X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?a=blobdiff_plain;f=filling.c;h=d8d0c8cbb035b62addce8d3f35462807847e7fbf;hb=b9b73adb53b3ffb09a2e8c9682351bf892634470;hp=82efcca75f04a9463883704a58d4a1a22b8e3e9e;hpb=a7408203eb9a3720cd9a7828253de844faf3ce44;p=sgt-puzzles.git diff --git a/filling.c b/filling.c index 82efcca..d8d0c8c 100644 --- a/filling.c +++ b/filling.c @@ -6,11 +6,19 @@ /* TODO: * * - use a typedef instead of int for numbers on the board - * + replace int with something else (signed char?) - * - the type should be signed (I use -board[i] temporarily) - * - problems are small (<= 9?): type can be char? + * + replace int with something else (signed short?) + * - the type should be signed (for -board[i] and -SENTINEL) + * - the type should be somewhat big: board[i] = i + * - Using shorts gives us 181x181 puzzles as upper bound. * - * - make a somewhat more clever solver + * - in board generation, after having merged regions such that no + * more merges are necessary, try splitting (big) regions. + * + it seems that smaller regions make for better puzzles; see + * for instance the 7x7 puzzle in this file (grep for 7x7:). + * + * - symmetric hints (solo-style) + * + right now that means including _many_ hints, and the puzzles + * won't look any nicer. Not worth it (at the moment). * * - make the solver do recursion/backtracking. * + This is for user-submitted puzzles, not for puzzle @@ -20,12 +28,14 @@ * * - solo-like pencil marks? * - * - speed up generation of puzzles of size >= 11x11 + * - a user says that the difficulty is unevenly distributed. + * + partition into levels? Will they be non-crap? * * - Allow square contents > 9? * + I could use letters for digits (solo does this), but * letters don't have numeric significance (normal people hate * base36), which is relevant here (much more than in solo). + * + [click, 1, 0, enter] => [10 in clicked square]? * + How much information is needed to solve? Does one need to * know the algorithm by which the largest number is set? * @@ -42,19 +52,37 @@ * * - use binary search when discovering the minimal sovable point * + profile to show a need (but when the solver gets slower...) - * + avg 0.1s per 9x9, which _is_ human-patience noticable. + * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100) + * + but the hints are independent, not linear, so... what? */ #include #include -#include #include +#include #include #include #include #include "puzzles.h" +static unsigned char verbose; + +static void printv(char *fmt, ...) { +#ifndef PALM + if (verbose) { + va_list va; + va_start(va, fmt); + vprintf(fmt, va); + va_end(va); + } +#endif +} + +/***************************************************************************** + * GAME CONFIGURATION AND PARAMETERS * + *****************************************************************************/ + struct game_params { int w, h; }; @@ -71,13 +99,15 @@ struct game_state { int completed, cheated; }; -static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}}; +static const struct game_params filling_defaults[3] = { + {9, 7}, {13, 9}, {17, 13} +}; static game_params *default_params(void) { game_params *ret = snew(game_params); - *ret = defaults[1]; /* struct copy */ + *ret = filling_defaults[1]; /* struct copy */ return ret; } @@ -86,10 +116,10 @@ static int game_fetch_preset(int i, char **name, game_params **params) { char buf[64]; - if (i < 0 || i >= lenof(defaults)) return FALSE; + if (i < 0 || i >= lenof(filling_defaults)) return FALSE; *params = snew(game_params); - **params = defaults[i]; /* struct copy */ - sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h); + **params = filling_defaults[i]; /* struct copy */ + sprintf(buf, "%dx%d", filling_defaults[i].w, filling_defaults[i].h); *name = dupstr(buf); return TRUE; @@ -100,7 +130,7 @@ static void free_params(game_params *params) sfree(params); } -static game_params *dup_params(game_params *params) +static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* struct copy */ @@ -114,14 +144,14 @@ static void decode_params(game_params *ret, char const *string) if (*string == 'x') ret->h = atoi(++string); } -static char *encode_params(game_params *params, int full) +static char *encode_params(const game_params *params, int full) { char buf[64]; sprintf(buf, "%dx%d", params->w, params->h); return dupstr(buf); } -static config_item *game_configure(game_params *params) +static config_item *game_configure(const game_params *params) { config_item *ret; char buf[64]; @@ -148,7 +178,7 @@ static config_item *game_configure(game_params *params) return ret; } -static game_params *custom_params(config_item *cfg) +static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); @@ -158,7 +188,7 @@ static game_params *custom_params(config_item *cfg) return ret; } -static char *validate_params(game_params *params, int full) +static char *validate_params(const game_params *params, int full) { if (params->w < 1) return "Width must be at least one"; if (params->h < 1) return "Height must be at least one"; @@ -233,16 +263,21 @@ static char *board_to_string(int *board, int w, int h) { /* fill in the numbers */ for (i = 0; i < sz; ++i) { const int x = i % w; - const int y = i / w; - if (board[i] == EMPTY) continue; - repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0'; + const int y = i / w; + if (board[i] == EMPTY) continue; + repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0'; } repr[chlen] = '\0'; return repr; } -static char *game_text_format(game_state *state) +static int game_can_format_as_text_now(const game_params *params) +{ + return TRUE; +} + +static char *game_text_format(const game_state *state) { const int w = state->shared->params.w; const int h = state->shared->params.h; @@ -256,54 +291,98 @@ static char *game_text_format(game_state *state) static const int dx[4] = {-1, 1, 0, 0}; static const int dy[4] = {0, 0, -1, 1}; -/* +struct solver_state +{ + int *dsf; + int *board; + int *connected; + int nempty; + + /* Used internally by learn_bitmap_deductions; kept here to avoid + * mallocing/freeing them every time that function is called. */ + int *bm, *bmdsf, *bmminsize; +}; + static void print_board(int *board, int w, int h) { - char *repr = board_to_string(board, w, h); - fputs(repr, stdout); - free(repr); + if (verbose) { + char *repr = board_to_string(board, w, h); + printv("%s\n", repr); + free(repr); + } } -*/ + +static game_state *new_game(midend *, const game_params *, const char *); +static void free_game(game_state *); #define SENTINEL sz -/* determines whether a board (in dsf form) is valid. If possible, - * return a conflicting pair in *a and *b and a non-*b neighbour of *a - * in *c. If not possible, leave them unmodified. */ -static void -validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) { +static int mark_region(int *board, int w, int h, int i, int n, int m) { + int j; + + board[i] = -1; + + for (j = 0; j < 4; ++j) { + const int x = (i % w) + dx[j], y = (i / w) + dy[j], ii = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (board[ii] == m) return FALSE; + if (board[ii] != n) continue; + if (!mark_region(board, w, h, ii, n, m)) return FALSE; + } + return TRUE; +} + +static int region_size(int *board, int w, int h, int i) { const int sz = w * h; - int i; - assert(*a == SENTINEL); - assert(*b == SENTINEL); - assert(*c == SENTINEL); - for (i = 0; i < sz && *a == sz; ++i) { - const int aa = dsf_canonify(dsf, sq[i]); - int cc = sz; - int j; - for (j = 0; j < 4; ++j) { - const int x = (sq[i] % w) + dx[j]; - const int y = (sq[i] / w) + dy[j]; - int bb; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - bb = dsf_canonify(dsf, w*y + x); - if (aa == bb) continue; - else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) { - *a = aa; - *b = bb; - *c = cc; - } else if (cc == sz) *c = cc = bb; - } + int j, size, copy; + if (board[i] == 0) return 0; + copy = board[i]; + mark_region(board, w, h, i, board[i], SENTINEL); + for (size = j = 0; j < sz; ++j) { + if (board[j] != -1) continue; + ++size; + board[j] = copy; } + return size; } -static game_state *new_game(midend *, game_params *, char *); -static void free_game(game_state *); +static void merge_ones(int *board, int w, int h) +{ + const int sz = w * h; + const int maxsize = min(max(max(w, h), 3), 9); + int i, j, k, change; + do { + change = FALSE; + for (i = 0; i < sz; ++i) { + if (board[i] != 1) continue; -/* generate a random valid board; uses validate_board. */ -void make_board(int *board, int w, int h, random_state *rs) { - int *dsf; + for (j = 0; j < 4; ++j, board[i] = 1) { + const int x = (i % w) + dx[j], y = (i / w) + dy[j]; + int oldsize, newsize, ok, ii = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (board[ii] == maxsize) continue; + + oldsize = board[ii]; + board[i] = oldsize; + newsize = region_size(board, w, h, i); + + if (newsize > maxsize) continue; + + ok = mark_region(board, w, h, i, oldsize, newsize); - const unsigned int sz = w * h; + for (k = 0; k < sz; ++k) + if (board[k] == -1) + board[k] = ok ? newsize : oldsize; + + if (ok) break; + } + if (j < 4) change = TRUE; + } + } while (change); +} + +/* generate a random valid board; uses validate_board. */ +static void make_board(int *board, int w, int h, random_state *rs) { + const int sz = w * h; /* w=h=2 is a special case which requires a number > max(w, h) */ /* TODO prove that this is the case ONLY for w=h=2. */ @@ -312,70 +391,74 @@ void make_board(int *board, int w, int h, random_state *rs) { /* Note that if 1 in {w, h} then it's impossible to have a region * of size > w*h, so the special case only affects w=h=2. */ - int nboards = 0; - - int i; + int i, change, *dsf; assert(w >= 1); assert(h >= 1); - assert(board); - dsf = snew_dsf(sz); /* implicit dsf_init */ - /* I abuse the board variable: when generating the puzzle, it - * contains a shuffled list of numbers {0, ..., nsq-1}. */ + * contains a shuffled list of numbers {0, ..., sz-1}. */ for (i = 0; i < sz; ++i) board[i] = i; - while (1) { - ++nboards; - shuffle(board, sz, sizeof (int), rs); - /* while the board can in principle be fixed */ - while (1) { - int a = SENTINEL; - int b = SENTINEL; - int c = SENTINEL; - validate_board(dsf, w, h, board, &a, &b, &c); - if (a == SENTINEL /* meaning the board is valid */) { - int i; - for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i); - sfree(dsf); - /* printf("returning board number %d\n", nboards); */ - return; - } else { - /* try to repair the invalid board */ - a = dsf_canonify(dsf, a); - assert(a != dsf_canonify(dsf, b)); - if (c != sz) assert(a != dsf_canonify(dsf, c)); - dsf_merge(dsf, a, c == sz? b: c); - /* if repair impossible; make a new board */ - if (dsf_size(dsf, a) > maxsize) break; + dsf = snewn(sz, int); +retry: + dsf_init(dsf, sz); + shuffle(board, sz, sizeof (int), rs); + + do { + change = FALSE; /* as long as the board potentially has errors */ + for (i = 0; i < sz; ++i) { + const int square = dsf_canonify(dsf, board[i]); + const int size = dsf_size(dsf, square); + int merge = SENTINEL, min = maxsize - size + 1, error = FALSE; + int neighbour, neighbour_size, j; + + for (j = 0; j < 4; ++j) { + const int x = (board[i] % w) + dx[j]; + const int y = (board[i] / w) + dy[j]; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + + neighbour = dsf_canonify(dsf, w*y + x); + if (square == neighbour) continue; + + neighbour_size = dsf_size(dsf, neighbour); + if (size == neighbour_size) error = TRUE; + + /* find the smallest neighbour to merge with, which + * wouldn't make the region too large. (This is + * guaranteed by the initial value of `min'.) */ + if (neighbour_size < min) { + min = neighbour_size; + merge = neighbour; + } } + + /* if this square is not in error, leave it be */ + if (!error) continue; + + /* if it is, but we can't fix it, retry the whole board. + * Maybe we could fix it by merging the conflicting + * neighbouring region(s) into some of their neighbours, + * but just restarting works out fine. */ + if (merge == SENTINEL) goto retry; + + /* merge with the smallest neighbouring workable region. */ + dsf_merge(dsf, square, merge); + change = TRUE; } - dsf_init(dsf, sz); /* re-init the dsf */ - } - assert(FALSE); /* unreachable */ -} + } while (change); -static int rhofree(int *hop, int start) { - int turtle = start, rabbit = hop[start]; - while (rabbit != turtle) { /* find a cycle */ - turtle = hop[turtle]; - rabbit = hop[hop[rabbit]]; - } - do { /* check that start is in the cycle */ - rabbit = hop[rabbit]; - if (start == rabbit) return 1; - } while (rabbit != turtle); - return 0; + for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i); + merge_ones(board, w, h); + + sfree(dsf); } static void merge(int *dsf, int *connected, int a, int b) { int c; assert(dsf); assert(connected); - assert(rhofree(connected, a)); - assert(rhofree(connected, b)); a = dsf_canonify(dsf, a); b = dsf_canonify(dsf, b); if (a == b) return; @@ -383,8 +466,6 @@ static void merge(int *dsf, int *connected, int a, int b) { c = connected[a]; connected[a] = connected[b]; connected[b] = c; - assert(rhofree(connected, a)); - assert(rhofree(connected, b)); } static void *memdup(const void *ptr, size_t len, size_t esz) { @@ -394,31 +475,36 @@ static void *memdup(const void *ptr, size_t len, size_t esz) { return dup; } -static void expand(int *board, int *connected, int *dsf, int w, int h, - int dst, int src, int *empty, int *learn) { +static void expand(struct solver_state *s, int w, int h, int t, int f) { int j; - assert(board); - assert(connected); - assert(dsf); - assert(empty); - assert(learn); - assert(board[dst] == EMPTY); - assert(board[src] != EMPTY); - board[dst] = board[src]; + assert(s); + assert(s->board[t] == EMPTY); /* expand to empty square */ + assert(s->board[f] != EMPTY); /* expand from non-empty square */ + printv( + "learn: expanding %d from (%d, %d) into (%d, %d)\n", + s->board[f], f % w, f / w, t % w, t / w); + s->board[t] = s->board[f]; for (j = 0; j < 4; ++j) { - const int x = (dst % w) + dx[j]; - const int y = (dst / w) + dy[j]; + const int x = (t % w) + dx[j]; + const int y = (t / w) + dy[j]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] != board[dst]) continue; - merge(dsf, connected, dst, idx); + if (s->board[idx] != s->board[t]) continue; + merge(s->dsf, s->connected, t, idx); + } + --s->nempty; +} + +static void clear_count(int *board, int sz) { + int i; + for (i = 0; i < sz; ++i) { + if (board[i] >= 0) continue; + else if (board[i] == -SENTINEL) board[i] = EMPTY; + else board[i] = -board[i]; } -/* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */ - --*empty; - *learn = TRUE; } -static void flood(int *board, int w, int h, int i, int n) { +static void flood_count(int *board, int w, int h, int i, int n, int *c) { const int sz = w * h; int k; @@ -426,30 +512,23 @@ static void flood(int *board, int w, int h, int i, int n) { else if (board[i] == n) board[i] = -board[i]; else return; + if (--*c == 0) return; + for (k = 0; k < 4; ++k) { const int x = (i % w) + dx[k]; const int y = (i / w) + dy[k]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; - flood(board, w, h, idx, n); + flood_count(board, w, h, idx, n, c); + if (*c == 0) return; } } -static int count_and_clear(int *board, int sz) { - int count = -1; - int i; - for (i = 0; i < sz; ++i) { - if (board[i] >= 0) continue; - ++count; - if (board[i] == -SENTINEL) board[i] = EMPTY; - else board[i] = -board[i]; - } - return count; -} - -static int count(int *board, int w, int h, int i) { - flood(board, w, h, i, board[i]); - return count_and_clear(board, w * h); +static int check_capacity(int *board, int w, int h, int i) { + int n = board[i]; + flood_count(board, w, h, i, board[i], &n); + clear_count(board, w * h); + return n == 0; } static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { @@ -468,7 +547,7 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { root = dsf_canonify(dsf, idx); for (m = 0; m < nhits && root != hits[m]; ++m); if (m < nhits) continue; - /* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */ + printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2); size += dsf_size(dsf, root); assert(dsf_size(dsf, root) >= 1); hits[nhits++] = root; @@ -505,7 +584,8 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { * * CONNECTED COMPONENT FORCED EXPANSION (too small): * When a CC must include a particular square, because otherwise there - * would not be enough room to complete it. + * would not be enough room to complete it. This includes squares not + * adjacent to the CC through learn_critical_square. * +---+---+ * | 2 | _ | * +---+---+ @@ -524,185 +604,518 @@ static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { * * TODO: backtracking. */ -#define EXPAND(a, b)\ -expand(board, connected, dsf, w, h, a, b, &nempty, &learn) -static int solver(const int *orig, int w, int h, char **solution) { +static void filled_square(struct solver_state *s, int w, int h, int i) { + int j; + for (j = 0; j < 4; ++j) { + const int x = (i % w) + dx[j]; + const int y = (i / w) + dy[j]; + const int idx = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[i] == s->board[idx]) + merge(s->dsf, s->connected, i, idx); + } +} + +static void init_solver_state(struct solver_state *s, int w, int h) { const int sz = w * h; + int i; + assert(s); - int *board = memdup(orig, sz, sizeof (int)); - int *dsf = snew_dsf(sz); /* eqv classes: connected components */ - int *connected = snewn(sz, int); /* connected[n] := n.next; */ - /* cyclic disjoint singly linked lists, same partitioning as dsf. - * The lists lets you iterate over a partition given any member */ + s->nempty = 0; + for (i = 0; i < sz; ++i) s->connected[i] = i; + for (i = 0; i < sz; ++i) + if (s->board[i] == EMPTY) ++s->nempty; + else filled_square(s, w, h, i); +} + +static int learn_expand_or_one(struct solver_state *s, int w, int h) { + const int sz = w * h; + int i; + int learn = FALSE; - int nempty = 0; + assert(s); + + for (i = 0; i < sz; ++i) { + int j; + int one = TRUE; + + if (s->board[i] != EMPTY) continue; + + for (j = 0; j < 4; ++j) { + const int x = (i % w) + dx[j]; + const int y = (i / w) + dy[j]; + const int idx = w*y + x; + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[idx] == EMPTY) { + one = FALSE; + continue; + } + if (one && + (s->board[idx] == 1 || + (s->board[idx] >= expandsize(s->board, s->dsf, w, h, + i, s->board[idx])))) + one = FALSE; + if (dsf_size(s->dsf, idx) == s->board[idx]) continue; + assert(s->board[i] == EMPTY); + s->board[i] = -SENTINEL; + if (check_capacity(s->board, w, h, idx)) continue; + assert(s->board[i] == EMPTY); + printv("learn: expanding in one\n"); + expand(s, w, h, i, idx); + learn = TRUE; + break; + } - int learn; + if (j == 4 && one) { + printv("learn: one at (%d, %d)\n", i % w, i / w); + assert(s->board[i] == EMPTY); + s->board[i] = 1; + assert(s->nempty); + --s->nempty; + learn = TRUE; + } + } + return learn; +} +static int learn_blocked_expansion(struct solver_state *s, int w, int h) { + const int sz = w * h; int i; - for (i = 0; i < sz; i++) connected[i] = i; + int learn = FALSE; + assert(s); + /* for every connected component */ for (i = 0; i < sz; ++i) { + int exp = SENTINEL; int j; - if (board[i] == EMPTY) ++nempty; - else for (j = 0; j < 4; ++j) { - const int x = (i % w) + dx[j]; - const int y = (i / w) + dy[j]; - const int idx = w*y + x; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[i] == board[idx]) merge(dsf, connected, i, idx); - } - } -/* puts("trying to solve this:"); - print_board(board, w, h); */ + if (s->board[i] == EMPTY) continue; + j = dsf_canonify(s->dsf, i); + + /* (but only for each connected component) */ + if (i != j) continue; + + /* (and not if it's already complete) */ + if (dsf_size(s->dsf, j) == s->board[j]) continue; + + /* for each square j _in_ the connected component */ + do { + int k; + printv(" looking at (%d, %d)\n", j % w, j / w); + + /* for each neighbouring square (idx) */ + for (k = 0; k < 4; ++k) { + const int x = (j % w) + dx[k]; + const int y = (j / w) + dy[k]; + const int idx = w*y + x; + int size; + /* int l; + int nhits = 0; + int hits[4]; */ + if (x < 0 || x >= w || y < 0 || y >= h) continue; + if (s->board[idx] != EMPTY) continue; + if (exp == idx) continue; + printv("\ttrying to expand onto (%d, %d)\n", x, y); + + /* find out the would-be size of the new connected + * component if we actually expanded into idx */ + /* + size = 1; + for (l = 0; l < 4; ++l) { + const int lx = x + dx[l]; + const int ly = y + dy[l]; + const int idxl = w*ly + lx; + int root; + int m; + if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue; + if (board[idxl] != board[j]) continue; + root = dsf_canonify(dsf, idxl); + for (m = 0; m < nhits && root != hits[m]; ++m); + if (m != nhits) continue; + // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); + size += dsf_size(dsf, root); + assert(dsf_size(dsf, root) >= 1); + hits[nhits++] = root; + } + */ - /* TODO: refactor this code, it's too long */ - do { - int i; - learn = FALSE; + size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]); - /* for every connected component */ - for (i = 0; i < sz; ++i) { - int exp = SENTINEL; - int j; - - /* If the component consists of empty squares */ - if (board[i] == EMPTY) { - int k; - int one = TRUE; - for (k = 0; k < 4; ++k) { - const int x = (i % w) + dx[k]; - const int y = (i / w) + dy[k]; - const int idx = w*y + x; - int n; - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] == EMPTY) { - one = FALSE; - continue; - } - if (one && - (board[idx] == 1 || - (board[idx] >= expandsize(board, dsf, w, h, - i, board[idx])))) - one = FALSE; - assert(board[i] == EMPTY); - board[i] = -SENTINEL; - n = count(board, w, h, idx); - assert(board[i] == EMPTY); - if (n >= board[idx]) continue; - EXPAND(i, idx); - break; - } - if (k == 4 && one) { - assert(board[i] == EMPTY); - board[i] = 1; - assert(nempty); - --nempty; - learn = TRUE; - } - continue; + /* ... and see if that size is too big, or if we + * have other expansion candidates. Otherwise + * remember the (so far) only candidate. */ + + printv("\tthat would give a size of %d\n", size); + if (size > s->board[j]) continue; + /* printv("\tnow knowing %d expansions\n", nexpand + 1); */ + if (exp != SENTINEL) goto next_i; + assert(exp != idx); + exp = idx; } - /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */ - - j = dsf_canonify(dsf, i); - - /* (but only for each connected component) */ - if (i != j) continue; - - /* (and not if it's already complete) */ - if (dsf_size(dsf, j) == board[j]) continue; - - /* for each square j _in_ the connected component */ - do { - int k; - /* printf(" looking at (%d, %d)\n", j % w, j / w); */ - - /* for each neighbouring square (idx) */ - for (k = 0; k < 4; ++k) { - const int x = (j % w) + dx[k]; - const int y = (j / w) + dy[k]; - const int idx = w*y + x; - int size; - /* int l; - int nhits = 0; - int hits[4]; */ - if (x < 0 || x >= w || y < 0 || y >= h) continue; - if (board[idx] != EMPTY) continue; - if (exp == idx) continue; - /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */ - - /* find out the would-be size of the new connected - * component if we actually expanded into idx */ - /* - size = 1; - for (l = 0; l < 4; ++l) { - const int lx = x + dx[l]; - const int ly = y + dy[l]; - const int idxl = w*ly + lx; - int root; - int m; - if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue; - if (board[idxl] != board[j]) continue; - root = dsf_canonify(dsf, idxl); - for (m = 0; m < nhits && root != hits[m]; ++m); - if (m != nhits) continue; - // printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); - size += dsf_size(dsf, root); - assert(dsf_size(dsf, root) >= 1); - hits[nhits++] = root; - } - */ - - size = expandsize(board, dsf, w, h, idx, board[j]); - - /* ... and see if that size is too big, or if we - * have other expansion candidates. Otherwise - * remember the (so far) only candidate. */ - - /* printf("\tthat would give a size of %d\n", size); */ - if (size > board[j]) continue; - /* printf("\tnow knowing %d expansions\n", nexpand + 1); */ - if (exp != SENTINEL) goto next_i; - assert(exp != idx); - exp = idx; - } - j = connected[j]; /* next square in the same CC */ - assert(board[i] == board[j]); - } while (j != i); - /* end: for each square j _in_ the connected component */ + j = s->connected[j]; /* next square in the same CC */ + assert(s->board[i] == s->board[j]); + } while (j != i); + /* end: for each square j _in_ the connected component */ - if (exp == SENTINEL) continue; - /* printf("expand b: %d -> %d\n", i, exp); */ - EXPAND(exp, i); + if (exp == SENTINEL) continue; + printv("learning to expand\n"); + expand(s, w, h, exp, i); + learn = TRUE; - next_i: - ; - } - /* end: for each connected component */ - } while (learn && nempty); + next_i: + ; + } + /* end: for each connected component */ + return learn; +} - /* puts("best guess:"); - print_board(board, w, h); */ +static int learn_critical_square(struct solver_state *s, int w, int h) { + const int sz = w * h; + int i; + int learn = FALSE; + assert(s); + + /* for each connected component */ + for (i = 0; i < sz; ++i) { + int j, slack; + if (s->board[i] == EMPTY) continue; + if (i != dsf_canonify(s->dsf, i)) continue; + slack = s->board[i] - dsf_size(s->dsf, i); + if (slack == 0) continue; + assert(s->board[i] != 1); + /* for each empty square */ + for (j = 0; j < sz; ++j) { + if (s->board[j] == EMPTY) { + /* if it's too far away from the CC, don't bother */ + int k = i, jx = j % w, jy = j / w; + do { + int kx = k % w, ky = k / w; + if (abs(kx - jx) + abs(ky - jy) <= slack) break; + k = s->connected[k]; + } while (i != k); + if (i == k) continue; /* not within range */ + } else continue; + s->board[j] = -SENTINEL; + if (check_capacity(s->board, w, h, i)) continue; + /* if not expanding s->board[i] to s->board[j] implies + * that s->board[i] can't reach its full size, ... */ + assert(s->nempty); + printv( + "learn: ds %d at (%d, %d) blocking (%d, %d)\n", + s->board[i], j % w, j / w, i % w, i / w); + --s->nempty; + s->board[j] = s->board[i]; + filled_square(s, w, h, j); + learn = TRUE; + } + } + return learn; +} + +#if 0 +static void print_bitmap(int *bitmap, int w, int h) { + if (verbose) { + int x, y; + for (y = 0; y < h; y++) { + for (x = 0; x < w; x++) { + printv(" %03x", bm[y*w+x]); + } + printv("\n"); + } + } +} +#endif + +static int learn_bitmap_deductions(struct solver_state *s, int w, int h) +{ + const int sz = w * h; + int *bm = s->bm; + int *dsf = s->bmdsf; + int *minsize = s->bmminsize; + int x, y, i, j, n; + int learn = FALSE; + + /* + * This function does deductions based on building up a bitmap + * which indicates the possible numbers that can appear in each + * grid square. If we can rule out all but one possibility for a + * particular square, then we've found out the value of that + * square. In particular, this is one of the few forms of + * deduction capable of inferring the existence of a 'ghost + * region', i.e. a region which has none of its squares filled in + * at all. + * + * The reasoning goes like this. A currently unfilled square S can + * turn out to contain digit n in exactly two ways: either S is + * part of an n-region which also includes some currently known + * connected component of squares with n in, or S is part of an + * n-region separate from _all_ currently known connected + * components. If we can rule out both possibilities, then square + * S can't contain digit n at all. + * + * The former possibility: if there's a region of size n + * containing both S and some existing component C, then that + * means the distance from S to C must be small enough that C + * could be extended to include S without becoming too big. So we + * can do a breadth-first search out from all existing components + * with n in them, to identify all the squares which could be + * joined to any of them. + * + * The latter possibility: if there's a region of size n that + * doesn't contain _any_ existing component, then it also can't + * contain any square adjacent to an existing component either. So + * we can identify all the EMPTY squares not adjacent to any + * existing square with n in, and group them into connected + * components; then any component of size less than n is ruled + * out, because there wouldn't be room to create a completely new + * n-region in it. + * + * In fact we process these possibilities in the other order. + * First we find all the squares not adjacent to an existing + * square with n in; then we winnow those by removing too-small + * connected components, to get the set of squares which could + * possibly be part of a brand new n-region; and finally we do the + * breadth-first search to add in the set of squares which could + * possibly be added to some existing n-region. + */ + + /* + * Start by initialising our bitmap to 'all numbers possible in + * all squares'. + */ + for (y = 0; y < h; y++) + for (x = 0; x < w; x++) + bm[y*w+x] = (1 << 10) - (1 << 1); /* bits 1,2,...,9 now set */ +#if 0 + printv("initial bitmap:\n"); + print_bitmap(bm, w, h); +#endif + + /* + * Now completely zero out the bitmap for squares that are already + * filled in (we aren't interested in those anyway). Also, for any + * filled square, eliminate its number from all its neighbours + * (because, as discussed above, the neighbours couldn't be part + * of a _new_ region with that number in it, and that's the case + * we consider first). + */ + for (y = 0; y < h; y++) { + for (x = 0; x < w; x++) { + i = y*w+x; + n = s->board[i]; + + if (n != EMPTY) { + bm[i] = 0; + + if (x > 0) + bm[i-1] &= ~(1 << n); + if (x+1 < w) + bm[i+1] &= ~(1 << n); + if (y > 0) + bm[i-w] &= ~(1 << n); + if (y+1 < h) + bm[i+w] &= ~(1 << n); + } + } + } +#if 0 + printv("bitmap after filled squares:\n"); + print_bitmap(bm, w, h); +#endif + + /* + * Now, for each n, we separately find the connected components of + * squares for which n is still a possibility. Then discard any + * component of size < n, because that component is too small to + * have a completely new n-region in it. + */ + for (n = 1; n <= 9; n++) { + dsf_init(dsf, sz); + + /* Build the dsf */ + for (y = 0; y < h; y++) + for (x = 0; x+1 < w; x++) + if (bm[y*w+x] & bm[y*w+(x+1)] & (1 << n)) + dsf_merge(dsf, y*w+x, y*w+(x+1)); + for (y = 0; y+1 < h; y++) + for (x = 0; x < w; x++) + if (bm[y*w+x] & bm[(y+1)*w+x] & (1 << n)) + dsf_merge(dsf, y*w+x, (y+1)*w+x); + + /* Query the dsf */ + for (i = 0; i < sz; i++) + if ((bm[i] & (1 << n)) && dsf_size(dsf, i) < n) + bm[i] &= ~(1 << n); + } +#if 0 + printv("bitmap after winnowing small components:\n"); + print_bitmap(bm, w, h); +#endif + + /* + * Now our bitmap includes every square which could be part of a + * completely new region, of any size. Extend it to include + * squares which could be part of an existing region. + */ + for (n = 1; n <= 9; n++) { + /* + * We're going to do a breadth-first search starting from + * existing connected components with cell value n, to find + * all cells they might possibly extend into. + * + * The quantity we compute, for each square, is 'minimum size + * that any existing CC would have to have if extended to + * include this square'. So squares already _in_ an existing + * CC are initialised to the size of that CC; then we search + * outwards using the rule that if a square's score is j, then + * its neighbours can't score more than j+1. + * + * Scores are capped at n+1, because if a square scores more + * than n then that's enough to know it can't possibly be + * reached by extending an existing region - we don't need to + * know exactly _how far_ out of reach it is. + */ + for (i = 0; i < sz; i++) { + if (s->board[i] == n) { + /* Square is part of an existing CC. */ + minsize[i] = dsf_size(s->dsf, i); + } else { + /* Otherwise, initialise to the maximum score n+1; + * we'll reduce this later if we find a neighbouring + * square with a lower score. */ + minsize[i] = n+1; + } + } + + for (j = 1; j < n; j++) { + /* + * Find neighbours of cells scoring j, and set their score + * to at most j+1. + * + * Doing the BFS this way means we need n passes over the + * grid, which isn't entirely optimal but it seems to be + * fast enough for the moment. This could probably be + * improved by keeping a linked-list queue of cells in + * some way, but I think you'd have to be a bit careful to + * insert things into the right place in the queue; this + * way is easier not to get wrong. + */ + for (y = 0; y < h; y++) { + for (x = 0; x < w; x++) { + i = y*w+x; + if (minsize[i] == j) { + if (x > 0 && minsize[i-1] > j+1) + minsize[i-1] = j+1; + if (x+1 < w && minsize[i+1] > j+1) + minsize[i+1] = j+1; + if (y > 0 && minsize[i-w] > j+1) + minsize[i-w] = j+1; + if (y+1 < h && minsize[i+w] > j+1) + minsize[i+w] = j+1; + } + } + } + } + + /* + * Now, every cell scoring at most n should have its 1<> 8) { val >>= 8; n += 8; } + if (val >> 4) { val >>= 4; n += 4; } + if (val >> 2) { val >>= 2; n += 2; } + if (val >> 1) { val >>= 1; n += 1; } + + /* Double-check that we ended up with a sensible + * answer. */ + assert(1 <= n); + assert(n <= 9); + assert(bm[i] == (1 << n)); + + if (s->board[i] == EMPTY) { + printv("learn: %d is only possibility at (%d, %d)\n", + n, i % w, i / w); + s->board[i] = n; + filled_square(s, w, h, i); + assert(s->nempty); + --s->nempty; + learn = TRUE; + } + } + } + + return learn; +} + +static int solver(const int *orig, int w, int h, char **solution) { + const int sz = w * h; + + struct solver_state ss; + ss.board = memdup(orig, sz, sizeof (int)); + ss.dsf = snew_dsf(sz); /* eqv classes: connected components */ + ss.connected = snewn(sz, int); /* connected[n] := n.next; */ + /* cyclic disjoint singly linked lists, same partitioning as dsf. + * The lists lets you iterate over a partition given any member */ + ss.bm = snewn(sz, int); + ss.bmdsf = snew_dsf(sz); + ss.bmminsize = snewn(sz, int); + + printv("trying to solve this:\n"); + print_board(ss.board, w, h); + + init_solver_state(&ss, w, h); + do { + if (learn_blocked_expansion(&ss, w, h)) continue; + if (learn_expand_or_one(&ss, w, h)) continue; + if (learn_critical_square(&ss, w, h)) continue; + if (learn_bitmap_deductions(&ss, w, h)) continue; + break; + } while (ss.nempty); + + printv("best guess:\n"); + print_board(ss.board, w, h); if (solution) { int i; - assert(*solution == NULL); *solution = snewn(sz + 2, char); **solution = 's'; - for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0'; + for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0'; (*solution)[sz + 1] = '\0'; /* We don't need the \0 for execute_move (the only user) * I'm just being printf-friendly in case I wanna print */ } - sfree(dsf); - sfree(board); - sfree(connected); + sfree(ss.dsf); + sfree(ss.board); + sfree(ss.connected); + sfree(ss.bm); + sfree(ss.bmdsf); + sfree(ss.bmminsize); - return !nempty; + return !ss.nempty; } static int *make_dsf(int *dsf, int *board, const int w, const int h) { @@ -727,95 +1140,159 @@ static int *make_dsf(int *dsf, int *board, const int w, const int h) { return dsf; } -/* -static int filled(int *board, int *randomize, int k, int n) { - int i; - if (board == NULL) return FALSE; - if (randomize == NULL) return FALSE; - if (k > n) return FALSE; - for (i = 0; i < k; ++i) if (board[randomize[i]] == 0) return FALSE; - for (; i < n; ++i) if (board[randomize[i]] != 0) return FALSE; - return TRUE; -} -*/ - -static int *g_board; -static int compare(const void *pa, const void *pb) { - if (!g_board) return 0; - return g_board[*(const int *)pb] - g_board[*(const int *)pa]; -} - -static char *new_game_desc(game_params *params, random_state *rs, - char **aux, int interactive) +static void minimize_clue_set(int *board, int w, int h, random_state *rs) { - const int w = params->w; - const int h = params->h; const int sz = w * h; - int *board = snewn(sz, int); - int *randomize = snewn(sz, int); - int *solver_board = snewn(sz, int); - char *game_description = snewn(sz + 1, char); - int i; + int *shuf = snewn(sz, int), i; + int *dsf, *next; + + for (i = 0; i < sz; ++i) shuf[i] = i; + shuffle(shuf, sz, sizeof (int), rs); + /* + * First, try to eliminate an entire region at a time if possible, + * because inferring the existence of a completely unclued region + * is a particularly good aspect of this puzzle type and we want + * to encourage it to happen. + * + * Begin by identifying the regions as linked lists of cells using + * the 'next' array. + */ + dsf = make_dsf(NULL, board, w, h); + next = snewn(sz, int); for (i = 0; i < sz; ++i) { - board[i] = EMPTY; - randomize[i] = i; + int j = dsf_canonify(dsf, i); + if (i == j) { + /* First cell of a region; set next[i] = -1 to indicate + * end-of-list. */ + next[i] = -1; + } else { + /* Add this cell to a region which already has a + * linked-list head, by pointing the canonical element j + * at this one, and pointing this one in turn at wherever + * j previously pointed. (This should end up with the + * elements linked in the order 1,n,n-1,n-2,...,2, which + * is a bit weird-looking, but any order is fine.) + */ + assert(j < i); + next[i] = next[j]; + next[j] = i; + } } - make_board(board, w, h, rs); - memcpy(solver_board, board, sz * sizeof (int)); - - g_board = board; - qsort(randomize, sz, sizeof (int), compare); - - /* since more clues only helps and never hurts, one pass will do - * just fine: if we can remove clue n with k clues of index > n, - * we could have removed clue n with >= k clues of index > n. - * So an additional pass wouldn't do anything [use induction]. */ + /* + * Now loop over the grid cells in our shuffled order, and each + * time we encounter a region for the first time, try to remove it + * all. Then we set next[canonical index] to -2 rather than -1, to + * mark it as already tried. + * + * Doing this in a loop over _cells_, rather than extracting and + * shuffling a list of _regions_, is intended to skew the + * probabilities towards trying to remove larger regions first + * (but without anything as crudely predictable as enforcing that + * we _always_ process regions in descending size order). Region + * removals might well be mutually exclusive, and larger ghost + * regions are more interesting, so we want to bias towards them + * if we can. + */ for (i = 0; i < sz; ++i) { - solver_board[randomize[i]] = EMPTY; - if (!solver(solver_board, w, h, NULL)) - solver_board[randomize[i]] = board[randomize[i]]; + int j = dsf_canonify(dsf, shuf[i]); + if (next[j] != -2) { + int tmp = board[j]; + int k; + + /* Blank out the whole thing. */ + for (k = j; k >= 0; k = next[k]) + board[k] = EMPTY; + + if (!solver(board, w, h, NULL)) { + /* Wasn't still solvable; reinstate it all */ + for (k = j; k >= 0; k = next[k]) + board[k] = tmp; + } + + /* Either way, don't try this region again. */ + next[j] = -2; + } } + sfree(next); + sfree(dsf); + /* + * Now go through individual cells, in the same shuffled order, + * and try to remove each one by itself. + */ for (i = 0; i < sz; ++i) { - assert(solver_board[i] >= 0); - assert(solver_board[i] < 10); - game_description[i] = solver_board[i] + '0'; + int tmp = board[shuf[i]]; + board[shuf[i]] = EMPTY; + if (!solver(board, w, h, NULL)) board[shuf[i]] = tmp; } - game_description[sz] = '\0'; -/* - solver(solver_board, w, h, aux); - print_board(solver_board, w, h); -*/ + sfree(shuf); +} + +static int encode_run(char *buffer, int run) +{ + int i = 0; + for (; run > 26; run -= 26) + buffer[i++] = 'z'; + if (run) + buffer[i++] = 'a' - 1 + run; + return i; +} + +static char *new_game_desc(const game_params *params, random_state *rs, + char **aux, int interactive) +{ + const int w = params->w, h = params->h, sz = w * h; + int *board = snewn(sz, int), i, j, run; + char *description = snewn(sz + 1, char); + + make_board(board, w, h, rs); + minimize_clue_set(board, w, h, rs); + + for (run = j = i = 0; i < sz; ++i) { + assert(board[i] >= 0); + assert(board[i] < 10); + if (board[i] == 0) { + ++run; + } else { + j += encode_run(description + j, run); + run = 0; + description[j++] = board[i] + '0'; + } + } + j += encode_run(description + j, run); + description[j++] = '\0'; - sfree(randomize); - sfree(solver_board); sfree(board); - return game_description; + return sresize(description, j, char); } -static char *validate_desc(game_params *params, char *desc) +static char *validate_desc(const game_params *params, const char *desc) { - int i; const int sz = params->w * params->h; const char m = '0' + max(max(params->w, params->h), 3); - - /* printf("desc = '%s'; sz = %d\n", desc, sz); */ - - for (i = 0; desc[i] && i < sz; ++i) - if (!isdigit((unsigned char) *desc)) - return "non-digit in string"; - else if (desc[i] > m) - return "too large digit in string"; - if (desc[i]) return "string too long"; - else if (i < sz) return "string too short"; - return NULL; + int area; + + for (area = 0; *desc; ++desc) { + if (*desc >= 'a' && *desc <= 'z') area += *desc - 'a' + 1; + else if (*desc >= '0' && *desc <= m) ++area; + else { + static char s[] = "Invalid character '%""' in game description"; + int n = sprintf(s, "Invalid character '%1c' in game description", + *desc); + assert(n + 1 <= lenof(s)); /* +1 for the terminating NUL */ + return s; + } + if (area > sz) return "Too much data to fit in grid"; + } + return (area < sz) ? "Not enough data to fill grid" : NULL; } -static game_state *new_game(midend *me, game_params *params, char *desc) +static game_state *new_game(midend *me, const game_params *params, + const char *desc) { game_state *state = snew(game_state); int sz = params->w * params->h; @@ -826,13 +1303,20 @@ static game_state *new_game(midend *me, game_params *params, char *desc) state->shared->refcnt = 1; state->shared->params = *params; /* struct copy */ state->shared->clues = snewn(sz, int); - for (i = 0; i < sz; ++i) state->shared->clues[i] = desc[i] - '0'; + + for (i = 0; *desc; ++desc) { + if (*desc >= 'a' && *desc <= 'z') { + int j = *desc - 'a' + 1; + assert(i + j <= sz); + for (; j; --j) state->shared->clues[i++] = 0; + } else state->shared->clues[i++] = *desc - '0'; + } state->board = memdup(state->shared->clues, sz, sizeof (int)); return state; } -static game_state *dup_game(game_state *state) +static game_state *dup_game(const game_state *state) { const int sz = state->shared->params.w * state->shared->params.h; game_state *ret = snew(game_state); @@ -857,16 +1341,18 @@ static void free_game(game_state *state) sfree(state); } -static char *solve_game(game_state *state, game_state *currstate, - char *aux, char **error) +static char *solve_game(const game_state *state, const game_state *currstate, + const char *aux, char **error) { if (aux == NULL) { const int w = state->shared->params.w; const int h = state->shared->params.h; - if (!solver(state->board, w, h, &aux)) + char *new_aux; + if (!solver(state->board, w, h, &new_aux)) *error = "Sorry, I couldn't find a solution"; + return new_aux; } - return aux; + return dupstr(aux); } /***************************************************************************** @@ -874,41 +1360,51 @@ static char *solve_game(game_state *state, game_state *currstate, *****************************************************************************/ struct game_ui { - int x, y; /* highlighted square, or (-1, -1) if none */ + int *sel; /* w*h highlighted squares, or NULL */ + int cur_x, cur_y, cur_visible, keydragging; }; -static game_ui *new_ui(game_state *state) +static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); - ui->x = ui->y = -1; + ui->sel = NULL; + ui->cur_x = ui->cur_y = ui->cur_visible = ui->keydragging = 0; return ui; } static void free_ui(game_ui *ui) { + if (ui->sel) + sfree(ui->sel); sfree(ui); } -static char *encode_ui(game_ui *ui) +static char *encode_ui(const game_ui *ui) { return NULL; } -static void decode_ui(game_ui *ui, char *encoding) +static void decode_ui(game_ui *ui, const char *encoding) { } -static void game_changed_state(game_ui *ui, game_state *oldstate, - game_state *newstate) +static void game_changed_state(game_ui *ui, const game_state *oldstate, + const game_state *newstate) { + /* Clear any selection */ + if (ui->sel) { + sfree(ui->sel); + ui->sel = NULL; + } + ui->keydragging = FALSE; } #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) -#define BORDER_WIDTH (TILE_SIZE / 32) +#define BORDER_WIDTH (max(TILE_SIZE / 32, 1)) struct game_drawstate { struct game_params params; @@ -918,7 +1414,8 @@ struct game_drawstate { int *dsf_scratch, *border_scratch; }; -static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, +static char *interpret_move(const game_state *state, game_ui *ui, + const game_drawstate *ds, int x, int y, int button) { const int w = state->shared->params.w; @@ -927,74 +1424,146 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1; const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1; + char *move = NULL; + int i; + assert(ui); assert(ds); button &= ~MOD_MASK; - if (tx >= 0 && tx < w && ty >= 0 && ty < h) { + if (button == LEFT_BUTTON || button == LEFT_DRAG) { + /* A left-click anywhere will clear the current selection. */ if (button == LEFT_BUTTON) { - if ((tx == ui->x && ty == ui->y) || state->shared->clues[w*ty+tx]) - ui->x = ui->y = -1; - else ui->x = tx, ui->y = ty; - return ""; /* redraw */ + if (ui->sel) { + sfree(ui->sel); + ui->sel = NULL; + } + } + if (tx >= 0 && tx < w && ty >= 0 && ty < h) { + if (!ui->sel) { + ui->sel = snewn(w*h, int); + memset(ui->sel, 0, w*h*sizeof(int)); + } + if (!state->shared->clues[w*ty+tx]) + ui->sel[w*ty+tx] = 1; } + ui->cur_visible = 0; + return ""; /* redraw */ } - assert((ui->x == -1) == (ui->y == -1)); - if (ui->x == -1) return NULL; - assert(state->shared->clues[w*ui->y + ui->x] == 0); - - switch (button) { - case ' ': - case '\r': - case '\n': - case '\b': - case '\177': - button = 0; - break; - default: - if (!isdigit(button)) return NULL; - button -= '0'; - if (button > (w == 2 && h == 2? 3: max(w, h))) return NULL; + if (IS_CURSOR_MOVE(button)) { + ui->cur_visible = 1; + move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0); + if (ui->keydragging) goto select_square; + return ""; } + if (button == CURSOR_SELECT) { + if (!ui->cur_visible) { + ui->cur_visible = 1; + return ""; + } + ui->keydragging = !ui->keydragging; + if (!ui->keydragging) return ""; - { - const int i = w*ui->y + ui->x; - char buf[64]; - ui->x = ui->y = -1; - if (state->board[i] == button) { - return ""; /* no change - just update ui */ - } else { - sprintf(buf, "%d_%d", i, button); - return dupstr(buf); + select_square: + if (!ui->sel) { + ui->sel = snewn(w*h, int); + memset(ui->sel, 0, w*h*sizeof(int)); + } + if (!state->shared->clues[w*ui->cur_y + ui->cur_x]) + ui->sel[w*ui->cur_y + ui->cur_x] = 1; + return ""; + } + if (button == CURSOR_SELECT2) { + if (!ui->cur_visible) { + ui->cur_visible = 1; + return ""; } + if (!ui->sel) { + ui->sel = snewn(w*h, int); + memset(ui->sel, 0, w*h*sizeof(int)); + } + ui->keydragging = FALSE; + if (!state->shared->clues[w*ui->cur_y + ui->cur_x]) + ui->sel[w*ui->cur_y + ui->cur_x] ^= 1; + for (i = 0; i < w*h && !ui->sel[i]; i++); + if (i == w*h) { + sfree(ui->sel); + ui->sel = NULL; + } + return ""; + } + + if (button == '\b' || button == 27) { + sfree(ui->sel); + ui->sel = NULL; + ui->keydragging = FALSE; + return ""; } + + if (button < '0' || button > '9') return NULL; + button -= '0'; + if (button > (w == 2 && h == 2 ? 3 : max(w, h))) return NULL; + ui->keydragging = FALSE; + + for (i = 0; i < w*h; i++) { + char buf[32]; + if ((ui->sel && ui->sel[i]) || + (!ui->sel && ui->cur_visible && (w*ui->cur_y+ui->cur_x) == i)) { + if (state->shared->clues[i] != 0) continue; /* in case cursor is on clue */ + if (state->board[i] != button) { + sprintf(buf, "%s%d", move ? "," : "", i); + if (move) { + move = srealloc(move, strlen(move)+strlen(buf)+1); + strcat(move, buf); + } else { + move = smalloc(strlen(buf)+1); + strcpy(move, buf); + } + } + } + } + if (move) { + char buf[32]; + sprintf(buf, "_%d", button); + move = srealloc(move, strlen(move)+strlen(buf)+1); + strcat(move, buf); + } + if (!ui->sel) return move ? move : NULL; + sfree(ui->sel); + ui->sel = NULL; + /* Need to update UI at least, as we cleared the selection */ + return move ? move : ""; } -static game_state *execute_move(game_state *state, char *move) +static game_state *execute_move(const game_state *state, const char *move) { - game_state *new_state; + game_state *new_state = NULL; + const int sz = state->shared->params.w * state->shared->params.h; if (*move == 's') { - const int sz = state->shared->params.w * state->shared->params.h; int i = 0; new_state = dup_game(state); for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0'; new_state->cheated = TRUE; } else { - char *endptr; - const int i = strtol(move, &endptr, errno = 0); int value; - if (errno == ERANGE) return NULL; - if (endptr == move) return NULL; - if (*endptr != '_') return NULL; - move = endptr + 1; - value = strtol(move, &endptr, 0); - if (endptr == move) return NULL; - if (*endptr != '\0') return NULL; + char *endptr, *delim = strchr(move, '_'); + if (!delim) goto err; + value = strtol(delim+1, &endptr, 0); + if (*endptr || endptr == delim+1) goto err; + if (value < 0 || value > 9) goto err; new_state = dup_game(state); - new_state->board[i] = value; + while (*move) { + const int i = strtol(move, &endptr, 0); + if (endptr == move) goto err; + if (i < 0 || i >= sz) goto err; + new_state->board[i] = value; + if (*endptr == '_') break; + if (*endptr != ',') goto err; + move = endptr + 1; + } } /* @@ -1013,6 +1582,10 @@ static game_state *execute_move(game_state *state, char *move) } return new_state; + +err: + if (new_state) free_game(new_state); + return NULL; } /* ---------------------------------------------------------------------- @@ -1029,10 +1602,11 @@ enum { COL_CORRECT, COL_ERROR, COL_USER, + COL_CURSOR, NCOLOURS }; -static void game_compute_size(game_params *params, int tilesize, +static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { *x = (params->w + 1) * tilesize; @@ -1040,7 +1614,7 @@ static void game_compute_size(game_params *params, int tilesize, } static void game_set_size(drawing *dr, game_drawstate *ds, - game_params *params, int tilesize) + const game_params *params, int tilesize) { ds->tilesize = tilesize; } @@ -1063,6 +1637,10 @@ static float *game_colours(frontend *fe, int *ncolours) ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_CURSOR * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; + ret[COL_CURSOR * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; + ret[COL_CURSOR * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; + ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; @@ -1075,7 +1653,7 @@ static float *game_colours(frontend *fe, int *ncolours) return ret; } -static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) +static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; @@ -1110,10 +1688,11 @@ static void game_free_drawstate(drawing *dr, game_drawstate *ds) #define BORDER_DR 0x020 #define BORDER_UL 0x040 #define BORDER_DL 0x080 -#define CURSOR_BG 0x100 +#define HIGH_BG 0x100 #define CORRECT_BG 0x200 #define ERROR_BG 0x400 #define USER_COL 0x800 +#define CURSOR_SQ 0x1000 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, int n, int flags) @@ -1121,18 +1700,32 @@ static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, assert(dr); assert(ds); + /* + * Clip to the grid square. + */ + clip(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, + TILE_SIZE, TILE_SIZE); + /* * Clear the square. */ draw_rect(dr, - BORDER + x*TILE_SIZE + 1, - BORDER + y*TILE_SIZE + 1, - TILE_SIZE - 1, - TILE_SIZE - 1, - (flags & CURSOR_BG ? COL_HIGHLIGHT : + BORDER + x*TILE_SIZE, + BORDER + y*TILE_SIZE, + TILE_SIZE, + TILE_SIZE, + (flags & HIGH_BG ? COL_HIGHLIGHT : flags & ERROR_BG ? COL_ERROR : flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND)); + /* + * Draw the grid lines. + */ + draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, + BORDER + (x+1)*TILE_SIZE, BORDER + y*TILE_SIZE, COL_GRID); + draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, + BORDER + x*TILE_SIZE, BORDER + (y+1)*TILE_SIZE, COL_GRID); + /* * Draw the number. */ @@ -1209,16 +1802,28 @@ static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, BORDER_WIDTH, BORDER_WIDTH, COL_GRID); - + + if (flags & CURSOR_SQ) { + int coff = TILE_SIZE/8; + draw_rect_outline(dr, + BORDER + x*TILE_SIZE + coff, + BORDER + y*TILE_SIZE + coff, + TILE_SIZE - coff*2, + TILE_SIZE - coff*2, + COL_CURSOR); + } + + unclip(dr); + draw_update(dr, - BORDER + x*TILE_SIZE - 1, - BORDER + y*TILE_SIZE - 1, - TILE_SIZE + 3, - TILE_SIZE + 3); + BORDER + x*TILE_SIZE, + BORDER + y*TILE_SIZE, + TILE_SIZE, + TILE_SIZE); } -static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state, - game_ui *ui, int flashy, int borders, int shading) +static void draw_grid(drawing *dr, game_drawstate *ds, const game_state *state, + const game_ui *ui, int flashy, int borders, int shading) { const int w = state->shared->params.w; const int h = state->shared->params.h; @@ -1291,20 +1896,38 @@ static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state, /* * Determine what we need to draw in this square. */ - int v = state->board[y*w+x]; + int i = y*w+x, v = state->board[i]; int flags = 0; if (flashy || !shading) { /* clear all background flags */ - } else if (x == ui->x && y == ui->y) { - flags |= CURSOR_BG; + } else if (ui && ui->sel && ui->sel[i]) { + flags |= HIGH_BG; } else if (v) { - int size = dsf_size(ds->dsf_scratch, y*w+x); + int size = dsf_size(ds->dsf_scratch, i); if (size == v) flags |= CORRECT_BG; else if (size > v) flags |= ERROR_BG; + else { + int rt = dsf_canonify(ds->dsf_scratch, i), j; + for (j = 0; j < w*h; ++j) { + int k; + if (dsf_canonify(ds->dsf_scratch, j) != rt) continue; + for (k = 0; k < 4; ++k) { + const int xx = j % w + dx[k], yy = j / w + dy[k]; + if (xx >= 0 && xx < w && yy >= 0 && yy < h && + state->board[yy*w + xx] == EMPTY) + goto noflag; + } + } + flags |= ERROR_BG; + noflag: + ; + } } + if (ui && ui->cur_visible && x == ui->cur_x && y == ui->cur_y) + flags |= CURSOR_SQ; /* * Borders at the very edges of the grid are @@ -1356,8 +1979,9 @@ static void draw_grid(drawing *dr, game_drawstate *ds, game_state *state, } } -static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, - game_state *state, int dir, game_ui *ui, +static void game_redraw(drawing *dr, game_drawstate *ds, + const game_state *oldstate, const game_state *state, + int dir, const game_ui *ui, float animtime, float flashtime) { const int w = state->shared->params.w; @@ -1374,7 +1998,8 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, * should start by drawing a big background-colour rectangle * covering the whole window. */ - draw_rect(dr, 0, 0, 10*ds->tilesize, 10*ds->tilesize, COL_BACKGROUND); + draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER, + COL_BACKGROUND); /* * Smaller black rectangle which is the main grid. @@ -1384,20 +2009,22 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, h*TILE_SIZE + 2*BORDER_WIDTH + 1, COL_GRID); + draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER); + ds->started = TRUE; } draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE); } -static float game_anim_length(game_state *oldstate, game_state *newstate, - int dir, game_ui *ui) +static float game_anim_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } -static float game_flash_length(game_state *oldstate, game_state *newstate, - int dir, game_ui *ui) +static float game_flash_length(const game_state *oldstate, + const game_state *newstate, int dir, game_ui *ui) { assert(oldstate); assert(newstate); @@ -1409,12 +2036,17 @@ static float game_flash_length(game_state *oldstate, game_state *newstate, return 0.0F; } -static int game_timing_state(game_state *state, game_ui *ui) +static int game_status(const game_state *state) +{ + return state->completed ? +1 : 0; +} + +static int game_timing_state(const game_state *state, game_ui *ui) { return TRUE; } -static void game_print_size(game_params *params, float *x, float *y) +static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; @@ -1422,11 +2054,11 @@ static void game_print_size(game_params *params, float *x, float *y) * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); - *x = pw / 100.0; - *y = ph / 100.0; + *x = pw / 100.0F; + *y = ph / 100.0F; } -static void game_print(drawing *dr, game_state *state, int tilesize) +static void game_print(drawing *dr, const game_state *state, int tilesize) { const int w = state->shared->params.w; const int h = state->shared->params.h; @@ -1463,6 +2095,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) /* * Draw grid. */ + print_line_width(dr, TILE_SIZE / 64); draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE); /* @@ -1478,7 +2111,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize) const struct game thegame = { "Filling", "games.filling", "filling", default_params, - game_fetch_preset, + game_fetch_preset, NULL, decode_params, encode_params, free_params, @@ -1491,7 +2124,7 @@ const struct game thegame = { dup_game, free_game, TRUE, solve_game, - TRUE, game_text_format, + TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, @@ -1506,10 +2139,11 @@ const struct game thegame = { game_redraw, game_anim_length, game_flash_length, + game_status, TRUE, FALSE, game_print_size, game_print, FALSE, /* wants_statusbar */ FALSE, game_timing_state, - 0, /* flags */ + REQUIRE_NUMPAD, /* flags */ }; #ifdef STANDALONE_SOLVER /* solver? hah! */ @@ -1541,3 +2175,5 @@ int main(int argc, char **argv) { } #endif + +/* vim: set shiftwidth=4 tabstop=8: */