Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
n_u = 40
-m = Moebius(n_u)
+m = MoebiusHalf(n_u)
ts = np.linspace(0, 1, 40)
for t in ts:
c3 = curve( color=color.yellow, pos = [ m.point(ix_u, t)
- for ix_u in range(0, n_u+1) ] )
+ for ix_u in range(0, n_u/2+1) ] )
r = tw.radius(theta)
return cos(zeta) * r + sin(zeta) * tw._axis
-class Moebius:
+class MoebiusHalf:
def __init__(m, n_u):
'''
- Moebius().edge is a Twirler for the edge,
- expecting theta = u * tau (see Moebius().point)
+ MoebiusHalf().edge is a Twirler for the edge,
+ expecting theta = u * tau (see MoebiusHalf().point)
with dirn pointing into the surface
'''
m.edge = Twirler(origin, unit_z, unit_x, -2, tau/2)