X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?p=moebius2.git;a=blobdiff_plain;f=energy.c;h=930a9d58a1de886473bc59e403dcc03d77c27486;hp=bba938d45ae7fc2e4e15cc7e4cbee7f0d7998cdf;hb=135adb1269cc41c10ebaf03e72d7258fd9e88a7d;hpb=abb4c2044743cd5cb2da0675b263388461a64de9 diff --git a/energy.c b/energy.c index bba938d..930a9d5 100644 --- a/energy.c +++ b/energy.c @@ -5,36 +5,129 @@ #include "common.h" #include "minimise.h" #include "mgraph.h" +#include "parallel.h" double vertex_areas[N], vertex_mean_edge_lengths[N], edge_lengths[N][V6]; static double best_energy= DBL_MAX; static void addcost(double *energy, double tweight, double tcost, int pr); -#define COST(weight, compute) addcost(&energy, (weight), (compute), printing) + +/*---------- main energy computation, weights, etc. ----------*/ + +typedef double CostComputation(const Vertices vertices, int section); +typedef void PreComputation(const Vertices vertices, int section); + +typedef struct { + double weight; + CostComputation *fn; +} CostContribution; + +#define NPRECOMPS ((sizeof(precomps)/sizeof(precomps[0]))) +#define NCOSTS ((sizeof(costs)/sizeof(costs[0]))) +#define COST(weight, compute) { (weight),(compute) }, + +static PreComputation *const precomps[]= { + compute_edge_lengths, + compute_vertex_areas +}; + +static const CostContribution costs[]= { + +#if XBITS==3 +#define STOP_EPSILON 1e-6 + COST( 3e3, line_bending_cost) + COST( 3e3, edge_length_variation_cost) + COST( 0.4e3, rim_proximity_cost) + COST( 1e6, edge_angle_cost) + #define EDGE_ANGLE_COST_CIRCCIRCRAT (0.5/1.7) +// COST( 1e1, small_triangles_cost) + COST( 1e12, noncircular_rim_cost) +#endif + +#if XBITS==4 +#define STOP_EPSILON 1e-6 + COST( 3e5, line_bending_cost) + COST( 10e2, edge_length_variation_cost) + COST( 9.0e1, rim_proximity_cost) // 5e1 is too much + // 2.5e1 is too little + // 0.2e1 grows compared to previous ? + // 0.6e0 shrinks compared to previous ? + + COST( 1e12, edge_angle_cost) + #define EDGE_ANGLE_COST_CIRCCIRCRAT (0.5/1.3) + COST( 1e18, noncircular_rim_cost) +#endif + +#if XBITS==5 +#define STOP_EPSILON 1e-6 + COST( 3e5, line_bending_cost) + COST( 10e2, edge_length_variation_cost) + COST( 9.0e1, rim_proximity_cost) // 5e1 is too much + // 2.5e1 is too little + // 0.2e1 grows compared to previous ? + // 0.6e0 shrinks compared to previous ? + + COST( 1e12, edge_angle_cost) + #define EDGE_ANGLE_COST_CIRCCIRCRAT (0.5/1.3) + COST( 1e18, noncircular_rim_cost) +#endif + +}; + +const double edge_angle_cost_circcircrat= EDGE_ANGLE_COST_CIRCCIRCRAT; void energy_init(void) { + stop_epsilon= STOP_EPSILON; +} + +/*---------- energy computation machinery ----------*/ + +void compute_energy_separately(const struct Vertices *vs, + int section, void *energies_v, void *totals_v) { + double *energies= energies_v; + int ci; + + for (ci=0; cia, section); + inparallel_barrier(); + } + for (ci=0; cia, section); } -/*---------- main energy computation and subroutines ----------*/ +void compute_energy_combine(const struct Vertices *vertices, + int section, void *energies_v, void *totals_v) { + int ci; + double *energies= energies_v; + double *totals= totals_v; + + for (ci=0; cia); - compute_vertex_areas(vs->a); - energy= 0; + double totals[NCOSTS], energy; + int ci, printing; printing= printing_check(pr_cost,0); - if (printing) printf("cost > energy |"); + if (printing) printf("%15lld c>e |", evaluations); - COST(3e2, line_bending_cost(vs->a)); - COST(1e3, edge_length_variation_cost(vs->a)); - COST(0.2e3, rim_proximity_cost(vs->a)); -// COST(1e2, graph_layout_cost(vs->a)); - COST(1e8, noncircular_rim_cost(vs->a)); + for (ci=0; cia,sizeof(vs->a),1,best_f); if (r!=1) diee("fwrite"); if (fclose(best_f)) diee("fclose new best"); - if (rename(output_file_tmp,output_file)) diee("rename install new best"); + if (rename(best_file_tmp,best_file)) diee("rename install new best"); best_energy= energy; } @@ -56,29 +155,30 @@ double compute_energy(const struct Vertices *vs) { flushoutput(); } + evaluations++; return energy; } static void addcost(double *energy, double tweight, double tcost, int pr) { double tenergy= tweight * tcost; - if (pr) printf(" %# e x %# e > %# e* |", tcost, tweight, tenergy); + if (pr) printf(" %# e x %g > %# e* |", tcost, tweight, tenergy); *energy += tenergy; } /*---------- Precomputations ----------*/ -void compute_edge_lengths(const Vertices vertices) { +void compute_edge_lengths(const Vertices vertices, int section) { int v1,e,v2; - FOR_EDGE(v1,e,v2) + FOR_EDGE(v1,e,v2, OUTER) edge_lengths[v1][e]= hypotD(vertices[v1],vertices[v2]); } -void compute_vertex_areas(const Vertices vertices) { +void compute_vertex_areas(const Vertices vertices, int section) { int v0,v1,v2, e1,e2; // int k; - FOR_VERTEX(v0) { + FOR_VERTEX(v0, OUTER) { double total= 0.0, edges_total=0; int count= 0; @@ -140,17 +240,19 @@ void compute_vertex_areas(const Vertices vertices) { * Q,e */ -double line_bending_cost(const Vertices vertices) { +double line_bending_cost(const Vertices vertices, int section) { static const double axb_epsilon= 1e-6; - static const double exponent_r= 3; + static const double exponent_r= 4; int pi,e,qi,ri, k; double a[D3], b[D3], axb[D3]; double total_cost= 0; - FOR_EDGE(qi,e,ri) { + FOR_EDGE(qi,e,ri, OUTER) { pi= EDGE_END2(qi,(e+3)%V6); if (pi<0) continue; +//if (!(qi&XMASK)) fprintf(stderr,"%02x-%02x-%02x (%d)\n",pi,qi,ri,e); + K a[k]= -vertices[pi][k] + vertices[qi][k]; K b[k]= -vertices[qi][k] + vertices[ri][k]; @@ -159,9 +261,6 @@ double line_bending_cost(const Vertices vertices) { double delta= atan2(magnD(axb) + axb_epsilon, dotprod(a,b)); double cost= pow(delta,exponent_r); - if (!e && !(qi & YMASK)) - cost *= 10; - total_cost += cost; } return total_cost; @@ -178,11 +277,11 @@ double line_bending_cost(const Vertices vertices) { * Q,e */ -double edge_length_variation_cost(const Vertices vertices) { +double edge_length_variation_cost(const Vertices vertices, int section) { double diff, cost= 0, exponent_r= 2; int q, e,r, eback; - FOR_EDGE(q,e,r) { + FOR_EDGE(q,e,r, OUTER) { eback= edge_reverse(q,e); diff= edge_lengths[q][e] - edge_lengths[q][eback]; cost += pow(diff,exponent_r); @@ -203,11 +302,11 @@ static void find_nearest_oncircle(double oncircle[D3], const double p[D3]) { oncircle[1] *= mult; } -double rim_proximity_cost(const Vertices vertices) { +double rim_proximity_cost(const Vertices vertices, int section) { double oncircle[3], cost=0; int v; - FOR_VERTEX(v) { + FOR_VERTEX(v, OUTER) { int y= v >> YSHIFT; int nominal_edge_distance= y <= Y/2 ? y : Y-1-y; if (nominal_edge_distance==0) continue; @@ -224,12 +323,12 @@ double rim_proximity_cost(const Vertices vertices) { /*---------- noncircular rim cost ----------*/ -double noncircular_rim_cost(const Vertices vertices) { +double noncircular_rim_cost(const Vertices vertices, int section) { int vy,vx,v; double cost= 0.0; double oncircle[3]; - FOR_RIM_VERTEX(vy,vx,v) { + FOR_RIM_VERTEX(vy,vx,v, OUTER) { find_nearest_oncircle(oncircle, vertices[v]); double d2= hypotD2(vertices[v], oncircle); @@ -237,3 +336,128 @@ double noncircular_rim_cost(const Vertices vertices) { } return cost; } + +/*---------- overly sharp edge cost ----------*/ + + /* + * + * Q `-_ + * / | `-_ P'Q' ------ S' + * / | `-. _,' `. . + * / | S _,' : . + * / | _,-' _,' :r .r + * / | _,-' R' ' `. . + * / , P ' ` . r : . + * / ,-' ` . : + * /,-' ` C' + * /' + * R + * + * + * + * Let delta = angle between two triangles' normals + * + * Giving energy contribution: + * + * 2 + * E = F . delta + * vd, edge PQ vd + */ + +double edge_angle_cost(const Vertices vertices, int section) { + double pq1[D3], rp[D3], ps[D3], rp_2d[D3], ps_2d[D3], rs_2d[D3]; + double a,b,c,s,r; + const double minradius_base= 0.2; + + int pi,e,qi,ri,si, k; +// double our_epsilon=1e-6; + double total_cost= 0; + + FOR_EDGE(pi,e,qi, OUTER) { +// if (!(RIM_VERTEX_P(pi) || RIM_VERTEX_P(qi))) continue; + + si= EDGE_END2(pi,(e+V6-1)%V6); if (si<0) continue; + ri= EDGE_END2(pi,(e +1)%V6); if (ri<0) continue; + + K { + pq1[k]= -vertices[pi][k] + vertices[qi][k]; + rp[k]= -vertices[ri][k] + vertices[pi][k]; + ps[k]= -vertices[pi][k] + vertices[si][k]; + } + + normalise(pq1,1,1e-6); + xprod(rp_2d, rp,pq1); /* projects RP into plane normal to PQ */ + xprod(ps_2d, ps,pq1); /* likewise PS */ + K rs_2d[k]= rp_2d[k] + ps_2d[k]; + /* radius of circumcircle of R'P'S' from Wikipedia + * `Circumscribed circle' */ + a= magnD(rp_2d); + b= magnD(ps_2d); + c= magnD(rs_2d); + s= 0.5*(a+b+c); + r= a*b*c / sqrt((a+b+c)*(a-b+c)*(b-c+a)*(c-a+b) + 1e-6); + + double minradius= minradius_base + edge_angle_cost_circcircrat*(a+b); + double deficit= minradius - r; + if (deficit < 0) continue; + double cost= deficit*deficit; + + total_cost += cost; + } + + return total_cost; +} + +/*---------- small triangles cost ----------*/ + + /* + * + * Q `-_ + * / | `-_ + * / | `-. + * / | S + * / | _,-' + * / | _,-' + * / , P ' + * / ,-' + * /,-' + * /' + * R + * + * Let delta = angle between two triangles' normals + * + * Giving energy contribution: + * + * 2 + * E = F . delta + * vd, edge PQ vd + */ + +double small_triangles_cost(const Vertices vertices, int section) { + double pq[D3], ps[D3]; + double x[D3]; + int pi,e,qi,si, k; +// double our_epsilon=1e-6; + double total_cost= 0; + + FOR_EDGE(pi,e,qi, OUTER) { +// if (!(RIM_VERTEX_P(pi) || RIM_VERTEX_P(qi))) continue; + + si= EDGE_END2(pi,(e+V6-1)%V6); if (si<0) continue; + + K { + pq[k]= vertices[qi][k] - vertices[pi][k]; + ps[k]= vertices[si][k] - vertices[pi][k]; + } + xprod(x, pq,ps); + + double cost= 1/(magnD2(x) + 0.01); + +//double cost= pow(magnD(spqxpqr), 3); +//assert(dot>=-1 && dot <=1); +//double cost= 1-dot; + total_cost += cost; + } + + return total_cost; +}