X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ian/git?a=blobdiff_plain;f=article.tex;h=f5c366fc156132f17b8a2efe43cd7eed650a6911;hb=adb68c7bad8cd24c8a4b2ebad937b544cdfa37c6;hp=3d331786a158e419dd13ee583f7446e8859b1b71;hpb=d380695f58ab5d366203d91873ffa17ba809447e;p=topbloke-formulae.git diff --git a/article.tex b/article.tex index 3d33178..f5c366f 100644 --- a/article.tex +++ b/article.tex @@ -59,6 +59,8 @@ {\hbox{\scriptsize$\forall$}}}% } +\newcommand{\Largeexists}{\mathop{\hbox{\Large$\exists$}}} +\newcommand{\Largenexists}{\mathop{\hbox{\Large$\nexists$}}} \newcommand{\qed}{\square} \newcommand{\proof}[1]{{\it Proof.} #1 $\qed$} @@ -114,7 +116,7 @@ which are in $\set P$. \item[ $ \pendsof{C}{\set P} $ ] $ \{ E \; | \; E \in \pancsof{C}{\set P} \land \mathop{\not\exists}_{A \in \pancsof{C}{\set P}} - A \neq E \land E \le A \} $ + E \neq A \land E \le A \} $ i.e. all $\le$-maximal commits in $\pancsof{C}{\set P}$. \item[ $ \baseof{C} $ ] @@ -217,6 +219,17 @@ in which case we repeat for $A'$. Since there are finitely many commits, this terminates with $A'' \in \pends()$, ie $A'' \le M$ by the LHS. And $A \le A''$. } +\[ \eqn{Calculation Of Ends:}{ + \bigforall_{C \hasparents \set A} + \pendsof{C}{\set P} = + \Bigl\{ E \Big| + \Bigl[ \Largeexists_{A \in \set A} + E \in \pendsof{A}{\set P} \Bigr] \land + \Bigl[ \Largenexists_{B \in \set A} + E \neq B \land E \le B \Bigr] + \Bigr\} +}\] +XXX proof TBD. \section{Commit annotation} @@ -370,4 +383,52 @@ R$ so $D \le C$. OK. $\qed$ +\subsection{Unique Base} + +Need to consider only $C \in \py$, ie $L \in \py$, +and calculate $\pendsof{C}{\pn}$. So we will consider some +putative ancestor $A \in \pn$ and see whether $A \le C$. + +$A \le C \equiv A \le L \lor A \le R \lor A = C$. +But $C \in py$ and $A \in \pn$ so $A \neq C$. +Thus $A \le L \lor A \le R$. + +By Unique Base of L and Transitive Ancestors, +$A \le L \equiv A \le \baseof{L}$. + +\subsubsection{For $R \in \py$:} + +By Unique Base of $R$ and Transitive Ancestors, +$A \le R \equiv A \le \baseof{R}$. + +But by Tip Merge condition on $\baseof{R}$, +$A \le \baseof{L} \implies A \le \baseof{R}$, so +$A \le \baseof{R} \lor A \le \baseof{R} \equiv A \le \baseof{R}$. +Thus $A \le C \equiv A \le \baseof{R}$. Ie, $\baseof{C} = +\baseof{R}$. + +UP TO HERE + +By Tip Merge, $A \le $ + +Let $S = + \begin{cases} + R \in \py : & \baseof{R} \\ + R \in \pn : & R + \end{cases}$. +Then by Tip Merge $S \ge \baseof{L}$, and $R \ge S$ so $C \ge S$. + +Consider some $A \in \pn$. If $A \le S$ then $A \le C$. +If $A \not\le S$ then + +Let $A \in \pends{C}{\pn}$. +Then by Calculation Of Ends $A \in \pendsof{L,\pn} \lor A \in +\pendsof{R,\pn}$. + + + +%$\pends{C, + +%%\subsubsection{For $R \in \py$:} + \end{document}