG 11
68 #define GREATER_FLAG 12
69 #define OVERFLOW_FLAG 13
70
71 #define ZERO 63
72 #define RA 55
73 #define TMP_EREG1 14
74 #define TMP_EREG2 15
75
76 #define LOAD_DATA 0x01
77 #define WORD_DATA 0x00
78 #define BYTE_DATA 0x02
79 #define HALF_DATA 0x04
80 #define INT_DATA 0x06
81 #define SIGNED_DATA 0x08
82 #define DOUBLE_DATA 0x10
83
84 /* Separates integer and floating point registers */
85 #define GPR_REG 0xf
86
87 #define MEM_MASK 0x1f
88
89 #define WRITE_BACK 0x00020
90 #define ARG_TEST 0x00040
91 #define ALT_KEEP_CACHE 0x00080
92 #define CUMULATIVE_OP 0x00100
93 #define LOGICAL_OP 0x00200
94 #define IMM_OP 0x00400
95 #define SRC2_IMM 0x00800
96
97 #define UNUSED_DEST 0x01000
98 #define REG_DEST 0x02000
99 #define REG1_SOURCE 0x04000
100 #define REG2_SOURCE 0x08000
101 #define SLOW_SRC1 0x10000
102 #define SLOW_SRC2 0x20000
103 #define SLOW_DEST 0x40000
104
105 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
106  */
107 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
108
109 SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void)
110 {
111         return "TileGX" SLJIT_CPUINFO;
112 }
113
114 /* Length of an instruction word */
115 typedef sljit_uw sljit_ins;
116
117 struct jit_instr {
118         const struct tilegx_opcode* opcode; 
119         tilegx_pipeline pipe;
120         unsigned long input_registers;
121         unsigned long output_registers;
122         int operand_value[4];
123         int line;
124 };
125
126 /* Opcode Helper Macros */
127 #define TILEGX_X_MODE 0
128
129 #define X_MODE create_Mode(TILEGX_X_MODE)
130
131 #define FNOP_X0 \
132         create_Opcode_X0(RRR_0_OPCODE_X0) | \
133         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
134         create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
135
136 #define FNOP_X1 \
137         create_Opcode_X1(RRR_0_OPCODE_X1) | \
138         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
139         create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
140
141 #define NOP \
142         create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
143
144 #define ANOP_X0 \
145         create_Opcode_X0(RRR_0_OPCODE_X0) | \
146         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
147         create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
148
149 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
150         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
151         create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
152         create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
153
154 #define ADD_X1 \
155         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
156         create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
157
158 #define ADDI_X1 \
159         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
160         create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
161
162 #define SUB_X1 \
163         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
164         create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
165
166 #define NOR_X1 \
167         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
168         create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
169
170 #define OR_X1 \
171         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
172         create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
173
174 #define AND_X1 \
175         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
176         create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
177
178 #define XOR_X1 \
179         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
180         create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
181
182 #define CMOVNEZ_X0 \
183         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
184         create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
185
186 #define CMOVEQZ_X0 \
187         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
188         create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
189
190 #define ADDLI_X1 \
191         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
192
193 #define V4INT_L_X1 \
194         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
195         create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
196
197 #define BFEXTU_X0 \
198         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
199         create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
200
201 #define BFEXTS_X0 \
202         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
203         create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
204
205 #define SHL16INSLI_X1 \
206         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
207
208 #define ST_X1 \
209         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
210         create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
211
212 #define LD_X1 \
213         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
214         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
215         create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
216
217 #define JR_X1 \
218         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
219         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
220         create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
221
222 #define JALR_X1 \
223         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
224         create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
225         create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
226
227 #define CLZ_X0 \
228         create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
229         create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
230         create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
231
232 #define CMPLTUI_X1 \
233         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
234         create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
235
236 #define CMPLTU_X1 \
237         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
238         create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
239
240 #define CMPLTS_X1 \
241         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
242         create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
243
244 #define XORI_X1 \
245         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
246         create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
247
248 #define ORI_X1 \
249         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
250         create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
251
252 #define ANDI_X1 \
253         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
254         create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
255
256 #define SHLI_X1 \
257         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
258         create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
259
260 #define SHL_X1 \
261         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
262         create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
263
264 #define SHRSI_X1 \
265         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
266         create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
267
268 #define SHRS_X1 \
269         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
270         create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
271
272 #define SHRUI_X1 \
273         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
274         create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
275
276 #define SHRU_X1 \
277         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
278         create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
279
280 #define BEQZ_X1 \
281         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
282         create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
283
284 #define BNEZ_X1 \
285         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
286         create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
287
288 #define J_X1 \
289         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
290         create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
291
292 #define JAL_X1 \
293         create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
294         create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
295
296 #define DEST_X0(x) create_Dest_X0(x)
297 #define SRCA_X0(x) create_SrcA_X0(x)
298 #define SRCB_X0(x) create_SrcB_X0(x)
299 #define DEST_X1(x) create_Dest_X1(x)
300 #define SRCA_X1(x) create_SrcA_X1(x)
301 #define SRCB_X1(x) create_SrcB_X1(x)
302 #define IMM16_X1(x) create_Imm16_X1(x)
303 #define IMM8_X1(x) create_Imm8_X1(x)
304 #define BFSTART_X0(x) create_BFStart_X0(x)
305 #define BFEND_X0(x) create_BFEnd_X0(x)
306 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
307 #define JOFF_X1(x) create_JumpOff_X1(x)
308 #define BOFF_X1(x) create_BrOff_X1(x)
309
310 static const tilegx_mnemonic data_transfer_insts[16] = {
311         /* u w s */ TILEGX_OPC_ST   /* st */,
312         /* u w l */ TILEGX_OPC_LD   /* ld */,
313         /* u b s */ TILEGX_OPC_ST1  /* st1 */,
314         /* u b l */ TILEGX_OPC_LD1U /* ld1u */,
315         /* u h s */ TILEGX_OPC_ST2  /* st2 */,
316         /* u h l */ TILEGX_OPC_LD2U /* ld2u */,
317         /* u i s */ TILEGX_OPC_ST4  /* st4 */,
318         /* u i l */ TILEGX_OPC_LD4U /* ld4u */,
319         /* s w s */ TILEGX_OPC_ST   /* st */,
320         /* s w l */ TILEGX_OPC_LD   /* ld */,
321         /* s b s */ TILEGX_OPC_ST1  /* st1 */,
322         /* s b l */ TILEGX_OPC_LD1S /* ld1s */,
323         /* s h s */ TILEGX_OPC_ST2  /* st2 */,
324         /* s h l */ TILEGX_OPC_LD2S /* ld2s */,
325         /* s i s */ TILEGX_OPC_ST4  /* st4 */,
326         /* s i l */ TILEGX_OPC_LD4S /* ld4s */,
327 };
328
329 #ifdef TILEGX_JIT_DEBUG
330 static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
331 {
332         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
333         FAIL_IF(!ptr);
334         *ptr = ins;
335         compiler->size++;
336         printf("|%04d|S0|:\t\t", line);
337         print_insn_tilegx(ptr);
338         return SLJIT_SUCCESS;
339 }
340
341 static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
342 {
343         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
344         FAIL_IF(!ptr);
345         *ptr = ins;
346         compiler->size++;
347         return SLJIT_SUCCESS;
348 }
349
350 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
351 #else
352 static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
353 {
354         sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
355         FAIL_IF(!ptr);
356         *ptr = ins;
357         compiler->size++;
358         return SLJIT_SUCCESS;
359 }
360 #endif
361
362 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
363         ((p0) | ((p1) << 8) | ((p2) << 16))
364
365 #define BUNDLE_FORMAT(p0, p1, p2) \
366         { \
367                 { \
368                         (tilegx_pipeline)(p0), \
369                         (tilegx_pipeline)(p1), \
370                         (tilegx_pipeline)(p2) \
371                 }, \
372                 BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
373         }
374
375 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
376
377 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
378
379 #define PI(encoding) \
380         push_inst(compiler, encoding)
381
382 #define PB3(opcode, dst, srca, srcb) \
383         push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
384
385 #define PB2(opcode, dst, src) \
386         push_2_buffer(compiler, opcode, dst, src, __LINE__)
387
388 #define JR(reg) \
389         push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
390
391 #define ADD(dst, srca, srcb) \
392         push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
393
394 #define SUB(dst, srca, srcb) \
395         push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
396
397 #define MUL(dst, srca, srcb) \
398         push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)
399
400 #define NOR(dst, srca, srcb) \
401         push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
402
403 #define OR(dst, srca, srcb) \
404         push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
405
406 #define XOR(dst, srca, srcb) \
407         push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
408
409 #define AND(dst, srca, srcb) \
410         push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
411
412 #define CLZ(dst, src) \
413         push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
414
415 #define SHLI(dst, srca, srcb) \
416         push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
417
418 #define SHRUI(dst, srca, imm) \
419         push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
420
421 #define XORI(dst, srca, imm) \
422         push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
423
424 #define ORI(dst, srca, imm) \
425         push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
426
427 #define CMPLTU(dst, srca, srcb) \
428         push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
429
430 #define CMPLTS(dst, srca, srcb) \
431         push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
432
433 #define CMPLTUI(dst, srca, imm) \
434         push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
435
436 #define CMOVNEZ(dst, srca, srcb) \
437         push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
438
439 #define CMOVEQZ(dst, srca, srcb) \
440         push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
441
442 #define ADDLI(dst, srca, srcb) \
443         push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
444
445 #define SHL16INSLI(dst, srca, srcb) \
446         push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
447
448 #define LD_ADD(dst, addr, adjust) \
449         push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
450
451 #define ST_ADD(src, addr, adjust) \
452         push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
453
454 #define LD(dst, addr) \
455         push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
456
457 #define BFEXTU(dst, src, start, end) \
458         push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
459
460 #define BFEXTS(dst, src, start, end) \
461         push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
462
463 #define ADD_SOLO(dest, srca, srcb) \
464         push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
465
466 #define ADDI_SOLO(dest, srca, imm) \
467         push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
468
469 #define ADDLI_SOLO(dest, srca, imm) \
470         push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
471
472 #define SHL16INSLI_SOLO(dest, srca, imm) \
473         push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
474
475 #define JALR_SOLO(reg) \
476         push_inst(compiler, JALR_X1 | SRCA_X1(reg))
477
478 #define JR_SOLO(reg) \
479         push_inst(compiler, JR_X1 | SRCA_X1(reg))
480
481 struct Format {
482         /* Mapping of bundle issue slot to assigned pipe. */
483         tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
484
485         /* Mask of pipes used by this bundle. */
486         unsigned int pipe_mask;
487 };
488
489 const struct Format formats[] =
490 {
491         /* In Y format we must always have something in Y2, since it has
492         * no fnop, so this conveys that Y2 must always be used. */
493         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
494         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
495         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
496         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
497
498         /* Y format has three instructions. */
499         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
500         BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
501         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
502         BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
503         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
504         BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
505
506         /* X format has only two instructions. */
507         BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
508         BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
509 };
510
511
512 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
513 unsigned long inst_buf_index;
514
515 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
516 {
517         /* FIXME: tile: we could pregenerate this. */
518         int pipe;
519         for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
520                 ;
521         return (tilegx_pipeline)(pipe);
522 }
523
524 void insert_nop(tilegx_mnemonic opc, int line)
525 {
526         const struct tilegx_opcode* opcode = NULL;
527
528         memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
529
530         opcode = &tilegx_opcodes[opc];
531         inst_buf[0].opcode = opcode;
532         inst_buf[0].pipe = get_any_valid_pipe(opcode);
533         inst_buf[0].input_registers = 0;
534         inst_buf[0].output_registers = 0;
535         inst_buf[0].line = line;
536         ++inst_buf_index;
537 }
538
539 const struct Format* compute_format()
540 {
541         unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
542                 inst_buf[0].opcode->pipes,
543                 inst_buf[1].opcode->pipes,
544                 (inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
545
546         const struct Format* match = NULL;
547         const struct Format *b = NULL;
548         unsigned int i;
549         for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
550                 b = &formats[i];
551                 if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
552                         match = b;
553                         break;
554                 }
555         }
556
557         return match;
558 }
559
560 sljit_s32 assign_pipes()
561 {
562         unsigned long output_registers = 0;
563         unsigned int i = 0;
564
565         if (inst_buf_index == 1) {
566                 tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
567                                         ? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
568                 insert_nop(opc, __LINE__);
569         }
570
571         const struct Format* match = compute_format();
572
573         if (match == NULL)
574                 return -1;
575
576         for (i = 0; i < inst_buf_index; i++) {
577
578                 if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
579                         return -1;
580
581                 if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
582                         return -1;
583
584                 /* Don't include Rzero in the match set, to avoid triggering
585                    needlessly on 'prefetch' instrs. */
586
587                 output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
588
589                 inst_buf[i].pipe = match->pipe[i];
590         }
591
592         /* If only 2 instrs, and in Y-mode, insert a nop. */
593         if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
594                 insert_nop(TILEGX_OPC_FNOP, __LINE__);
595
596                 /* Select the yet unassigned pipe. */
597                 tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
598                                         + TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
599                                         - (inst_buf[1].pipe + inst_buf[2].pipe)));
600
601                 inst_buf[0].pipe = pipe;
602         }
603
604         return 0;
605 }
606
607 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
608 {
609         int i, val;
610         const struct tilegx_opcode* opcode = inst->opcode;
611         tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
612
613         const struct tilegx_operand* operand = NULL;
614         for (i = 0; i < opcode->num_operands; i++) {
615                 operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
616                 val = inst->operand_value[i];
617
618                 bits |= operand->insert(val);
619         }
620
621         return bits;
622 }
623
624 static sljit_s32 update_buffer(struct sljit_compiler *compiler)
625 {
626         int i;
627         int orig_index = inst_buf_index;
628         struct jit_instr inst0 = inst_buf[0];
629         struct jit_instr inst1 = inst_buf[1];
630         struct jit_instr inst2 = inst_buf[2];
631         tilegx_bundle_bits bits = 0;
632
633         /* If the bundle is valid as is, perform the encoding and return 1. */
634         if (assign_pipes() == 0) {
635                 for (i = 0; i < inst_buf_index; i++) {
636                         bits |= get_bundle_bit(inst_buf + i);
637 #ifdef TILEGX_JIT_DEBUG
638                         printf("|%04d", inst_buf[i].line);
639 #endif
640                 }
641 #ifdef TILEGX_JIT_DEBUG
642                 if (inst_buf_index == 3)
643                         printf("|M0|:\t");
644                 else
645                         printf("|M0|:\t\t");
646                 print_insn_tilegx(&bits);
647 #endif
648
649                 inst_buf_index = 0;
650
651 #ifdef TILEGX_JIT_DEBUG
652                 return push_inst_nodebug(compiler, bits);
653 #else
654                 return push_inst(compiler, bits);
655 #endif
656         }
657
658         /* If the bundle is invalid, split it in two. First encode the first two
659            (or possibly 1) instructions, and then the last, separately. Note that
660            assign_pipes may have re-ordered the instrs (by inserting no-ops in
661            lower slots) so we need to reset them. */
662
663         inst_buf_index = orig_index - 1;
664         inst_buf[0] = inst0;
665         inst_buf[1] = inst1;
666         inst_buf[2] = inst2;
667         if (assign_pipes() == 0) {
668                 for (i = 0; i < inst_buf_index; i++) {
669                         bits |= get_bundle_bit(inst_buf + i);
670 #ifdef TILEGX_JIT_DEBUG
671                         printf("|%04d", inst_buf[i].line);
672 #endif
673                 }
674
675 #ifdef TILEGX_JIT_DEBUG
676                 if (inst_buf_index == 3)
677                         printf("|M1|:\t");
678                 else
679                         printf("|M1|:\t\t");
680                 print_insn_tilegx(&bits);
681 #endif
682
683                 if ((orig_index - 1) == 2) {
684                         inst_buf[0] = inst2;
685                         inst_buf_index = 1;
686                 } else if ((orig_index - 1) == 1) {
687                         inst_buf[0] = inst1;
688                         inst_buf_index = 1;
689                 } else
690                         SLJIT_ASSERT_STOP();
691
692 #ifdef TILEGX_JIT_DEBUG
693                 return push_inst_nodebug(compiler, bits);
694 #else
695                 return push_inst(compiler, bits);
696 #endif
697         } else {
698                 /* We had 3 instrs of which the first 2 can't live in the same bundle.
699                    Split those two. Note that we don't try to then combine the second
700                    and third instr into a single bundle.  First instruction: */
701                 inst_buf_index = 1;
702                 inst_buf[0] = inst0;
703                 inst_buf[1] = inst1;
704                 inst_buf[2] = inst2;
705                 if (assign_pipes() == 0) {
706                         for (i = 0; i < inst_buf_index; i++) {
707                                 bits |= get_bundle_bit(inst_buf + i);
708 #ifdef TILEGX_JIT_DEBUG
709                                 printf("|%04d", inst_buf[i].line);
710 #endif
711                         }
712
713 #ifdef TILEGX_JIT_DEBUG
714                         if (inst_buf_index == 3)
715                                 printf("|M2|:\t");
716                         else
717                                 printf("|M2|:\t\t");
718                         print_insn_tilegx(&bits);
719 #endif
720
721                         inst_buf[0] = inst1;
722                         inst_buf[1] = inst2;
723                         inst_buf_index = orig_index - 1;
724 #ifdef TILEGX_JIT_DEBUG
725                         return push_inst_nodebug(compiler, bits);
726 #else
727                         return push_inst(compiler, bits);
728 #endif
729                 } else
730                         SLJIT_ASSERT_STOP();
731         }
732
733         SLJIT_ASSERT_STOP();
734 }
735
736 static sljit_s32 flush_buffer(struct sljit_compiler *compiler)
737 {
738         while (inst_buf_index != 0) {
739                 FAIL_IF(update_buffer(compiler));
740         }
741         return SLJIT_SUCCESS;
742 }
743
744 static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
745 {
746         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
747                 FAIL_IF(update_buffer(compiler));
748
749         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
750         inst_buf[inst_buf_index].opcode = opcode;
751         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
752         inst_buf[inst_buf_index].operand_value[0] = op0;
753         inst_buf[inst_buf_index].operand_value[1] = op1;
754         inst_buf[inst_buf_index].operand_value[2] = op2;
755         inst_buf[inst_buf_index].operand_value[3] = op3;
756         inst_buf[inst_buf_index].input_registers = 1L << op1;
757         inst_buf[inst_buf_index].output_registers = 1L << op0;
758         inst_buf[inst_buf_index].line = line;
759         inst_buf_index++;
760
761         return SLJIT_SUCCESS;
762 }
763
764 static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
765 {
766         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
767                 FAIL_IF(update_buffer(compiler));
768
769         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
770         inst_buf[inst_buf_index].opcode = opcode;
771         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
772         inst_buf[inst_buf_index].operand_value[0] = op0;
773         inst_buf[inst_buf_index].operand_value[1] = op1;
774         inst_buf[inst_buf_index].operand_value[2] = op2;
775         inst_buf[inst_buf_index].line = line;
776
777         switch (opc) {
778         case TILEGX_OPC_ST_ADD:
779                 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
780                 inst_buf[inst_buf_index].output_registers = 1L << op0;
781                 break;
782         case TILEGX_OPC_LD_ADD:
783                 inst_buf[inst_buf_index].input_registers = 1L << op1;
784                 inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
785                 break;
786         case TILEGX_OPC_ADD:
787         case TILEGX_OPC_AND:
788         case TILEGX_OPC_SUB:
789         case TILEGX_OPC_MULX:
790         case TILEGX_OPC_OR:
791         case TILEGX_OPC_XOR:
792         case TILEGX_OPC_NOR:
793         case TILEGX_OPC_SHL:
794         case TILEGX_OPC_SHRU:
795         case TILEGX_OPC_SHRS:
796         case TILEGX_OPC_CMPLTU:
797         case TILEGX_OPC_CMPLTS:
798         case TILEGX_OPC_CMOVEQZ:
799         case TILEGX_OPC_CMOVNEZ:
800                 inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
801                 inst_buf[inst_buf_index].output_registers = 1L << op0;
802                 break;
803         case TILEGX_OPC_ADDLI:
804         case TILEGX_OPC_XORI:
805         case TILEGX_OPC_ORI:
806         case TILEGX_OPC_SHLI:
807         case TILEGX_OPC_SHRUI:
808         case TILEGX_OPC_SHRSI:
809         case TILEGX_OPC_SHL16INSLI:
810         case TILEGX_OPC_CMPLTUI:
811         case TILEGX_OPC_CMPLTSI:
812                 inst_buf[inst_buf_index].input_registers = 1L << op1;
813                 inst_buf[inst_buf_index].output_registers = 1L << op0;
814                 break;
815         default:
816                 printf("unrecoginzed opc: %s\n", opcode->name);
817                 SLJIT_ASSERT_STOP();
818         }
819
820         inst_buf_index++;
821
822         return SLJIT_SUCCESS;
823 }
824
825 static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
826 {
827         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
828                 FAIL_IF(update_buffer(compiler));
829
830         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
831         inst_buf[inst_buf_index].opcode = opcode;
832         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
833         inst_buf[inst_buf_index].operand_value[0] = op0;
834         inst_buf[inst_buf_index].operand_value[1] = op1;
835         inst_buf[inst_buf_index].line = line;
836
837         switch (opc) {
838         case TILEGX_OPC_BEQZ:
839         case TILEGX_OPC_BNEZ:
840                 inst_buf[inst_buf_index].input_registers = 1L << op0;
841                 break;
842         case TILEGX_OPC_ST:
843         case TILEGX_OPC_ST1:
844         case TILEGX_OPC_ST2:
845         case TILEGX_OPC_ST4:
846                 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
847                 inst_buf[inst_buf_index].output_registers = 0;
848                 break;
849         case TILEGX_OPC_CLZ:
850         case TILEGX_OPC_LD:
851         case TILEGX_OPC_LD1U:
852         case TILEGX_OPC_LD1S:
853         case TILEGX_OPC_LD2U:
854         case TILEGX_OPC_LD2S:
855         case TILEGX_OPC_LD4U:
856         case TILEGX_OPC_LD4S:
857                 inst_buf[inst_buf_index].input_registers = 1L << op1;
858                 inst_buf[inst_buf_index].output_registers = 1L << op0;
859                 break;
860         default:
861                 printf("unrecoginzed opc: %s\n", opcode->name);
862                 SLJIT_ASSERT_STOP();
863         }
864
865         inst_buf_index++;
866
867         return SLJIT_SUCCESS;
868 }
869
870 static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
871 {
872         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
873                 FAIL_IF(update_buffer(compiler));
874
875         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
876         inst_buf[inst_buf_index].opcode = opcode;
877         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
878         inst_buf[inst_buf_index].input_registers = 0;
879         inst_buf[inst_buf_index].output_registers = 0;
880         inst_buf[inst_buf_index].line = line;
881         inst_buf_index++;
882
883         return SLJIT_SUCCESS;
884 }
885
886 static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
887 {
888         if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
889                 FAIL_IF(update_buffer(compiler));
890
891         const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
892         inst_buf[inst_buf_index].opcode = opcode;
893         inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
894         inst_buf[inst_buf_index].operand_value[0] = op0;
895         inst_buf[inst_buf_index].input_registers = 1L << op0;
896         inst_buf[inst_buf_index].output_registers = 0;
897         inst_buf[inst_buf_index].line = line;
898         inst_buf_index++;
899  
900         return flush_buffer(compiler);
901 }
902
903 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
904 {
905         sljit_sw diff;
906         sljit_uw target_addr;
907         sljit_ins *inst;
908
909         if (jump->flags & SLJIT_REWRITABLE_JUMP)
910                 return code_ptr;
911
912         if (jump->flags & JUMP_ADDR)
913                 target_addr = jump->u.target;
914         else {
915                 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
916                 target_addr = (sljit_uw)(code + jump->u.label->size);
917         }
918
919         inst = (sljit_ins *)jump->addr;
920         if (jump->flags & IS_COND)
921                 inst--;
922
923         diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
924         if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
925                 jump->flags |= PATCH_B;
926
927                 if (!(jump->flags & IS_COND)) {
928                         if (jump->flags & IS_JAL) {
929                                 jump->flags &= ~(PATCH_B);
930                                 jump->flags |= PATCH_J;
931                                 inst[0] = JAL_X1;
932
933 #ifdef TILEGX_JIT_DEBUG
934                                 printf("[runtime relocate]%04d:\t", __LINE__);
935                                 print_insn_tilegx(inst);
936 #endif
937                         } else {
938                                 inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
939
940 #ifdef TILEGX_JIT_DEBUG
941                                 printf("[runtime relocate]%04d:\t", __LINE__);
942                                 print_insn_tilegx(inst);
943 #endif
944                         }
945
946                         return inst;
947                 }
948
949                 inst[0] = inst[0] ^ (0x7L << 55);
950
951 #ifdef TILEGX_JIT_DEBUG
952                 printf("[runtime relocate]%04d:\t", __LINE__);
953                 print_insn_tilegx(inst);
954 #endif
955                 jump->addr -= sizeof(sljit_ins);
956                 return inst;
957         }
958
959         if (jump->flags & IS_COND) {
960                 if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
961                         jump->flags |= PATCH_J;
962                         inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
963                         inst[1] = J_X1;
964                         return inst + 1;
965                 }
966
967                 return code_ptr;
968         }
969
970         if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
971                 jump->flags |= PATCH_J;
972
973                 if (jump->flags & IS_JAL) {
974                         inst[0] = JAL_X1;
975
976 #ifdef TILEGX_JIT_DEBUG
977                         printf("[runtime relocate]%04d:\t", __LINE__);
978                         print_insn_tilegx(inst);
979 #endif
980
981                 } else {
982                         inst[0] = J_X1;
983
984 #ifdef TILEGX_JIT_DEBUG
985                         printf("[runtime relocate]%04d:\t", __LINE__);
986                         print_insn_tilegx(inst);
987 #endif
988                 }
989
990                 return inst;
991         }
992
993         return code_ptr;
994 }
995
996 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
997 {
998         struct sljit_memory_fragment *buf;
999         sljit_ins *code;
1000         sljit_ins *code_ptr;
1001         sljit_ins *buf_ptr;
1002         sljit_ins *buf_end;
1003         sljit_uw word_count;
1004         sljit_uw addr;
1005
1006         struct sljit_label *label;
1007         struct sljit_jump *jump;
1008         struct sljit_const *const_;
1009
1010         CHECK_ERROR_PTR();
1011         CHECK_PTR(check_sljit_generate_code(compiler));
1012         reverse_buf(compiler);
1013
1014         code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
1015         PTR_FAIL_WITH_EXEC_IF(code);
1016         buf = compiler->buf;
1017
1018         code_ptr = code;
1019         word_count = 0;
1020         label = compiler->labels;
1021         jump = compiler->jumps;
1022         const_ = compiler->consts;
1023         do {
1024                 buf_ptr = (sljit_ins *)buf->memory;
1025                 buf_end = buf_ptr + (buf->used_size >> 3);
1026                 do {
1027                         *code_ptr = *buf_ptr++;
1028                         SLJIT_ASSERT(!label || label->size >= word_count);
1029                         SLJIT_ASSERT(!jump || jump->addr >= word_count);
1030                         SLJIT_ASSERT(!const_ || const_->addr >= word_count);
1031                         /* These structures are ordered by their address. */
1032                         if (label && label->size == word_count) {
1033                                 /* Just recording the address. */
1034                                 label->addr = (sljit_uw) code_ptr;
1035                                 label->size = code_ptr - code;
1036                                 label = label->next;
1037                         }
1038
1039                         if (jump && jump->addr == word_count) {
1040                                 if (jump->flags & IS_JAL)
1041                                         jump->addr = (sljit_uw)(code_ptr - 4);
1042                                 else
1043                                         jump->addr = (sljit_uw)(code_ptr - 3);
1044
1045                                 code_ptr = detect_jump_type(jump, code_ptr, code);
1046                                 jump = jump->next;
1047                         }
1048
1049                         if (const_ && const_->addr == word_count) {
1050                                 /* Just recording the address. */
1051                                 const_->addr = (sljit_uw) code_ptr;
1052                                 const_ = const_->next;
1053                         }
1054
1055                         code_ptr++;
1056                         word_count++;
1057                 } while (buf_ptr < buf_end);
1058
1059                 buf = buf->next;
1060         } while (buf);
1061
1062         if (label && label->size == word_count) {
1063                 label->addr = (sljit_uw) code_ptr;
1064                 label->size = code_ptr - code;
1065                 label = label->next;
1066         }
1067
1068         SLJIT_ASSERT(!label);
1069         SLJIT_ASSERT(!jump);
1070         SLJIT_ASSERT(!const_);
1071         SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
1072
1073         jump = compiler->jumps;
1074         while (jump) {
1075                 do {
1076                         addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
1077                         buf_ptr = (sljit_ins *)jump->addr;
1078
1079                         if (jump->flags & PATCH_B) {
1080                                 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1081                                 SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
1082                                 buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
1083
1084 #ifdef TILEGX_JIT_DEBUG
1085                                 printf("[runtime relocate]%04d:\t", __LINE__);
1086                                 print_insn_tilegx(buf_ptr);
1087 #endif
1088                                 break;
1089                         }
1090
1091                         if (jump->flags & PATCH_J) {
1092                                 SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
1093                                 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1094                                 buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
1095
1096 #ifdef TILEGX_JIT_DEBUG
1097                                 printf("[runtime relocate]%04d:\t", __LINE__);
1098                                 print_insn_tilegx(buf_ptr);
1099 #endif
1100                                 break;
1101                         }
1102
1103                         SLJIT_ASSERT(!(jump->flags & IS_JAL));
1104
1105                         /* Set the fields of immediate loads. */
1106                         buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
1107                         buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
1108                         buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
1109                 } while (0);
1110
1111                 jump = jump->next;
1112         }
1113
1114         compiler->error = SLJIT_ERR_COMPILED;
1115         compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
1116         SLJIT_CACHE_FLUSH(code, code_ptr);
1117         return code;
1118 }
1119
1120 static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
1121 {
1122
1123         if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
1124                 return ADDLI(dst_ar, ZERO, imm);
1125
1126         if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
1127                 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
1128                 return SHL16INSLI(dst_ar, dst_ar, imm);
1129         }
1130
1131         if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
1132                 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1133                 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1134                 return SHL16INSLI(dst_ar, dst_ar, imm);
1135         }
1136
1137         FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
1138         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
1139         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1140         return SHL16INSLI(dst_ar, dst_ar, imm);
1141 }
1142
1143 static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
1144 {
1145         /* Should *not* be optimized as load_immediate, as pcre relocation
1146            mechanism will match this fixed 4-instruction pattern. */
1147         if (flush) {
1148                 FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
1149                 FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
1150                 return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
1151         }
1152
1153         FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1154         FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1155         return SHL16INSLI(dst_ar, dst_ar, imm);
1156 }
1157
1158 static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
1159 {
1160         /* Should *not* be optimized as load_immediate, as pcre relocation
1161            mechanism will match this fixed 4-instruction pattern. */
1162         if (flush) {
1163                 FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
1164                 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1165                 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1166                 return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
1167         }
1168
1169         FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
1170         FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1171         FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1172         return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
1173 }
1174
1175 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
1176         sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
1177         sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
1178 {
1179         sljit_ins base;
1180         sljit_s32 i, tmp;
1181  
1182         CHECK_ERROR();
1183         CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1184         set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1185
1186         local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1187         local_size = (local_size + 7) & ~7;
1188         compiler->local_size = local_size;
1189
1190         if (local_size <= SIMM_16BIT_MAX) {
1191                 /* Frequent case. */
1192                 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
1193                 base = SLJIT_LOCALS_REG_mapped;
1194         } else {
1195                 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1196                 FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
1197                 FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1198                 base = TMP_REG2_mapped;
1199                 local_size = 0;
1200         }
1201
1202         /* Save the return address. */
1203         FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1204         FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
1205
1206         /* Save the S registers. */
1207         tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1208         for (i = SLJIT_S0; i >= tmp; i--) {
1209                 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1210         }
1211
1212         /* Save the R registers that need to be reserved. */
1213         for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1214                 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1215         }
1216
1217         /* Move the arguments to S registers. */
1218         for (i = 0; i < args; i++) {
1219                 FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
1220         }
1221
1222         return SLJIT_SUCCESS;
1223 }
1224
1225 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
1226         sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
1227         sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
1228 {
1229         CHECK_ERROR();
1230         CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1231         set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1232
1233         local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1234         compiler->local_size = (local_size + 7) & ~7;
1235
1236         return SLJIT_SUCCESS;
1237 }
1238
1239 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
1240 {
1241         sljit_s32 local_size;
1242         sljit_ins base;
1243         sljit_s32 i, tmp;
1244         sljit_s32 saveds;
1245
1246         CHECK_ERROR();
1247         CHECK(check_sljit_emit_return(compiler, op, src, srcw));
1248
1249         FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
1250
1251         local_size = compiler->local_size;
1252         if (local_size <= SIMM_16BIT_MAX)
1253                 base = SLJIT_LOCALS_REG_mapped;
1254         else {
1255                 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1256                 FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1257                 base = TMP_REG1_mapped;
1258                 local_size = 0;
1259         }
1260
1261         /* Restore the return address. */
1262         FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1263         FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));
1264
1265         /* Restore the S registers. */
1266         saveds = compiler->saveds;
1267         tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1268         for (i = SLJIT_S0; i >= tmp; i--) {
1269                 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1270         }
1271
1272         /* Restore the R registers that need to be reserved. */
1273         for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1274                 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1275         }
1276
1277         if (compiler->local_size <= SIMM_16BIT_MAX)
1278                 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
1279         else
1280                 FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
1281
1282         return JR(RA);
1283 }
1284
1285 /* reg_ar is an absoulute register! */
1286
1287 /* Can perform an operation using at most 1 instruction. */
1288 static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
1289 {
1290         SLJIT_ASSERT(arg & SLJIT_MEM);
1291
1292         if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
1293                         && !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1294                 /* Works for both absoulte and relative addresses. */
1295                 if (SLJIT_UNLIKELY(flags & ARG_TEST))
1296                         return 1;
1297
1298                 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
1299
1300                 if (flags & LOAD_DATA)
1301                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1302                 else
1303                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1304
1305                 return -1;
1306         }
1307
1308         return 0;
1309 }
1310
1311 /* See getput_arg below.
1312    Note: can_cache is called only for binary operators. Those
1313    operators always uses word arguments without write back. */
1314 static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
1315 {
1316         SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
1317
1318         /* Simple operation except for updates. */
1319         if (arg & OFFS_REG_MASK) {
1320                 argw &= 0x3;
1321                 next_argw &= 0x3;
1322                 if (argw && argw == next_argw
1323                                 && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
1324                         return 1;
1325                 return 0;
1326         }
1327
1328         if (arg == next_arg) {
1329                 if (((next_argw - argw) <= SIMM_16BIT_MAX
1330                                 && (next_argw - argw) >= SIMM_16BIT_MIN))
1331                         return 1;
1332
1333                 return 0;
1334         }
1335
1336         return 0;
1337 }
1338
1339 /* Emit the necessary instructions. See can_cache above. */
1340 static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
1341 {
1342         sljit_s32 tmp_ar, base;
1343
1344         SLJIT_ASSERT(arg & SLJIT_MEM);
1345         if (!(next_arg & SLJIT_MEM)) {
1346                 next_arg = 0;
1347                 next_argw = 0;
1348         }
1349
1350         if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
1351                 tmp_ar = reg_ar;
1352         else
1353                 tmp_ar = TMP_REG1_mapped;
1354
1355         base = arg & REG_MASK;
1356
1357         if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
1358                 argw &= 0x3;
1359
1360                 if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
1361                         SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
1362                         FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1363                         reg_ar = TMP_REG1_mapped;
1364                 }
1365
1366                 /* Using the cache. */
1367                 if (argw == compiler->cache_argw) {
1368                         if (!(flags & WRITE_BACK)) {
1369                                 if (arg == compiler->cache_arg) {
1370                                         if (flags & LOAD_DATA)
1371                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1372                                         else
1373                                                 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1374                                 }
1375
1376                                 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1377                                         if (arg == next_arg && argw == (next_argw & 0x3)) {
1378                                                 compiler->cache_arg = arg;
1379                                                 compiler->cache_argw = argw;
1380                                                 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
1381                                                 if (flags & LOAD_DATA)
1382                                                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1383                                                 else
1384                                                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1385                                         }
1386
1387                                         FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
1388                                         if (flags & LOAD_DATA)
1389                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1390                                         else
1391                                                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1392                                 }
1393                         } else {
1394                                 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1395                                         FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1396                                         if (flags & LOAD_DATA)
1397                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1398                                         else
1399                                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1400                                 }
1401                         }
1402                 }
1403
1404                 if (SLJIT_UNLIKELY(argw)) {
1405                         compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
1406                         compiler->cache_argw = argw;
1407                         FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
1408                 }
1409
1410                 if (!(flags & WRITE_BACK)) {
1411                         if (arg == next_arg && argw == (next_argw & 0x3)) {
1412                                 compiler->cache_arg = arg;
1413                                 compiler->cache_argw = argw;
1414                                 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1415                                 tmp_ar = TMP_REG3_mapped;
1416                         } else
1417                                 FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1418
1419                         if (flags & LOAD_DATA)
1420                                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1421                         else
1422                                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1423                 }
1424
1425                 FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1426
1427                 if (flags & LOAD_DATA)
1428                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1429                 else
1430                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1431         }
1432
1433         if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
1434                 /* Update only applies if a base register exists. */
1435                 if (reg_ar == reg_map[base]) {
1436                         SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
1437                         if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1438                                 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
1439                                 if (flags & LOAD_DATA)
1440                                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1441                                 else
1442                                         FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1443
1444                                 if (argw)
1445                                         return ADDLI(reg_map[base], reg_map[base], argw);
1446
1447                                 return SLJIT_SUCCESS;
1448                         }
1449
1450                         FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1451                         reg_ar = TMP_REG1_mapped;
1452                 }
1453
1454                 if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1455                         if (argw)
1456                                 FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
1457                 } else {
1458                         if (compiler->cache_arg == SLJIT_MEM
1459                                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1460                                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1461                                 if (argw != compiler->cache_argw) {
1462                                         FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1463                                         compiler->cache_argw = argw;
1464                                 }
1465
1466                                 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1467                         } else {
1468                                 compiler->cache_arg = SLJIT_MEM;
1469                                 compiler->cache_argw = argw;
1470                                 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1471                                 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1472                         }
1473                 }
1474
1475                 if (flags & LOAD_DATA)
1476                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1477                 else
1478                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1479         }
1480
1481         if (compiler->cache_arg == arg
1482                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1483                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1484                 if (argw != compiler->cache_argw) {
1485                         FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1486                         compiler->cache_argw = argw;
1487                 }
1488
1489                 if (flags & LOAD_DATA)
1490                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1491                 else
1492                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1493         }
1494
1495         if (compiler->cache_arg == SLJIT_MEM
1496                         && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1497                         && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1498                 if (argw != compiler->cache_argw)
1499                         FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1500         } else {
1501                 compiler->cache_arg = SLJIT_MEM;
1502                 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1503         }
1504
1505         compiler->cache_argw = argw;
1506
1507         if (!base) {
1508                 if (flags & LOAD_DATA)
1509                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1510                 else
1511                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1512         }
1513
1514         if (arg == next_arg
1515                         && next_argw - argw <= SIMM_16BIT_MAX
1516                         && next_argw - argw >= SIMM_16BIT_MIN) {
1517                 compiler->cache_arg = arg;
1518                 FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
1519                 if (flags & LOAD_DATA)
1520                         return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1521                 else
1522                         return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1523         }
1524
1525         FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
1526
1527         if (flags & LOAD_DATA)
1528                 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1529         else
1530                 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1531 }
1532
1533 static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
1534 {
1535         if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
1536                 return compiler->error;
1537
1538         compiler->cache_arg = 0;
1539         compiler->cache_argw = 0;
1540         return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
1541 }
1542
1543 static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
1544 {
1545         if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
1546                 return compiler->error;
1547         return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
1548 }
1549
1550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
1551 {
1552         CHECK_ERROR();
1553         CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
1554         ADJUST_LOCAL_OFFSET(dst, dstw);
1555
1556         /* For UNUSED dst. Uncommon, but possible. */
1557         if (dst == SLJIT_UNUSED)
1558                 return SLJIT_SUCCESS;
1559
1560         if (FAST_IS_REG(dst))
1561                 return ADD(reg_map[dst], RA, ZERO);
1562
1563         /* Memory. */
1564         return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
1565 }
1566
1567 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
1568 {
1569         CHECK_ERROR();
1570         CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
1571         ADJUST_LOCAL_OFFSET(src, srcw);
1572
1573         if (FAST_IS_REG(src))
1574                 FAIL_IF(ADD(RA, reg_map[src], ZERO));
1575
1576         else if (src & SLJIT_MEM)
1577                 FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
1578
1579         else if (src & SLJIT_IMM)
1580                 FAIL_IF(load_immediate(compiler, RA, srcw));
1581
1582         return JR(RA);
1583 }
1584
1585 static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
1586 {
1587         sljit_s32 overflow_ra = 0;
1588
1589         switch (GET_OPCODE(op)) {
1590         case SLJIT_MOV:
1591         case SLJIT_MOV_P:
1592                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1593                 if (dst != src2)
1594                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1595                 return SLJIT_SUCCESS;
1596
1597         case SLJIT_MOV_U32:
1598         case SLJIT_MOV_S32:
1599                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1600                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1601                         if (op == SLJIT_MOV_S32)
1602                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
1603
1604                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
1605                 } else if (dst != src2) {
1606                         SLJIT_ASSERT(src2 == 0);
1607                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1608                 }
1609
1610                 return SLJIT_SUCCESS;
1611
1612         case SLJIT_MOV_U8:
1613         case SLJIT_MOV_S8:
1614                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1615                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1616                         if (op == SLJIT_MOV_S8)
1617                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
1618
1619                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
1620                 } else if (dst != src2) {
1621                         SLJIT_ASSERT(src2 == 0);
1622                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1623                 }
1624
1625                 return SLJIT_SUCCESS;
1626
1627         case SLJIT_MOV_U16:
1628         case SLJIT_MOV_S16:
1629                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1630                 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1631                         if (op == SLJIT_MOV_S16)
1632                                 return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
1633
1634                         return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
1635                 } else if (dst != src2) {
1636                         SLJIT_ASSERT(src2 == 0);
1637                         return ADD(reg_map[dst], reg_map[src2], ZERO);
1638                 }
1639
1640                 return SLJIT_SUCCESS;
1641
1642         case SLJIT_NOT:
1643                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1644                 if (op & SLJIT_SET_E)
1645                         FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
1646                 if (CHECK_FLAGS(SLJIT_SET_E))
1647                         FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
1648
1649                 return SLJIT_SUCCESS;
1650
1651         case SLJIT_CLZ:
1652                 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1653                 if (op & SLJIT_SET_E)
1654                         FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
1655                 if (CHECK_FLAGS(SLJIT_SET_E))
1656                         FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
1657
1658                 return SLJIT_SUCCESS;
1659
1660         case SLJIT_ADD:
1661                 if (flags & SRC2_IMM) {
1662                         if (op & SLJIT_SET_O) {
1663                                 FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
1664                                 if (src2 < 0)
1665                                         FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1666                         }
1667
1668                         if (op & SLJIT_SET_E)
1669                                 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
1670
1671                         if (op & SLJIT_SET_C) {
1672                                 if (src2 >= 0)
1673                                         FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
1674                                 else {
1675                                         FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
1676                                         FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
1677                                 }
1678                         }
1679
1680                         /* dst may be the same as src1 or src2. */
1681                         if (CHECK_FLAGS(SLJIT_SET_E))
1682                                 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1683
1684                         if (op & SLJIT_SET_O) {
1685                                 FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
1686
1687                                 if (src2 < 0)
1688                                         FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
1689                         }
1690                 } else {
1691                         if (op & SLJIT_SET_O) {
1692                                 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1693                                 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1694
1695                                 if (src1 != dst)
1696                                         overflow_ra = reg_map[src1];
1697                                 else if (src2 != dst)
1698                                         overflow_ra = reg_map[src2];
1699                                 else {
1700                                         /* Rare ocasion. */
1701                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1702                                         overflow_ra = TMP_EREG2;
1703                                 }
1704                         }
1705
1706                         if (op & SLJIT_SET_E)
1707                                 FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
1708
1709                         if (op & SLJIT_SET_C)
1710                                 FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
1711
1712                         /* dst may be the same as src1 or src2. */
1713                         if (CHECK_FLAGS(SLJIT_SET_E))
1714                                 FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
1715
1716                         if (op & SLJIT_SET_O) {
1717                                 FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
1718                                 FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1719                         }
1720                 }
1721
1722                 /* a + b >= a | b (otherwise, the carry should be set to 1). */
1723                 if (op & SLJIT_SET_C)
1724                         FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
1725
1726                 if (op & SLJIT_SET_O)
1727                         return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1728
1729                 return SLJIT_SUCCESS;
1730
1731         case SLJIT_ADDC:
1732                 if (flags & SRC2_IMM) {
1733                         if (op & SLJIT_SET_C) {
1734                                 if (src2 >= 0)
1735                                         FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
1736                                 else {
1737                                         FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
1738                                         FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
1739                                 }
1740                         }
1741
1742                         FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1743
1744                 } else {
1745                         if (op & SLJIT_SET_C)
1746                                 FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1747
1748                         /* dst may be the same as src1 or src2. */
1749                         FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
1750                 }
1751
1752                 if (op & SLJIT_SET_C)
1753                         FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
1754
1755                 FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
1756
1757                 if (!(op & SLJIT_SET_C))
1758                         return SLJIT_SUCCESS;
1759
1760                 /* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
1761                 FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
1762                 FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
1763                 /* Set carry flag. */
1764                 return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
1765
1766         case SLJIT_SUB:
1767                 if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
1768                         FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1769                         src2 = TMP_REG2;
1770                         flags &= ~SRC2_IMM;
1771                 }
1772
1773                 if (flags & SRC2_IMM) {
1774                         if (op & SLJIT_SET_O) {
1775                                 FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
1776
1777                                 if (src2 < 0)
1778                                         FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1779
1780                                 if (src1 != dst)
1781                                         overflow_ra = reg_map[src1];
1782                                 else {
1783                                         /* Rare ocasion. */
1784                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1785                                         overflow_ra = TMP_EREG2;
1786                                 }
1787                         }
1788
1789                         if (op & SLJIT_SET_E)
1790                                 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
1791
1792                         if (op & SLJIT_SET_C) {
1793                                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
1794                                 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
1795                         }
1796
1797                         /* dst may be the same as src1 or src2. */
1798                         if (CHECK_FLAGS(SLJIT_SET_E))
1799                                 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1800
1801                 } else {
1802
1803                         if (op & SLJIT_SET_O) {
1804                                 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1805                                 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1806
1807                                 if (src1 != dst)
1808                                         overflow_ra = reg_map[src1];
1809                                 else {
1810                                         /* Rare ocasion. */
1811                                         FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1812                                         overflow_ra = TMP_EREG2;
1813                                 }
1814                         }
1815
1816                         if (op & SLJIT_SET_E)
1817                                 FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
1818
1819                         if (op & (SLJIT_SET_U | SLJIT_SET_C))
1820                                 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
1821
1822                         if (op & SLJIT_SET_U)
1823                                 FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
1824
1825                         if (op & SLJIT_SET_S) {
1826                                 FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
1827                                 FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
1828                         }
1829
1830                         /* dst may be the same as src1 or src2. */
1831                         if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
1832                                 FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1833                 }
1834
1835                 if (op & SLJIT_SET_O) {
1836                         FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
1837                         FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1838                         return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1839                 }
1840
1841                 return SLJIT_SUCCESS;
1842
1843         case SLJIT_SUBC:
1844                 if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
1845                         FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1846                         src2 = TMP_REG2;
1847                         flags &= ~SRC2_IMM;
1848                 }
1849
1850                 if (flags & SRC2_IMM) {
1851                         if (op & SLJIT_SET_C) {
1852                                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
1853                                 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
1854                         }
1855
1856                         /* dst may be the same as src1 or src2. */
1857                         FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1858
1859                 } else {
1860                         if (op & SLJIT_SET_C)
1861                                 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
1862                                 /* dst may be the same as src1 or src2. */
1863                         FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1864                 }
1865
1866                 if (op & SLJIT_SET_C)
1867                         FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
1868
1869                 FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
1870
1871                 if (op & SLJIT_SET_C)
1872                         FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
1873
1874                 return SLJIT_SUCCESS;
1875
1876         case SLJIT_MUL:
1877                 if (flags & SRC2_IMM) {
1878                         FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
1879                         src2 = TMP_REG2;
1880                         flags &= ~SRC2_IMM;
1881                 }
1882
1883                 FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));
1884
1885                 return SLJIT_SUCCESS;
1886
1887 #define EMIT_LOGICAL(op_imm, op_norm) \
1888         if (flags & SRC2_IMM) { \
1889                 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
1890                 if (op & SLJIT_SET_E) \
1891                         FAIL_IF(push_3_buffer( \
1892                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1893                                 ADDR_TMP_mapped, __LINE__)); \
1894                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1895                         FAIL_IF(push_3_buffer( \
1896                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1897                                 ADDR_TMP_mapped, __LINE__)); \
1898         } else { \
1899                 if (op & SLJIT_SET_E) \
1900                         FAIL_IF(push_3_buffer( \
1901                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1902                                 reg_map[src2], __LINE__)); \
1903                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1904                         FAIL_IF(push_3_buffer( \
1905                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1906                                 reg_map[src2], __LINE__)); \
1907         }
1908
1909         case SLJIT_AND:
1910                 EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
1911                 return SLJIT_SUCCESS;
1912
1913         case SLJIT_OR:
1914                 EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
1915                 return SLJIT_SUCCESS;
1916
1917         case SLJIT_XOR:
1918                 EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
1919                 return SLJIT_SUCCESS;
1920
1921 #define EMIT_SHIFT(op_imm, op_norm) \
1922         if (flags & SRC2_IMM) { \
1923                 if (op & SLJIT_SET_E) \
1924                         FAIL_IF(push_3_buffer( \
1925                                 compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
1926                                 src2 & 0x3F, __LINE__)); \
1927                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1928                         FAIL_IF(push_3_buffer( \
1929                                 compiler, op_imm, reg_map[dst], reg_map[src1], \
1930                                 src2 & 0x3F, __LINE__)); \
1931         } else { \
1932                 if (op & SLJIT_SET_E) \
1933                         FAIL_IF(push_3_buffer( \
1934                                 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1935                                 reg_map[src2], __LINE__)); \
1936                 if (CHECK_FLAGS(SLJIT_SET_E)) \
1937                         FAIL_IF(push_3_buffer( \
1938                                 compiler, op_norm, reg_map[dst], reg_map[src1], \
1939                                 reg_map[src2], __LINE__)); \
1940         }
1941
1942         case SLJIT_SHL:
1943                 EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
1944                 return SLJIT_SUCCESS;
1945
1946         case SLJIT_LSHR:
1947                 EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
1948                 return SLJIT_SUCCESS;
1949
1950         case SLJIT_ASHR:
1951                 EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
1952                 return SLJIT_SUCCESS;
1953         }
1954
1955         SLJIT_ASSERT_STOP();
1956         return SLJIT_SUCCESS;
1957 }
1958
1959 static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
1960 {
1961         /* arg1 goes to TMP_REG1 or src reg.
1962            arg2 goes to TMP_REG2, imm or src reg.
1963            TMP_REG3 can be used for caching.
1964            result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1965         sljit_s32 dst_r = TMP_REG2;
1966         sljit_s32 src1_r;
1967         sljit_sw src2_r = 0;
1968         sljit_s32 sugg_src2_r = TMP_REG2;
1969
1970         if (!(flags & ALT_KEEP_CACHE)) {
1971                 compiler->cache_arg = 0;
1972                 compiler->cache_argw = 0;
1973         }
1974
1975         if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
1976                 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
1977                         return SLJIT_SUCCESS;
1978                 if (GET_FLAGS(op))
1979                         flags |= UNUSED_DEST;
1980         } else if (FAST_IS_REG(dst)) {
1981                 dst_r = dst;
1982                 flags |= REG_DEST;
1983                 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
1984                         sugg_src2_r = dst_r;
1985         } else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
1986                 flags |= SLOW_DEST;
1987
1988         if (flags & IMM_OP) {
1989                 if ((src2 & SLJIT_IMM) && src2w) {
1990                         if ((!(flags & LOGICAL_OP)
1991                                         && (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
1992                                         || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
1993                                 flags |= SRC2_IMM;
1994                                 src2_r = src2w;
1995                         }
1996                 }
1997
1998                 if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
1999                         if ((!(flags & LOGICAL_OP)
2000                                         && (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
2001                                         || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
2002                                 flags |= SRC2_IMM;
2003                                 src2_r = src1w;
2004
2005                                 /* And swap arguments. */
2006                                 src1 = src2;
2007                                 src1w = src2w;
2008                                 src2 = SLJIT_IMM;
2009                                 /* src2w = src2_r unneeded. */
2010                         }
2011                 }
2012         }
2013
2014         /* Source 1. */
2015         if (FAST_IS_REG(src1)) {
2016                 src1_r = src1;
2017                 flags |= REG1_SOURCE;
2018         } else if (src1 & SLJIT_IMM) {
2019                 if (src1w) {
2020                         FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
2021                         src1_r = TMP_REG1;
2022                 } else
2023                         src1_r = 0;
2024         } else {
2025                 if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
2026                         FAIL_IF(compiler->error);
2027                 else
2028                         flags |= SLOW_SRC1;
2029                 src1_r = TMP_REG1;
2030         }
2031
2032         /* Source 2. */
2033         if (FAST_IS_REG(src2)) {
2034                 src2_r = src2;
2035                 flags |= REG2_SOURCE;
2036                 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
2037                         dst_r = src2_r;
2038         } else if (src2 & SLJIT_IMM) {
2039                 if (!(flags & SRC2_IMM)) {
2040                         if (src2w) {
2041                                 FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
2042                                 src2_r = sugg_src2_r;
2043                         } else {
2044                                 src2_r = 0;
2045                                 if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM))
2046                                         dst_r = 0;
2047                         }
2048                 }
2049         } else {
2050                 if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
2051                         FAIL_IF(compiler->error);
2052                 else
2053                         flags |= SLOW_SRC2;
2054                 src2_r = sugg_src2_r;
2055         }
2056
2057         if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
2058                 SLJIT_ASSERT(src2_r == TMP_REG2);
2059                 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
2060                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
2061                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2062                 } else {
2063                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
2064                         FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
2065                 }
2066         } else if (flags & SLOW_SRC1)
2067                 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2068         else if (flags & SLOW_SRC2)
2069                 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
2070
2071         FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
2072
2073         if (dst & SLJIT_MEM) {
2074                 if (!(flags & SLOW_DEST)) {
2075                         getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
2076                         return compiler->error;
2077                 }
2078
2079                 return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
2080         }
2081
2082         return SLJIT_SUCCESS;
2083 }
2084
2085 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type)
2086 {
2087         sljit_s32 sugg_dst_ar, dst_ar;
2088         sljit_s32 flags = GET_ALL_FLAGS(op);
2089         sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
2090
2091         CHECK_ERROR();
2092         CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
2093         ADJUST_LOCAL_OFFSET(dst, dstw);
2094
2095         if (dst == SLJIT_UNUSED)
2096                 return SLJIT_SUCCESS;
2097
2098         op = GET_OPCODE(op);
2099         if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32)
2100                 mem_type = INT_DATA | SIGNED_DATA;
2101         sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
2102
2103         compiler->cache_arg = 0;
2104         compiler->cache_argw = 0;
2105         if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
2106                 ADJUST_LOCAL_OFFSET(src, srcw);
2107                 FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
2108                 src = TMP_REG1;
2109                 srcw = 0;
2110         }
2111
2112         switch (type & 0xff) {
2113         case SLJIT_EQUAL:
2114         case SLJIT_NOT_EQUAL:
2115                 FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
2116                 dst_ar = sugg_dst_ar;
2117                 break;
2118         case SLJIT_LESS:
2119         case SLJIT_GREATER_EQUAL:
2120                 dst_ar = ULESS_FLAG;
2121                 break;
2122         case SLJIT_GREATER:
2123         case SLJIT_LESS_EQUAL:
2124                 dst_ar = UGREATER_FLAG;
2125                 break;
2126         case SLJIT_SIG_LESS:
2127         case SLJIT_SIG_GREATER_EQUAL:
2128                 dst_ar = LESS_FLAG;
2129                 break;
2130         case SLJIT_SIG_GREATER:
2131         case SLJIT_SIG_LESS_EQUAL:
2132                 dst_ar = GREATER_FLAG;
2133                 break;
2134         case SLJIT_OVERFLOW:
2135         case SLJIT_NOT_OVERFLOW:
2136                 dst_ar = OVERFLOW_FLAG;
2137                 break;
2138         case SLJIT_MUL_OVERFLOW:
2139         case SLJIT_MUL_NOT_OVERFLOW:
2140                 FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
2141                 dst_ar = sugg_dst_ar;
2142                 type ^= 0x1; /* Flip type bit for the XORI below. */
2143                 break;
2144
2145         default:
2146                 SLJIT_ASSERT_STOP();
2147                 dst_ar = sugg_dst_ar;
2148                 break;
2149         }
2150
2151         if (type & 0x1) {
2152                 FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
2153                 dst_ar = sugg_dst_ar;
2154         }
2155
2156         if (op >= SLJIT_ADD) {
2157                 if (TMP_REG2_mapped != dst_ar)
2158                         FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
2159                 return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
2160         }
2161
2162         if (dst & SLJIT_MEM)
2163                 return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
2164
2165         if (sugg_dst_ar != dst_ar)
2166                 return ADD(sugg_dst_ar, dst_ar, ZERO);
2167
2168         return SLJIT_SUCCESS;
2169 }
2170
2171 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) {
2172         CHECK_ERROR();
2173         CHECK(check_sljit_emit_op0(compiler, op));
2174
2175         op = GET_OPCODE(op);
2176         switch (op) {
2177         case SLJIT_NOP:
2178                 return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
2179
2180         case SLJIT_BREAKPOINT:
2181                 return PI(BPT);
2182
2183         case SLJIT_LMUL_UW:
2184         case SLJIT_LMUL_SW:
2185         case SLJIT_DIVMOD_UW:
2186         case SLJIT_DIVMOD_SW:
2187         case SLJIT_DIV_UW:
2188         case SLJIT_DIV_SW:
2189                 SLJIT_ASSERT_STOP();
2190         }
2191
2192         return SLJIT_SUCCESS;
2193 }
2194
2195 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
2196 {
2197         CHECK_ERROR();
2198         CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
2199         ADJUST_LOCAL_OFFSET(dst, dstw);
2200         ADJUST_LOCAL_OFFSET(src, srcw);
2201
2202         switch (GET_OPCODE(op)) {
2203         case SLJIT_MOV:
2204         case SLJIT_MOV_P:
2205                 return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2206
2207         case SLJIT_MOV_U32:
2208                 return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2209
2210         case SLJIT_MOV_S32:
2211                 return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2212
2213         case SLJIT_MOV_U8:
2214                 return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
2215
2216         case SLJIT_MOV_S8:
2217                 return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
2218
2219         case SLJIT_MOV_U16:
2220                 return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
2221
2222         case SLJIT_MOV_S16:
2223                 return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
2224
2225         case SLJIT_MOVU:
2226         case SLJIT_MOVU_P:
2227                 return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2228
2229         case SLJIT_MOVU_U32:
2230                 return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2231
2232         case SLJIT_MOVU_S32:
2233                 return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2234
2235         case SLJIT_MOVU_U8:
2236                 return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
2237
2238         case SLJIT_MOVU_S8:
2239                 return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
2240
2241         case SLJIT_MOVU_U16:
2242                 return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
2243
2244         case SLJIT_MOVU_S16:
2245                 return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
2246
2247         case SLJIT_NOT:
2248                 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
2249
2250         case SLJIT_NEG:
2251                 return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
2252
2253         case SLJIT_CLZ:
2254                 return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2255         }
2256
2257         return SLJIT_SUCCESS;
2258 }
2259
2260 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
2261 {
2262         CHECK_ERROR();
2263         CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
2264         ADJUST_LOCAL_OFFSET(dst, dstw);
2265         ADJUST_LOCAL_OFFSET(src1, src1w);
2266         ADJUST_LOCAL_OFFSET(src2, src2w);
2267
2268         switch (GET_OPCODE(op)) {
2269         case SLJIT_ADD:
2270         case SLJIT_ADDC:
2271                 return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2272
2273         case SLJIT_SUB:
2274         case SLJIT_SUBC:
2275                 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2276
2277         case SLJIT_MUL:
2278                 return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
2279
2280         case SLJIT_AND:
2281         case SLJIT_OR:
2282         case SLJIT_XOR:
2283                 return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2284
2285         case SLJIT_SHL:
2286         case SLJIT_LSHR:
2287         case SLJIT_ASHR:
2288                 if (src2 & SLJIT_IMM)
2289                         src2w &= 0x3f;
2290                 if (op & SLJIT_I32_OP)
2291                         src2w &= 0x1f;
2292
2293                 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2294         }
2295
2296         return SLJIT_SUCCESS;
2297 }
2298
2299 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
2300 {
2301         struct sljit_label *label;
2302
2303         flush_buffer(compiler);
2304
2305         CHECK_ERROR_PTR();
2306         CHECK_PTR(check_sljit_emit_label(compiler));
2307
2308         if (compiler->last_label && compiler->last_label->size == compiler->size)
2309                 return compiler->last_label;
2310
2311         label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
2312         PTR_FAIL_IF(!label);
2313         set_label(label, compiler);
2314         return label;
2315 }
2316
2317 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
2318 {
2319         sljit_s32 src_r = TMP_REG2;
2320         struct sljit_jump *jump = NULL;
2321
2322         flush_buffer(compiler);
2323
2324         CHECK_ERROR();
2325         CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
2326         ADJUST_LOCAL_OFFSET(src, srcw);
2327
2328         if (FAST_IS_REG(src)) {
2329                 if (reg_map[src] != 0)
2330                         src_r = src;
2331                 else
2332                         FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
2333         }
2334
2335         if (type >= SLJIT_CALL0) {
2336                 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2337                 if (src & (SLJIT_IMM | SLJIT_MEM)) {
2338                         if (src & SLJIT_IMM)
2339                                 FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
2340                         else {
2341                                 SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
2342                                 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2343                         }
2344
2345                         FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2346
2347                         FAIL_IF(ADDI_SOLO(54, 54, -16));
2348
2349                         FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
2350
2351                         return ADDI_SOLO(54, 54, 16);
2352                 }
2353
2354                 /* Register input. */
2355                 if (type >= SLJIT_CALL1)
2356                         FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2357
2358                 FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
2359
2360                 FAIL_IF(ADDI_SOLO(54, 54, -16));
2361
2362                 FAIL_IF(JALR_SOLO(reg_map[src_r]));
2363
2364                 return ADDI_SOLO(54, 54, 16);
2365         }
2366
2367         if (src & SLJIT_IMM) {
2368                 jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2369                 FAIL_IF(!jump);
2370                 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
2371                 jump->u.target = srcw;
2372                 FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2373
2374                 if (type >= SLJIT_FAST_CALL) {
2375                         FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
2376                         jump->addr = compiler->size;
2377                         FAIL_IF(JR_SOLO(reg_map[src_r]));
2378                 } else {
2379                         jump->addr = compiler->size;
2380                         FAIL_IF(JR_SOLO(reg_map[src_r]));
2381                 }
2382
2383                 return SLJIT_SUCCESS;
2384
2385         } else if (src & SLJIT_MEM) {
2386                 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2387                 flush_buffer(compiler);
2388         }
2389
2390         FAIL_IF(JR_SOLO(reg_map[src_r]));
2391
2392         if (jump)
2393                 jump->addr = compiler->size;
2394
2395         return SLJIT_SUCCESS;
2396 }
2397
2398 #define BR_Z(src) \
2399         inst = BEQZ_X1 | SRCA_X1(src); \
2400         flags = IS_COND;
2401
2402 #define BR_NZ(src) \
2403         inst = BNEZ_X1 | SRCA_X1(src); \
2404         flags = IS_COND;
2405
2406 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
2407 {
2408         struct sljit_jump *jump;
2409         sljit_ins inst;
2410         sljit_s32 flags = 0;
2411
2412         flush_buffer(compiler);
2413
2414         CHECK_ERROR_PTR();
2415         CHECK_PTR(check_sljit_emit_jump(compiler, type));
2416
2417         jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2418         PTR_FAIL_IF(!jump);
2419         set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2420         type &= 0xff;
2421
2422         switch (type) {
2423         case SLJIT_EQUAL:
2424                 BR_NZ(EQUAL_FLAG);
2425                 break;
2426         case SLJIT_NOT_EQUAL:
2427                 BR_Z(EQUAL_FLAG);
2428                 break;
2429         case SLJIT_LESS:
2430                 BR_Z(ULESS_FLAG);
2431                 break;
2432         case SLJIT_GREATER_EQUAL:
2433                 BR_NZ(ULESS_FLAG);
2434                 break;
2435         case SLJIT_GREATER:
2436                 BR_Z(UGREATER_FLAG);
2437                 break;
2438         case SLJIT_LESS_EQUAL:
2439                 BR_NZ(UGREATER_FLAG);
2440                 break;
2441         case SLJIT_SIG_LESS:
2442                 BR_Z(LESS_FLAG);
2443                 break;
2444         case SLJIT_SIG_GREATER_EQUAL:
2445                 BR_NZ(LESS_FLAG);
2446                 break;
2447         case SLJIT_SIG_GREATER:
2448                 BR_Z(GREATER_FLAG);
2449                 break;
2450         case SLJIT_SIG_LESS_EQUAL:
2451                 BR_NZ(GREATER_FLAG);
2452                 break;
2453         case SLJIT_OVERFLOW:
2454         case SLJIT_MUL_OVERFLOW:
2455                 BR_Z(OVERFLOW_FLAG);
2456                 break;
2457         case SLJIT_NOT_OVERFLOW:
2458         case SLJIT_MUL_NOT_OVERFLOW:
2459                 BR_NZ(OVERFLOW_FLAG);
2460                 break;
2461         default:
2462                 /* Not conditional branch. */
2463                 inst = 0;
2464                 break;
2465         }
2466
2467         jump->flags |= flags;
2468
2469         if (inst) {
2470                 inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
2471                 PTR_FAIL_IF(PI(inst));
2472         }
2473
2474         PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2475         if (type <= SLJIT_JUMP) {
2476                 jump->addr = compiler->size;
2477                 PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
2478         } else {
2479                 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2480                 /* Cannot be optimized out if type is >= CALL0. */
2481                 jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
2482                 PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2483                 jump->addr = compiler->size;
2484                 PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
2485         }
2486
2487         return jump;
2488 }
2489
2490 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void)
2491 {
2492         return 0;
2493 }
2494
2495 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
2496 {
2497         SLJIT_ASSERT_STOP();
2498 }
2499
2500 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
2501 {
2502         SLJIT_ASSERT_STOP();
2503 }
2504
2505 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
2506 {
2507         struct sljit_const *const_;
2508         sljit_s32 reg;
2509
2510         flush_buffer(compiler);
2511
2512         CHECK_ERROR_PTR();
2513         CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
2514         ADJUST_LOCAL_OFFSET(dst, dstw);
2515
2516         const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
2517         PTR_FAIL_IF(!const_);
2518         set_const(const_, compiler);
2519
2520         reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
2521
2522         PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
2523
2524         if (dst & SLJIT_MEM)
2525                 PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
2526         return const_;
2527 }
2528
2529 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2530 {
2531         sljit_ins *inst = (sljit_ins *)addr;
2532
2533         inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
2534         inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
2535         inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
2536         SLJIT_CACHE_FLUSH(inst, inst + 3);
2537 }
2538
2539 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
2540 {
2541         sljit_ins *inst = (sljit_ins *)addr;
2542
2543         inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
2544         inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
2545         inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
2546         inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
2547         SLJIT_CACHE_FLUSH(inst, inst + 4);
2548 }
2549
2550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
2551 {
2552         CHECK_REG_INDEX(check_sljit_get_register_index(reg));
2553         return reg_map[reg];
2554 }
2555
2556 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
2557         void *instruction, sljit_s32 size)
2558 {
2559         CHECK_ERROR();
2560         CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
2561         return SLJIT_ERR_UNSUPPORTED;
2562 }
2563