X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?a=blobdiff_plain;f=net.c;h=f4a1e39b451981844c66ab365e83aff90cdb4fb3;hb=db313b3948d27244dd7c34c2609c66d6204d8931;hp=afce82b9a4ed6d9f561c90781a616f375a149131;hpb=79874f18e41cbbe796c0252dc96a85e150af1a15;p=sgt-puzzles.git diff --git a/net.c b/net.c index afce82b..f4a1e39 100644 --- a/net.c +++ b/net.c @@ -27,13 +27,6 @@ #define USE_DRAGGING #endif -#define MATMUL(xr,yr,m,x,y) do { \ - float rx, ry, xx = (x), yy = (y), *mat = (m); \ - rx = mat[0] * xx + mat[2] * yy; \ - ry = mat[1] * xx + mat[3] * yy; \ - (xr) = rx; (yr) = ry; \ -} while (0) - /* Direction and other bitfields */ #define R 0x01 #define U 0x02 @@ -65,7 +58,7 @@ #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) -#define TILE_BORDER 1 +#define LINE_THICK ((TILE_SIZE+47)/48) #ifdef SMALL_SCREEN #define WINDOW_OFFSET 4 #else @@ -75,13 +68,6 @@ #define ROTATE_TIME 0.13F #define FLASH_FRAME 0.07F -/* Transform physical coords to game coords using game_drawstate ds */ -#define GX(x) (((x) + ds->org_x) % ds->width) -#define GY(y) (((y) + ds->org_y) % ds->height) -/* ...and game coords to physical coords */ -#define RX(x) (((x) + ds->width - ds->org_x) % ds->width) -#define RY(y) (((y) + ds->height - ds->org_y) % ds->height) - enum { COL_BACKGROUND, COL_LOCKED, @@ -102,12 +88,17 @@ struct game_params { float barrier_probability; }; +typedef struct game_immutable_state { + int refcount; + unsigned char *barriers; +} game_immutable_state; + struct game_state { int width, height, wrapping, completed; int last_rotate_x, last_rotate_y, last_rotate_dir; int used_solve; unsigned char *tiles; - unsigned char *barriers; + struct game_immutable_state *imm; }; #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \ @@ -119,7 +110,7 @@ struct game_state { #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] ) #define tile(state, x, y) index(state, (state)->tiles, x, y) -#define barrier(state, x, y) index(state, (state)->barriers, x, y) +#define barrier(state, x, y) index(state, (state)->imm->barriers, x, y) struct xyd { int x, y, direction; @@ -459,6 +450,11 @@ static int todo_get(struct todo *todo) { return ret; } +/* + * Return values: -1 means puzzle was proved inconsistent, 0 means we + * failed to narrow down to a unique solution, +1 means we solved it + * fully. + */ static int net_solver(int w, int h, unsigned char *tiles, unsigned char *barriers, int wrapping) { @@ -733,7 +729,11 @@ static int net_solver(int w, int h, unsigned char *tiles, #endif } - assert(j > 0); /* we can't lose _all_ possibilities! */ + if (j == 0) { + /* If we've ruled out all possible orientations for a + * tile, then our puzzle has no solution at all. */ + return -1; + } if (j < i) { done_something = TRUE; @@ -813,14 +813,14 @@ static int net_solver(int w, int h, unsigned char *tiles, /* * Mark all completely determined tiles as locked. */ - j = TRUE; + j = +1; for (i = 0; i < w*h; i++) { if (tilestate[i * 4 + 1] == 255) { assert(tilestate[i * 4 + 0] != 255); tiles[i] = tilestate[i * 4] | LOCKED; } else { tiles[i] &= ~LOCKED; - j = FALSE; + j = 0; } } @@ -1334,7 +1334,7 @@ static char *new_game_desc(const game_params *params, random_state *rs, /* * Run the solver to check unique solubility. */ - while (!net_solver(w, h, tiles, NULL, params->wrapping)) { + while (net_solver(w, h, tiles, NULL, params->wrapping) != 1) { int n = 0; /* @@ -1644,12 +1644,14 @@ static game_state *new_game(midend *me, const game_params *params, w = state->width = params->width; h = state->height = params->height; state->wrapping = params->wrapping; + state->imm = snew(game_immutable_state); + state->imm->refcount = 1; state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0; state->completed = state->used_solve = FALSE; state->tiles = snewn(state->width * state->height, unsigned char); memset(state->tiles, 0, state->width * state->height); - state->barriers = snewn(state->width * state->height, unsigned char); - memset(state->barriers, 0, state->width * state->height); + state->imm->barriers = snewn(state->width * state->height, unsigned char); + memset(state->imm->barriers, 0, state->width * state->height); /* * Parse the game description into the grid. @@ -1720,6 +1722,8 @@ static game_state *dup_game(const game_state *state) game_state *ret; ret = snew(game_state); + ret->imm = state->imm; + ret->imm->refcount++; ret->width = state->width; ret->height = state->height; ret->wrapping = state->wrapping; @@ -1730,16 +1734,17 @@ static game_state *dup_game(const game_state *state) ret->last_rotate_y = state->last_rotate_y; ret->tiles = snewn(state->width * state->height, unsigned char); memcpy(ret->tiles, state->tiles, state->width * state->height); - ret->barriers = snewn(state->width * state->height, unsigned char); - memcpy(ret->barriers, state->barriers, state->width * state->height); return ret; } static void free_game(game_state *state) { + if (--state->imm->refcount == 0) { + sfree(state->imm->barriers); + sfree(state->imm); + } sfree(state->tiles); - sfree(state->barriers); sfree(state); } @@ -1758,9 +1763,17 @@ static char *solve_game(const game_state *state, const game_state *currstate, * Run the internal solver on the provided grid. This might * not yield a complete solution. */ + int solver_result; + memcpy(tiles, state->tiles, state->width * state->height); - net_solver(state->width, state->height, tiles, - state->barriers, state->wrapping); + solver_result = net_solver(state->width, state->height, tiles, + state->imm->barriers, state->wrapping); + + if (solver_result < 0) { + *error = "No solution exists for this puzzle"; + sfree(tiles); + return NULL; + } } else { for (i = 0; i < state->width * state->height; i++) { int c = aux[i]; @@ -1909,218 +1922,85 @@ static unsigned char *compute_active(const game_state *state, int cx, int cy) return active; } -static int *compute_loops_inner(int w, int h, int wrapping, - const unsigned char *tiles, - const unsigned char *barriers) +struct net_neighbour_ctx { + int w, h; + const unsigned char *tiles, *barriers; + int i, n, neighbours[4]; +}; +static int net_neighbour(int vertex, void *vctx) { - int *loops, *dsf; - int x, y; + struct net_neighbour_ctx *ctx = (struct net_neighbour_ctx *)vctx; - /* - * The loop-detecting algorithm I use here is not quite the same - * one as I've used in Slant and Loopy. Those two puzzles use a - * very similar algorithm which works by finding connected - * components, not of the graph _vertices_, but of the pieces of - * space in between them. You divide the plane into maximal areas - * that can't be intersected by a grid edge (faces in Loopy, - * diamond shapes centred on a grid edge in Slant); you form a dsf - * over those areas, and unify any pair _not_ separated by a graph - * edge; then you've identified the connected components of the - * space, and can now immediately tell whether an edge is part of - * a loop or not by checking whether the pieces of space on either - * side of it are in the same component. - * - * In Net, this doesn't work reliably, because of the toroidal - * wrapping mode. A torus has non-trivial homology, which is to - * say, there can exist a closed loop on its surface which is not - * the boundary of any proper subset of the torus's area. For - * example, consider the 'loop' consisting of a straight vertical - * line going off the top of the grid and coming back on the - * bottom to join up with itself. This certainly wants to be - * marked as a loop, but it won't be detected as one by the above - * algorithm, because all the area of the grid is still connected - * via the left- and right-hand edges, so the two sides of the - * loop _are_ in the same equivalence class. - * - * The replacement algorithm I use here is also dsf-based, but the - * dsf is now over _sides of edges_. That is to say, on a general - * graph, you would have two dsf elements per edge of the graph. - * The unification rule is: for each vertex, iterate round the - * edges leaving that vertex in cyclic order, and dsf-unify the - * _near sides_ of each pair of adjacent edges. The effect of this - * is to trace round the outside edge of each connected component - * of the graph (this time of the actual graph, not the space - * between), so that the outline of each component becomes its own - * equivalence class. And now, just as before, an edge is part of - * a loop iff its two sides are not in the same component. - * - * This correctly detects even homologically nontrivial loops on a - * torus, because a torus is still _orientable_ - there's no way - * that a loop can join back up with itself with the two sides - * swapped. It would stop working, however, on a Mobius strip or a - * Klein bottle - so if I ever implement either of those modes for - * Net, I'll have to revisit this algorithm yet again and probably - * replace it with a completely general and much more fiddly - * approach such as Tarjan's bridge-finding algorithm (which is - * linear-time, but looks to me as if it's going to take more - * effort to get it working, especially when the graph is - * represented so unlike an ordinary graph). - * - * In Net, the algorithm as I describe it above has to be fiddled - * with just a little, to deal with the fact that there are two - * kinds of 'vertex' in the graph - one set at face-centres, and - * another set at edge-midpoints where two wires either do or do - * not join. Since those two vertex classes have very different - * representations in the Net data structure, separate code is - * needed for them. - */ + if (vertex >= 0) { + int x = vertex % ctx->w, y = vertex / ctx->w; + int tile, dir, x1, y1, v1; - /* Four potential edges per grid cell; one dsf node for each side - * of each one makes 8 per cell. */ - dsf = snew_dsf(w*h*8); + ctx->i = ctx->n = 0; - /* Encode the dsf nodes. We imagine going round anticlockwise, so - * BEFORE(dir) indicates the clockwise side of an edge, e.g. the - * underside of R or the right-hand side of U. AFTER is the other - * side. */ -#define BEFORE(dir) ((dir)==R?7:(dir)==U?1:(dir)==L?3:5) -#define AFTER(dir) ((dir)==R?0:(dir)==U?2:(dir)==L?4:6) + tile = ctx->tiles[vertex]; + if (ctx->barriers) + tile &= ~ctx->barriers[vertex]; -#if 0 - printf("--- begin\n"); -#endif - for (y = 0; y < h; y++) { - for (x = 0; x < w; x++) { - int tile = tiles[y*w+x]; - int dir; - for (dir = 1; dir < 0x10; dir <<= 1) { - /* - * To unify dsf nodes around a face-centre vertex, - * it's easiest to do it _unconditionally_ - e.g. just - * unify the top side of R with the right side of U - * regardless of whether there's an edge in either - * place. Later we'll also unify the top and bottom - * sides of any nonexistent edge, which will e.g. - * complete a connection BEFORE(U) - AFTER(R) - - * BEFORE(R) - AFTER(D) in the absence of an R edge. - * - * This is a safe optimisation because these extra dsf - * nodes unified into our equivalence class can't get - * out of control - they are never unified with - * anything _else_ elsewhere in the algorithm. - */ -#if 0 - printf("tile centre %d,%d: merge %d,%d\n", - x, y, - (y*w+x)*8+AFTER(C(dir)), - (y*w+x)*8+BEFORE(dir)); -#endif - dsf_merge(dsf, - (y*w+x)*8+AFTER(C(dir)), - (y*w+x)*8+BEFORE(dir)); + for (dir = 1; dir < 0x10; dir <<= 1) { + if (!(tile & dir)) + continue; + OFFSETWH(x1, y1, x, y, dir, ctx->w, ctx->h); + v1 = y1 * ctx->w + x1; + if (ctx->tiles[v1] & F(dir)) + ctx->neighbours[ctx->n++] = v1; + } + } - if (tile & dir) { - int x1, y1; + if (ctx->i < ctx->n) + return ctx->neighbours[ctx->i++]; + else + return -1; +} - OFFSETWH(x1, y1, x, y, dir, w, h); +static int *compute_loops_inner(int w, int h, int wrapping, + const unsigned char *tiles, + const unsigned char *barriers) +{ + struct net_neighbour_ctx ctx; + struct findloopstate *fls; + int *loops; + int x, y; - /* - * If the tile does have an edge going out in this - * direction, we must check whether it joins up - * (without being blocked by a barrier) to an edge - * in the next cell along. If so, we unify around - * the edge-centre vertex by joining each side of - * this edge to the appropriate side of the next - * cell's edge; otherwise, the edge is a stub (the - * only one reaching the edge-centre vertex) and - * so we join its own two sides together. - */ - if ((barriers && barriers[y*w+x] & dir) || - !(tiles[y1*w+x1] & F(dir))) { -#if 0 - printf("tile edge stub %d,%d -> %c: merge %d,%d\n", - x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), - (y*w+x)*8+BEFORE(dir), - (y*w+x)*8+AFTER(dir)); -#endif - dsf_merge(dsf, - (y*w+x)*8+BEFORE(dir), - (y*w+x)*8+AFTER(dir)); - } else { -#if 0 - printf("tile edge conn %d,%d -> %c: merge %d,%d\n", - x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), - (y*w+x)*8+BEFORE(dir), - (y*w+x)*8+AFTER(F(dir))); -#endif - dsf_merge(dsf, - (y*w+x)*8+BEFORE(dir), - (y1*w+x1)*8+AFTER(F(dir))); -#if 0 - printf("tile edge conn %d,%d -> %c: merge %d,%d\n", - x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), - (y*w+x)*8+AFTER(dir), - (y*w+x)*8+BEFORE(F(dir))); -#endif - dsf_merge(dsf, - (y*w+x)*8+AFTER(dir), - (y1*w+x1)*8+BEFORE(F(dir))); - } - } else { - /* - * As discussed above, if this edge doesn't even - * exist, we unify its two sides anyway to - * complete the unification of whatever edges do - * exist in this cell. - */ -#if 0 - printf("tile edge missing %d,%d -> %c: merge %d,%d\n", - x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), - (y*w+x)*8+BEFORE(dir), - (y*w+x)*8+AFTER(dir)); -#endif - dsf_merge(dsf, - (y*w+x)*8+BEFORE(dir), - (y*w+x)*8+AFTER(dir)); - } - } - } - } + fls = findloop_new_state(w*h); + ctx.w = w; + ctx.h = h; + ctx.tiles = tiles; + ctx.barriers = barriers; + findloop_run(fls, w*h, net_neighbour, &ctx); -#if 0 - printf("--- end\n"); -#endif loops = snewn(w*h, int); - /* - * Now we've done the loop detection and can read off the output - * flags trivially: any piece of connection whose two sides are - * not in the same dsf class is part of a loop. - */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { - int dir; - int tile = tiles[y*w+x]; + int x1, y1, dir; int flags = 0; + for (dir = 1; dir < 0x10; dir <<= 1) { - if ((tile & dir) && - (dsf_canonify(dsf, (y*w+x)*8+BEFORE(dir)) != - dsf_canonify(dsf, (y*w+x)*8+AFTER(dir)))) { - flags |= LOOP(dir); + if ((tiles[y*w+x] & dir) && + !(barriers && (barriers[y*w+x] & dir))) { + OFFSETWH(x1, y1, x, y, dir, w, h); + if ((tiles[y1*w+x1] & F(dir)) && + findloop_is_loop_edge(fls, y*w+x, y1*w+x1)) + flags |= LOOP(dir); } } loops[y*w+x] = flags; } } - sfree(dsf); + findloop_free_state(fls); return loops; } static int *compute_loops(const game_state *state) { return compute_loops_inner(state->width, state->height, state->wrapping, - state->tiles, state->barriers); + state->tiles, state->imm->barriers); } struct game_ui { @@ -2181,9 +2061,8 @@ static void game_changed_state(game_ui *ui, const game_state *oldstate, struct game_drawstate { int started; int width, height; - int org_x, org_y; int tilesize; - int *visible; + unsigned long *visible, *to_draw; }; /* ---------------------------------------------------------------------- @@ -2223,8 +2102,8 @@ static char *interpret_move(const game_state *state, game_ui *ui, /* * The button must have been clicked on a valid tile. */ - x -= WINDOW_OFFSET + TILE_BORDER; - y -= WINDOW_OFFSET + TILE_BORDER; + x -= WINDOW_OFFSET + LINE_THICK; + y -= WINDOW_OFFSET + LINE_THICK; if (x < 0 || y < 0) return nullret; tx = x / TILE_SIZE; @@ -2234,8 +2113,8 @@ static char *interpret_move(const game_state *state, game_ui *ui, /* Transform from physical to game coords */ tx = (tx + ui->org_x) % state->width; ty = (ty + ui->org_y) % state->height; - if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER || - y % TILE_SIZE >= TILE_SIZE - TILE_BORDER) + if (x % TILE_SIZE >= TILE_SIZE - LINE_THICK || + y % TILE_SIZE >= TILE_SIZE - LINE_THICK) return nullret; #ifdef USE_DRAGGING @@ -2523,24 +2402,31 @@ static game_state *execute_move(const game_state *from, const char *move) /* * Check whether the game has been completed. * - * For this purpose it doesn't matter where the source square - * is, because we can start from anywhere and correctly - * determine whether the game is completed. + * For this purpose it doesn't matter where the source square is, + * because we can start from anywhere (or, at least, any square + * that's non-empty!), and correctly determine whether the game is + * completed. */ { - unsigned char *active = compute_active(ret, 0, 0); - int x1, y1; + unsigned char *active; + int pos; int complete = TRUE; - for (x1 = 0; x1 < ret->width; x1++) - for (y1 = 0; y1 < ret->height; y1++) - if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) { + for (pos = 0; pos < ret->width * ret->height; pos++) + if (ret->tiles[pos] & 0xF) + break; + + if (pos < ret->width * ret->height) { + active = compute_active(ret, pos % ret->width, pos / ret->width); + + for (pos = 0; pos < ret->width * ret->height; pos++) + if ((ret->tiles[pos] & 0xF) && !active[pos]) { complete = FALSE; - goto break_label; /* break out of two loops at once */ - } - break_label: + break; + } - sfree(active); + sfree(active); + } if (complete) ret->completed = TRUE; @@ -2557,20 +2443,25 @@ static game_state *execute_move(const game_state *from, const char *move) static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { game_drawstate *ds = snew(game_drawstate); - int i; + int i, ncells; ds->started = FALSE; ds->width = state->width; ds->height = state->height; - ds->org_x = ds->org_y = -1; - ds->visible = snewn(state->width * state->height, int); + ncells = (state->width+2) * (state->height+2); + ds->visible = snewn(ncells, unsigned long); + ds->to_draw = snewn(ncells, unsigned long); ds->tilesize = 0; /* undecided yet */ - for (i = 0; i < state->width * state->height; i++) + for (i = 0; i < ncells; i++) ds->visible[i] = -1; return ds; } +#define dsindex(ds, field, x, y) ((ds)->field[((y)+1)*((ds)->width+2)+((x)+1)]) +#define visible(ds, x, y) dsindex(ds, visible, x, y) +#define todraw(ds, x, y) dsindex(ds, to_draw, x, y) + static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); @@ -2580,8 +2471,12 @@ static void game_free_drawstate(drawing *dr, game_drawstate *ds) static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { - *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER; - *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER; + /* Ick: fake up `ds->tilesize' for macro expansion purposes */ + struct { int tilesize; } ads, *ds = &ads; + ads.tilesize = tilesize; + + *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + LINE_THICK; + *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + LINE_THICK; } static void game_set_size(drawing *dr, game_drawstate *ds, @@ -2655,297 +2550,286 @@ static float *game_colours(frontend *fe, int *ncolours) return ret; } -static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2, - int colour) +static void rotated_coords(float *ox, float *oy, const float matrix[4], + float cx, float cy, float ix, float iy) { - draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE); - draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE); - draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE); - draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE); - draw_line(dr, x1, y1, x2, y2, colour); + *ox = matrix[0] * ix + matrix[2] * iy + cx; + *oy = matrix[1] * ix + matrix[3] * iy + cy; } -static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2, - int colour) +/* Flags describing the visible features of a tile. */ +#define TILE_BARRIER_SHIFT 0 /* 4 bits: R U L D */ +#define TILE_BARRIER_CORNER_SHIFT 4 /* 4 bits: RU UL LD DR */ +#define TILE_KEYBOARD_CURSOR (1<<8) /* 1 bit if cursor is here */ +#define TILE_WIRE_SHIFT 9 /* 8 bits: RR UU LL DD + * Each pair: 0=no wire, 1=unpowered, + * 2=powered, 3=loop err highlight */ +#define TILE_ENDPOINT_SHIFT 17 /* 2 bits: 0=no endpoint, 1=unpowered, + * 2=powered, 3=power-source square */ +#define TILE_WIRE_ON_EDGE_SHIFT 19 /* 8 bits: RR UU LL DD, + * same encoding as TILE_WIRE_SHIFT */ +#define TILE_ROTATING (1UL<<27) /* 1 bit if tile is rotating */ +#define TILE_LOCKED (1UL<<28) /* 1 bit if tile is locked */ + +static void draw_wires(drawing *dr, int cx, int cy, int radius, + unsigned long tile, int bitmap, + int colour, int halfwidth, const float matrix[4]) { - int mx = (x1 < x2 ? x1 : x2); - int my = (y1 < y2 ? y1 : y2); - int dx = (x2 + x1 - 2*mx + 1); - int dy = (y2 + y1 - 2*my + 1); - - draw_rect(dr, mx, my, dx, dy, colour); -} - -/* - * draw_barrier_corner() and draw_barrier() are passed physical coords - */ -static void draw_barrier_corner(drawing *dr, game_drawstate *ds, - int x, int y, int dx, int dy, int phase) -{ - int bx = WINDOW_OFFSET + TILE_SIZE * x; - int by = WINDOW_OFFSET + TILE_SIZE * y; - int x1, y1; - - x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); - y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); - - if (phase == 0) { - draw_rect_coords(dr, bx+x1+dx, by+y1, - bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy, - COL_WIRE); - draw_rect_coords(dr, bx+x1, by+y1+dy, - bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy, - COL_WIRE); - } else { - draw_rect_coords(dr, bx+x1, by+y1, - bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy, - COL_BARRIER); + float fpoints[12*2]; + int points[12*2]; + int npoints, d, dsh, i; + int any_wire_this_colour = FALSE; + float xf, yf; + + npoints = 0; + for (d = 1, dsh = 0; d < 16; d *= 2, dsh++) { + int wiretype = (tile >> (TILE_WIRE_SHIFT + 2*dsh)) & 3; + + fpoints[2*npoints+0] = halfwidth * (X(d) + X(C(d))); + fpoints[2*npoints+1] = halfwidth * (Y(d) + Y(C(d))); + npoints++; + + if (bitmap & (1 << wiretype)) { + fpoints[2*npoints+0] = radius * X(d) + halfwidth * X(C(d)); + fpoints[2*npoints+1] = radius * Y(d) + halfwidth * Y(C(d)); + npoints++; + fpoints[2*npoints+0] = radius * X(d) + halfwidth * X(A(d)); + fpoints[2*npoints+1] = radius * Y(d) + halfwidth * Y(A(d)); + npoints++; + + any_wire_this_colour = TRUE; + } } -} - -static void draw_barrier(drawing *dr, game_drawstate *ds, - int x, int y, int dir, int phase) -{ - int bx = WINDOW_OFFSET + TILE_SIZE * x; - int by = WINDOW_OFFSET + TILE_SIZE * y; - int x1, y1, w, h; - x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0); - y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0); - w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); - h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); + if (!any_wire_this_colour) + return; - if (phase == 0) { - draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE); - } else { - draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER); + for (i = 0; i < npoints; i++) { + rotated_coords(&xf, &yf, matrix, cx, cy, fpoints[2*i], fpoints[2*i+1]); + points[2*i] = 0.5 + xf; + points[2*i+1] = 0.5 + yf; } + + draw_polygon(dr, points, npoints, colour, colour); } -/* - * draw_tile() is passed physical coordinates - */ -static void draw_tile(drawing *dr, const game_state *state, game_drawstate *ds, - int x, int y, int tile, int src, float angle, int cursor) +static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, + unsigned long tile, float angle) { - int bx = WINDOW_OFFSET + TILE_SIZE * x; - int by = WINDOW_OFFSET + TILE_SIZE * y; + int tx, ty; + int clipx, clipy, clipX, clipY, clipw, cliph; + int border_br = LINE_THICK/2, border_tl = LINE_THICK - border_br; + int barrier_outline_thick = (LINE_THICK+1)/2; + int bg, d, dsh, pass; + int cx, cy, radius; float matrix[4]; - float cx, cy, ex, ey, tx, ty; - int dir, col, phase; + + tx = WINDOW_OFFSET + TILE_SIZE * x + border_br; + ty = WINDOW_OFFSET + TILE_SIZE * y + border_br; /* - * When we draw a single tile, we must draw everything up to - * and including the borders around the tile. This means that - * if the neighbouring tiles have connections to those borders, - * we must draw those connections on the borders themselves. + * Clip to the tile boundary, with adjustments if we're drawing + * just outside the grid. */ - - clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); + clipx = tx; clipX = tx + TILE_SIZE; + clipy = ty; clipY = ty + TILE_SIZE; + if (x == -1) { + clipx = clipX - border_br - barrier_outline_thick; + } else if (x == ds->width) { + clipX = clipx + border_tl + barrier_outline_thick; + } + if (y == -1) { + clipy = clipY - border_br - barrier_outline_thick; + } else if (y == ds->height) { + clipY = clipy + border_tl + barrier_outline_thick; + } + clipw = clipX - clipx; + cliph = clipY - clipy; + clip(dr, clipx, clipy, clipw, cliph); /* - * So. First blank the tile out completely: draw a big - * rectangle in border colour, and a smaller rectangle in - * background colour to fill it in. + * Clear the clip region. */ - draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER, - COL_BORDER); - draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER, - TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER, - tile & LOCKED ? COL_LOCKED : COL_BACKGROUND); + bg = (tile & TILE_LOCKED) ? COL_LOCKED : COL_BACKGROUND; + draw_rect(dr, clipx, clipy, clipw, cliph, bg); /* - * Draw an inset outline rectangle as a cursor, in whichever of - * COL_LOCKED and COL_BACKGROUND we aren't currently drawing - * in. + * Draw the grid lines. */ - if (cursor) { - draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8, - bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, - tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); - draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8, - bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, - tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); - draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, - bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, - tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); - draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, - bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, - tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); + { + int gridl = (x == -1 ? tx+TILE_SIZE-border_br : tx); + int gridr = (x == ds->width ? tx+border_tl : tx+TILE_SIZE); + int gridu = (y == -1 ? ty+TILE_SIZE-border_br : ty); + int gridd = (y == ds->height ? ty+border_tl : ty+TILE_SIZE); + if (x >= 0) + draw_rect(dr, tx, gridu, border_tl, gridd-gridu, COL_BORDER); + if (y >= 0) + draw_rect(dr, gridl, ty, gridr-gridl, border_tl, COL_BORDER); + if (x < ds->width) + draw_rect(dr, tx+TILE_SIZE-border_br, gridu, + border_br, gridd-gridu, COL_BORDER); + if (y < ds->height) + draw_rect(dr, gridl, ty+TILE_SIZE-border_br, + gridr-gridl, border_br, COL_BORDER); } /* - * Set up the rotation matrix. + * Draw the keyboard cursor. */ - matrix[0] = (float)cos(angle * PI / 180.0); - matrix[1] = (float)-sin(angle * PI / 180.0); - matrix[2] = (float)sin(angle * PI / 180.0); - matrix[3] = (float)cos(angle * PI / 180.0); + if (tile & TILE_KEYBOARD_CURSOR) { + int cursorcol = (tile & TILE_LOCKED) ? COL_BACKGROUND : COL_LOCKED; + int inset_outer = TILE_SIZE/8, inset_inner = inset_outer + LINE_THICK; + draw_rect(dr, tx + inset_outer, ty + inset_outer, + TILE_SIZE - 2*inset_outer, TILE_SIZE - 2*inset_outer, + cursorcol); + draw_rect(dr, tx + inset_inner, ty + inset_inner, + TILE_SIZE - 2*inset_inner, TILE_SIZE - 2*inset_inner, + bg); + } + + radius = (TILE_SIZE+1)/2; + cx = tx + radius; + cy = ty + radius; + radius++; /* - * Draw the wires. + * Draw protrusions into this cell's edges of wires in + * neighbouring cells, as given by the TILE_WIRE_ON_EDGE_SHIFT + * flags. We only draw each of these if there _isn't_ a wire of + * our own that's going to overlap it, which means either the + * corresponding TILE_WIRE_SHIFT flag is zero, or else the + * TILE_ROTATING flag is set (so that our main wire won't be drawn + * in quite that place anyway). */ - cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F; - col = (tile & ACTIVE ? COL_POWERED : COL_WIRE); - for (dir = 1; dir < 0x10; dir <<= 1) { - if (tile & dir) { - ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); - ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); - MATMUL(tx, ty, matrix, ex, ey); - draw_filled_line(dr, bx+(int)cx, by+(int)cy, - bx+(int)(cx+tx), by+(int)(cy+ty), - COL_WIRE); - } - } - for (dir = 1; dir < 0x10; dir <<= 1) { - if (tile & dir) { - ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); - ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); - MATMUL(tx, ty, matrix, ex, ey); - draw_line(dr, bx+(int)cx, by+(int)cy, - bx+(int)(cx+tx), by+(int)(cy+ty), - (tile & LOOP(dir)) ? COL_LOOP : col); + for (d = 1, dsh = 0; d < 16; d *= 2, dsh++) { + int edgetype = ((tile >> (TILE_WIRE_ON_EDGE_SHIFT + 2*dsh)) & 3); + if (edgetype == 0) + continue; /* there isn't a wire on the edge */ + if (!(tile & TILE_ROTATING) && + ((tile >> (TILE_WIRE_SHIFT + 2*dsh)) & 3) != 0) + continue; /* wire on edge would be overdrawn anyway */ + + for (pass = 0; pass < 2; pass++) { + int x, y, w, h; + int col = (pass == 0 || edgetype == 1 ? COL_WIRE : + edgetype == 2 ? COL_POWERED : COL_LOOP); + int halfwidth = pass == 0 ? 2*LINE_THICK-1 : LINE_THICK-1; + + if (X(d) < 0) { + x = tx; + w = border_tl; + } else if (X(d) > 0) { + x = tx + TILE_SIZE - border_br; + w = border_br; + } else { + x = cx - halfwidth; + w = 2 * halfwidth + 1; + } + + if (Y(d) < 0) { + y = ty; + h = border_tl; + } else if (Y(d) > 0) { + y = ty + TILE_SIZE - border_br; + h = border_br; + } else { + y = cy - halfwidth; + h = 2 * halfwidth + 1; + } + + draw_rect(dr, x, y, w, h, col); } } - /* If we've drawn any loop-highlighted arms, make sure the centre - * point is loop-coloured rather than a later arm overwriting it. */ - if (tile & (RLOOP | ULOOP | LLOOP | DLOOP)) - draw_rect(dr, bx+(int)cx, by+(int)cy, 1, 1, COL_LOOP); /* - * Draw the box in the middle. We do this in blue if the tile - * is an unpowered endpoint, in cyan if the tile is a powered - * endpoint, in black if the tile is the centrepiece, and - * otherwise not at all. + * Set up the rotation matrix for the main cell contents, i.e. + * everything that is centred in the grid square and optionally + * rotated by an arbitrary angle about that centre point. */ - col = -1; - if (src) - col = COL_WIRE; - else if (COUNT(tile) == 1) { - col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT); - } - if (col >= 0) { - int i, points[8]; - - points[0] = +1; points[1] = +1; - points[2] = +1; points[3] = -1; - points[4] = -1; points[5] = -1; - points[6] = -1; points[7] = +1; - - for (i = 0; i < 8; i += 2) { - ex = (TILE_SIZE * 0.24F) * points[i]; - ey = (TILE_SIZE * 0.24F) * points[i+1]; - MATMUL(tx, ty, matrix, ex, ey); - points[i] = bx+(int)(cx+tx); - points[i+1] = by+(int)(cy+ty); - } - - draw_polygon(dr, points, 4, col, COL_WIRE); + if (tile & TILE_ROTATING) { + matrix[0] = (float)cos(angle * PI / 180.0); + matrix[2] = (float)sin(angle * PI / 180.0); + } else { + matrix[0] = 1.0F; + matrix[2] = 0.0F; } + matrix[3] = matrix[0]; + matrix[1] = -matrix[2]; /* - * Draw the points on the border if other tiles are connected - * to us. + * Draw the wires. */ - for (dir = 1; dir < 0x10; dir <<= 1) { - int dx, dy, px, py, lx, ly, vx, vy, ox, oy; - - dx = X(dir); - dy = Y(dir); - - ox = x + dx; - oy = y + dy; + draw_wires(dr, cx, cy, radius, tile, + 0xE, COL_WIRE, 2*LINE_THICK-1, matrix); + draw_wires(dr, cx, cy, radius, tile, + 0x4, COL_POWERED, LINE_THICK-1, matrix); + draw_wires(dr, cx, cy, radius, tile, + 0x8, COL_LOOP, LINE_THICK-1, matrix); - if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height) - continue; - - if (!(tile(state, GX(ox), GY(oy)) & F(dir))) - continue; - - px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx); - py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy); - lx = dx * (TILE_BORDER-1); - ly = dy * (TILE_BORDER-1); - vx = (dy ? 1 : 0); - vy = (dx ? 1 : 0); + /* + * Draw the central box. + */ + for (pass = 0; pass < 2; pass++) { + int endtype = (tile >> TILE_ENDPOINT_SHIFT) & 3; + if (endtype) { + int i, points[8], col; + float boxr = TILE_SIZE * 0.24F + (pass == 0 ? LINE_THICK-1 : 0); + + col = (pass == 0 || endtype == 3 ? COL_WIRE : + endtype == 2 ? COL_POWERED : COL_ENDPOINT); + + points[0] = +1; points[1] = +1; + points[2] = +1; points[3] = -1; + points[4] = -1; points[5] = -1; + points[6] = -1; points[7] = +1; + + for (i = 0; i < 8; i += 2) { + float x, y; + rotated_coords(&x, &y, matrix, cx, cy, + boxr * points[i], boxr * points[i+1]); + points[i] = x + 0.5; + points[i+1] = y + 0.5; + } - if (angle == 0.0 && (tile & dir)) { - /* - * If we are fully connected to the other tile, we must - * draw right across the tile border. (We can use our - * own ACTIVE state to determine what colour to do this - * in: if we are fully connected to the other tile then - * the two ACTIVE states will be the same.) - */ - draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE); - draw_rect_coords(dr, px, py, px+lx, py+ly, - ((tile & LOOP(dir)) ? COL_LOOP : - (tile & ACTIVE) ? COL_POWERED : - COL_WIRE)); - } else { - /* - * The other tile extends into our border, but isn't - * actually connected to us. Just draw a single black - * dot. - */ - draw_rect_coords(dr, px, py, px, py, COL_WIRE); + draw_polygon(dr, points, 4, col, COL_WIRE); } } /* - * Draw barrier corners, and then barriers. + * Draw barriers along grid edges. */ - for (phase = 0; phase < 2; phase++) { - for (dir = 1; dir < 0x10; dir <<= 1) { - int x1, y1, corner = FALSE; - /* - * If at least one barrier terminates at the corner - * between dir and A(dir), draw a barrier corner. - */ - if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) { - corner = TRUE; - } else { - /* - * Only count barriers terminating at this corner - * if they're physically next to the corner. (That - * is, if they've wrapped round from the far side - * of the screen, they don't count.) - */ - x1 = x + X(dir); - y1 = y + Y(dir); - if (x1 >= 0 && x1 < state->width && - y1 >= 0 && y1 < state->height && - (barrier(state, GX(x1), GY(y1)) & A(dir))) { - corner = TRUE; - } else { - x1 = x + X(A(dir)); - y1 = y + Y(A(dir)); - if (x1 >= 0 && x1 < state->width && - y1 >= 0 && y1 < state->height && - (barrier(state, GX(x1), GY(y1)) & dir)) - corner = TRUE; - } - } - - if (corner) { - /* - * At least one barrier terminates here. Draw a - * corner. - */ - draw_barrier_corner(dr, ds, x, y, - X(dir)+X(A(dir)), Y(dir)+Y(A(dir)), - phase); - } + for (pass = 0; pass < 2; pass++) { + int btl = border_tl, bbr = border_br, col = COL_BARRIER; + if (pass == 0) { + btl += barrier_outline_thick; + bbr += barrier_outline_thick; + col = COL_WIRE; } - for (dir = 1; dir < 0x10; dir <<= 1) - if (barrier(state, GX(x), GY(y)) & dir) - draw_barrier(dr, ds, x, y, dir, phase); + if (tile & (L << TILE_BARRIER_SHIFT)) + draw_rect(dr, tx, ty, btl, TILE_SIZE, col); + if (tile & (R << TILE_BARRIER_SHIFT)) + draw_rect(dr, tx+TILE_SIZE-bbr, ty, bbr, TILE_SIZE, col); + if (tile & (U << TILE_BARRIER_SHIFT)) + draw_rect(dr, tx, ty, TILE_SIZE, btl, col); + if (tile & (D << TILE_BARRIER_SHIFT)) + draw_rect(dr, tx, ty+TILE_SIZE-bbr, TILE_SIZE, bbr, col); + + if (tile & (R << TILE_BARRIER_CORNER_SHIFT)) + draw_rect(dr, tx+TILE_SIZE-bbr, ty, bbr, btl, col); + if (tile & (U << TILE_BARRIER_CORNER_SHIFT)) + draw_rect(dr, tx, ty, btl, btl, col); + if (tile & (L << TILE_BARRIER_CORNER_SHIFT)) + draw_rect(dr, tx, ty+TILE_SIZE-bbr, btl, bbr, col); + if (tile & (D << TILE_BARRIER_CORNER_SHIFT)) + draw_rect(dr, tx+TILE_SIZE-bbr, ty+TILE_SIZE-bbr, bbr, bbr, col); } + /* + * Unclip and draw update, to finish. + */ unclip(dr); - - draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); + draw_update(dr, clipx, clipy, clipw, cliph); } static void game_redraw(drawing *dr, game_drawstate *ds, @@ -2953,73 +2837,26 @@ static void game_redraw(drawing *dr, game_drawstate *ds, int dir, const game_ui *ui, float t, float ft) { - int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE; + int tx, ty, dx, dy, d, dsh, last_rotate_dir, frame; unsigned char *active; int *loops; float angle = 0.0; /* - * Clear the screen, and draw the exterior barrier lines, if - * this is our first call or if the origin has changed. + * Clear the screen on our first call. */ - if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) { - int phase; + if (!ds->started) { + int w, h; + game_params params; ds->started = TRUE; - draw_rect(dr, 0, 0, - WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER, - WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER, - COL_BACKGROUND); + params.width = ds->width; + params.height = ds->height; + game_compute_size(¶ms, TILE_SIZE, &w, &h); - ds->org_x = ui->org_x; - ds->org_y = ui->org_y; - moved_origin = TRUE; - - draw_update(dr, 0, 0, - WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER, - WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER); - - for (phase = 0; phase < 2; phase++) { - - for (x = 0; x < ds->width; x++) { - if (x+1 < ds->width) { - if (barrier(state, GX(x), GY(0)) & R) - draw_barrier_corner(dr, ds, x, -1, +1, +1, phase); - if (barrier(state, GX(x), GY(ds->height-1)) & R) - draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase); - } - if (barrier(state, GX(x), GY(0)) & U) { - draw_barrier_corner(dr, ds, x, -1, -1, +1, phase); - draw_barrier_corner(dr, ds, x, -1, +1, +1, phase); - draw_barrier(dr, ds, x, -1, D, phase); - } - if (barrier(state, GX(x), GY(ds->height-1)) & D) { - draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase); - draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase); - draw_barrier(dr, ds, x, ds->height, U, phase); - } - } - - for (y = 0; y < ds->height; y++) { - if (y+1 < ds->height) { - if (barrier(state, GX(0), GY(y)) & D) - draw_barrier_corner(dr, ds, -1, y, +1, +1, phase); - if (barrier(state, GX(ds->width-1), GY(y)) & D) - draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase); - } - if (barrier(state, GX(0), GY(y)) & L) { - draw_barrier_corner(dr, ds, -1, y, +1, -1, phase); - draw_barrier_corner(dr, ds, -1, y, +1, +1, phase); - draw_barrier(dr, ds, -1, y, R, phase); - } - if (barrier(state, GX(ds->width-1), GY(y)) & R) { - draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase); - draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase); - draw_barrier(dr, ds, ds->width, y, L, phase); - } - } - } + draw_rect(dr, 0, 0, w, h, COL_BACKGROUND); + draw_update(dr, 0, 0, w, h); } tx = ty = -1; @@ -3036,30 +2873,83 @@ static void game_redraw(drawing *dr, game_drawstate *ds, state = oldstate; } - frame = -1; if (ft > 0) { /* * We're animating a completion flash. Find which frame * we're at. */ frame = (int)(ft / FLASH_FRAME); + } else { + frame = 0; } /* - * Draw any tile which differs from the way it was last drawn. + * Build up a map of what we want every tile to look like. We + * include tiles one square outside the grid, for the outer edges + * of barriers. */ active = compute_active(state, ui->cx, ui->cy); loops = compute_loops(state); - for (x = 0; x < ds->width; x++) - for (y = 0; y < ds->height; y++) { - int c = tile(state, GX(x), GY(y)) | - index(state, active, GX(x), GY(y)) | - index(state, loops, GX(x), GY(y)); - int is_src = GX(x) == ui->cx && GY(y) == ui->cy; - int is_anim = GX(x) == tx && GY(y) == ty; - int is_cursor = ui->cur_visible && - GX(x) == ui->cur_x && GY(y) == ui->cur_y; + for (dy = -1; dy < ds->height+1; dy++) { + for (dx = -1; dx < ds->width+1; dx++) { + todraw(ds, dx, dy) = 0; + } + } + + for (dy = 0; dy < ds->height; dy++) { + int gy = (dy + ui->org_y) % ds->height; + for (dx = 0; dx < ds->width; dx++) { + int gx = (dx + ui->org_x) % ds->width; + int t = (tile(state, gx, gy) | + index(state, loops, gx, gy) | + index(state, active, gx, gy)); + + for (d = 1, dsh = 0; d < 16; d *= 2, dsh++) { + if (barrier(state, gx, gy) & d) { + todraw(ds, dx, dy) |= + d << TILE_BARRIER_SHIFT; + todraw(ds, dx + X(d), dy + Y(d)) |= + F(d) << TILE_BARRIER_SHIFT; + todraw(ds, dx + X(A(d)), dy + Y(A(d))) |= + C(d) << TILE_BARRIER_CORNER_SHIFT; + todraw(ds, dx + X(A(d)) + X(d), dy + Y(A(d)) + Y(d)) |= + F(d) << TILE_BARRIER_CORNER_SHIFT; + todraw(ds, dx + X(C(d)), dy + Y(C(d))) |= + d << TILE_BARRIER_CORNER_SHIFT; + todraw(ds, dx + X(C(d)) + X(d), dy + Y(C(d)) + Y(d)) |= + A(d) << TILE_BARRIER_CORNER_SHIFT; + } + + if (t & d) { + int edgeval = (t & LOOP(d) ? 3 : t & ACTIVE ? 2 : 1); + todraw(ds, dx, dy) |= edgeval << (TILE_WIRE_SHIFT + dsh*2); + if (!(gx == tx && gy == ty)) { + todraw(ds, dx + X(d), dy + Y(d)) |= + edgeval << (TILE_WIRE_ON_EDGE_SHIFT + (dsh ^ 2)*2); + } + } + } + + if (ui->cur_visible && gx == ui->cur_x && gy == ui->cur_y) + todraw(ds, dx, dy) |= TILE_KEYBOARD_CURSOR; + + if (gx == tx && gy == ty) + todraw(ds, dx, dy) |= TILE_ROTATING; + + if (gx == ui->cx && gy == ui->cy) { + todraw(ds, dx, dy) |= 3 << TILE_ENDPOINT_SHIFT; + } else if ((t & 0xF) != R && (t & 0xF) != U && + (t & 0xF) != L && (t & 0xF) != D) { + /* this is not an endpoint tile */ + } else if (t & ACTIVE) { + todraw(ds, dx, dy) |= 2 << TILE_ENDPOINT_SHIFT; + } else { + todraw(ds, dx, dy) |= 1 << TILE_ENDPOINT_SHIFT; + } + + if (t & LOCKED) + todraw(ds, dx, dy) |= TILE_LOCKED; /* * In a completion flash, we adjust the LOCKED bit @@ -3067,50 +2957,78 @@ static void game_redraw(drawing *dr, game_drawstate *ds, * the frame number. */ if (frame >= 0) { - int rcx = RX(ui->cx), rcy = RY(ui->cy); + int rcx = (ui->cx + ds->width - ui->org_x) % ds->width; + int rcy = (ui->cy + ds->height - ui->org_y) % ds->height; int xdist, ydist, dist; - xdist = (x < rcx ? rcx - x : x - rcx); - ydist = (y < rcy ? rcy - y : y - rcy); + xdist = (dx < rcx ? rcx - dx : dx - rcx); + ydist = (dy < rcy ? rcy - dy : dy - rcy); dist = (xdist > ydist ? xdist : ydist); - if (frame >= dist && frame < dist+4) { - int lock = (frame - dist) & 1; - lock = lock ? LOCKED : 0; - c = (c &~ LOCKED) | lock; - } + if (frame >= dist && frame < dist+4 && + ((frame - dist) & 1)) + todraw(ds, dx, dy) ^= TILE_LOCKED; } + } + } - if (moved_origin || - index(state, ds->visible, x, y) != c || - index(state, ds->visible, x, y) == -1 || - is_src || is_anim || is_cursor) { - draw_tile(dr, state, ds, x, y, c, - is_src, (is_anim ? angle : 0.0F), is_cursor); - if (is_src || is_anim || is_cursor) - index(state, ds->visible, x, y) = -1; - else - index(state, ds->visible, x, y) = c; + /* + * Now draw any tile that differs from the way it was last drawn. + * An exception is that if either the previous _or_ current state + * has the TILE_ROTATING bit set, we must draw it regardless, + * because it will have rotated to a different angle.q + */ + for (dy = -1; dy < ds->height+1; dy++) { + for (dx = -1; dx < ds->width+1; dx++) { + int prev = visible(ds, dx, dy); + int curr = todraw(ds, dx, dy); + if (prev != curr || ((prev | curr) & TILE_ROTATING) != 0) { + draw_tile(dr, ds, dx, dy, curr, angle); + visible(ds, dx, dy) = curr; } } + } /* * Update the status bar. */ { - char statusbuf[256]; + char statusbuf[256], *p; int i, n, n2, a; + int complete = FALSE; + + p = statusbuf; + *p = '\0'; /* ensure even an empty status string is terminated */ - n = state->width * state->height; - for (i = a = n2 = 0; i < n; i++) { - if (active[i]) - a++; - if (state->tiles[i] & 0xF) - n2++; + if (state->used_solve) { + p += sprintf(p, "Auto-solved. "); + complete = TRUE; + } else if (state->completed) { + p += sprintf(p, "COMPLETED! "); + complete = TRUE; } - sprintf(statusbuf, "%sActive: %d/%d", - (state->used_solve ? "Auto-solved. " : - state->completed ? "COMPLETED! " : ""), a, n2); + /* + * Omit the 'Active: n/N' counter completely if the source + * tile is a completely empty one, because then the active + * count can't help but read '1'. + */ + if (tile(state, ui->cx, ui->cy) & 0xF) { + n = state->width * state->height; + for (i = a = n2 = 0; i < n; i++) { + if (active[i]) + a++; + if (state->tiles[i] & 0xF) + n2++; + } + + /* + * Also, if we're displaying a completion indicator and + * the game is still in its completed state (i.e. every + * tile is active), we might as well omit this too. + */ + if (!complete || a < n2) + p += sprintf(p, "Active: %d/%d", a, n2); + } status_bar(dr, statusbuf); } @@ -3307,7 +3225,7 @@ static void game_print(drawing *dr, const game_state *state, int tilesize) const struct game thegame = { "Net", "games.net", "net", default_params, - game_fetch_preset, + game_fetch_preset, NULL, decode_params, encode_params, free_params,