chiark / gitweb /
improve "no replay for merge results" (correct conditions, remove some duplicate...
[topbloke-formulae.git] / article.tex
index 32164de0f7c0c4ab51f14c0b99a2965ddf355fd5..1f7a59bd4018b2ed9aba33b8a46989dd24cb33c4 100644 (file)
@@ -1,4 +1,5 @@
 \documentclass[a4paper,leqno]{strayman}
+\errorcontextlines=50
 \let\numberwithin=\notdef
 \usepackage{amsmath}
 \usepackage{mathabx}
 \newcommand{\haspatch}{\sqSupset}
 \newcommand{\patchisin}{\sqSubset}
 
-\newcommand{\set}[1]{\mathbb #1}
-\newcommand{\pa}[1]{\varmathbb #1}
+        \newif\ifhidehack\hidehackfalse
+        \DeclareRobustCommand\hidefromedef[2]{%
+          \hidehacktrue\ifhidehack#1\else#2\fi\hidehackfalse}
+        \newcommand{\pa}[1]{\hidefromedef{\varmathbb{#1}}{#1}}
+
+\newcommand{\set}[1]{\mathbb{#1}}
 \newcommand{\pay}[1]{\pa{#1}^+}
 \newcommand{\pan}[1]{\pa{#1}^-}
 
 \newcommand{\py}{\pay{P}}
 \newcommand{\pn}{\pan{P}}
 
+\newcommand{\pr}{\pa{R}}
+\newcommand{\pry}{\pay{R}}
+\newcommand{\prn}{\pan{R}}
+
 %\newcommand{\hasparents}{\underaccent{1}{>}}
 %\newcommand{\hasparents}{{%
 %  \declareslashed{}{_{_1}}{0}{-0.8}{>}\slashed{>}}}
 \newcommand{\pancsof}[2]{\pancs ( #1 , #2 ) }
 \newcommand{\pendsof}[2]{\pends ( #1 , #2 ) }
 
-\newcommand{\patchof}[1]{{\mathcal P} ( #1 ) }
-\newcommand{\baseof}[1]{{\mathcal B} ( #1 ) }
+\newcommand{\merge}[4]{{\mathcal M}(#1,#2,#3,#4)}
+%\newcommand{\merge}[4]{{#2 {{\frac{ #1 }{ #3 } #4}}}}
+
+\newcommand{\patch}{{\mathcal P}}
+\newcommand{\base}{{\mathcal B}}
+
+\newcommand{\patchof}[1]{\patch ( #1 ) }
+\newcommand{\baseof}[1]{\base ( #1 ) }
 
 \newcommand{\eqn}[2]{ #2 \tag*{\mbox{\bf #1}} }
 \newcommand{\corrolary}[1]{ #1 \tag*{\mbox{\it Corrolary.}} }
     {\hbox{\scriptsize$\forall$}}}%
 }
 
+\newcommand{\Largeexists}{\mathop{\hbox{\Large$\exists$}}}
+\newcommand{\Largenexists}{\mathop{\hbox{\Large$\nexists$}}}
 
 \newcommand{\qed}{\square}
 \newcommand{\proof}[1]{{\it Proof.} #1 $\qed$}
 
+\newcommand{\gathbegin}{\begin{gather} \tag*{}}
+\newcommand{\gathnext}{\\ \tag*{}}
+
+\newcommand{\true}{t}
+\newcommand{\false}{f}
+
 \begin{document}
 
 \section{Notation}
@@ -108,7 +131,7 @@ which are in $\set P$.
 \item[ $ \pendsof{C}{\set P} $ ]
 $ \{ E \; | \; E \in \pancsof{C}{\set P}
   \land \mathop{\not\exists}_{A \in \pancsof{C}{\set P}}
-  A \neq E \land E \le A \} $ 
+  E \neq A \land E \le A \} $ 
 i.e. all $\le$-maximal commits in $\pancsof{C}{\set P}$.
 
 \item[ $ \baseof{C} $ ]
@@ -129,6 +152,17 @@ patch is applied to a non-Topbloke branch and then bubbles back to
 the Topbloke patch itself, we hope that git's merge algorithm will
 DTRT or that the user will no longer care about the Topbloke patch.
 
+\item[ $\displaystyle \merge{C}{L}{M}{R} $ ]
+The contents of a git merge result:
+
+$\displaystyle D \isin C \equiv
+  \begin{cases}
+    (D \isin L \land D \isin R) \lor D = C : & \true \\
+    (D \not\isin L \land D \not\isin R) \land D \neq C : & \false \\
+    \text{otherwise} : & D \not\isin M
+  \end{cases}
+$ 
+
 \end{basedescript}
 \newpage
 \section{Invariants}
@@ -211,16 +245,61 @@ in which case we repeat for $A'$.  Since there are finitely many
 commits, this terminates with $A'' \in \pends()$, ie $A'' \le M$
 by the LHS.  And $A \le A''$.
 }
+\[ \eqn{Calculation Of Ends:}{
+  \bigforall_{C \hasparents \set A}
+    \pendsof{C}{\set P} =
+       \Bigl\{ E \Big|
+           \Bigl[ \Largeexists_{A \in \set A} 
+                       E \in \pendsof{A}{\set P} \Bigr] \land
+           \Bigl[ \Largenexists_{B \in \set A} 
+                       E \neq B \land E \le B \Bigr]
+       \Bigr\}
+}\]
+XXX proof TBD.
+
+\subsection{No Replay for Merge Results}
+
+If we are constructing $C$, given
+\gathbegin
+  \merge{C}{L}{M}{R}
+\gathnext
+  L \le C
+\gathnext
+  R \le C
+\end{gather}
+No Replay is preserved.  {\it Proof:}
+
+\subsubsection{For $D=C$:} $D \isin C, D \le C$.  OK.
+
+\subsubsection{For $D \isin L \land D \isin R$:}
+$D \isin C$.  And $D \isin L \implies D \le L \implies D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:}
+$D \not\isin C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \not\isin M$:}
+$D \isin C$.  Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le
+R$ so $D \le C$.  OK.
+
+\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R)
+ \land D \isin M$:}
+$D \not\isin C$.  OK.
+
+$\qed$
 
 \section{Commit annotation}
 
 We annotate each Topbloke commit $C$ with:
-\begin{gather}
-\tag*{} \patchof{C} \\
-\tag*{} \baseof{C}, \text{ if } C \in \py \\
-\tag*{} \bigforall_{\pa{Q}} 
-        \text{ either } C \haspatch \pa{Q} \text{ or } C \nothaspatch \pa{Q} \\
-\tag*{} \bigforall_{\pay{Q} \not\ni C} \pendsof{C}{\pay{Q}}
+\gathbegin
+ \patchof{C}
+\gathnext
+ \baseof{C}, \text{ if } C \in \py
+\gathnext
+ \bigforall_{\pa{Q}} 
+   \text{ either } C \haspatch \pa{Q} \text{ or } C \nothaspatch \pa{Q}
+\gathnext
+ \bigforall_{\pay{Q} \not\ni C} \pendsof{C}{\pay{Q}}
 \end{gather}
 
 We do not annotate $\pendsof{C}{\py}$ for $C \in \py$.  Doing so would
@@ -270,23 +349,133 @@ For $D = C$: $D \in \pn$ so $D \not\in \py$. OK.
 For $D \neq C$: $D \isin C \equiv D \isin A$, so by Base Acyclic for
 $A$, $D \isin C \implies D \not\in \py$. $\qed$
 
-\subsection{Coherence}
+\subsection{Coherence and patch inclusion}
+
+Need to consider $D \in \py$
 
 \subsubsection{For $A \haspatch P, D = C$:}
-\[ D \isin C \equiv \ldots \lor t \text{ so } D \haspatch C \]
-\[ D \le C \]
-OK
 
-\section{Test more symbols}
+Ancestors of $C$:
+$ D \le C $.
 
-$ C \haspatch \p $
+Contents of $C$:
+$ D \isin C \equiv \ldots \lor \true \text{ so } D \haspatch C $.
 
-$ C \nothaspatch \p $
+\subsubsection{For $A \haspatch P, D \neq C$:}
+Ancestors: $ D \le C \equiv D \le A $.
+
+Contents: $ D \isin C \equiv D \isin A \lor f $
+so $ D \isin C \equiv D \isin A $.
+
+So:
+\[ A \haspatch P \implies C \haspatch P \]
+
+\subsubsection{For $A \nothaspatch P$:}
+
+Firstly, $C \not\in \py$ since if it were, $A \in \py$.  
+Thus $D \neq C$.
+
+Now by contents of $A$, $D \notin A$, so $D \notin C$.
+
+So:
+\[ A \nothaspatch P \implies C \nothaspatch P \]
+$\qed$
 
-$ \p \patchisin C $
+\subsection{Foreign inclusion:}
 
-$ \p \notpatchisin C $
+If $D = C$, trivial.  For $D \neq C$:
+$D \isin C \equiv D \isin A \equiv D \le A \equiv D \le C$.  $\qed$
 
-$ \{ B \} \areparents C $
+\section{Anticommit}
+
+Given $L, R^+, R^-$ where
+$\patchof{R^+} = \pry, \patchof{R^-} = \prn$.  
+Construct $C$ which has $\pr$ removed.
+Used for removing a branch dependency.
+\gathbegin
+ C \hasparents \{ L \}
+\gathnext
+ \patchof{C} = \patchof{L}
+\gathnext
+ \merge{C}{L}{R^+}{R^-}
+\end{gather}
+
+\subsection{Conditions}
+
+\[ \eqn{ Unique Tip }{
+ \pendsof{L}{\pry} = \{ R^+ \}
+}\]
+\[ \eqn{ Correct Base }{
+ \baseof{R^+} = R^-
+}\]
+\[ \eqn{ Currently Included }{
+ L \haspatch \pry
+}\]
+
+
+
+xxx want to prove $D \isin C \equiv D \not\in \pry \land D \isin L$.
+
+\section{Merge}
+
+Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$):
+\gathbegin
+ C \hasparents \{ L, R \}
+\gathnext
+ \patchof{C} = \patchof{L}
+\gathnext
+ \merge{C}{L}{M}{R}
+\end{gather}
+
+\subsection{Conditions}
+
+\[ \eqn{ Tip Merge }{
+ L \in \py \implies
+   \begin{cases}
+      R \in \py : & \baseof{R} \ge \baseof{L}
+              \land [\baseof{L} = M \lor \baseof{L} = \baseof{M}] \\
+      R \in \pn : & R \ge \baseof{L}
+              \land M = \baseof{L} \\
+      \text{otherwise} : & \false
+   \end{cases}
+}\]
+
+\subsection{Merge Results}
+
+As above.
+
+\subsection{Unique Base}
+
+Need to consider only $C \in \py$, ie $L \in \py$,
+and calculate $\pendsof{C}{\pn}$.  So we will consider some
+putative ancestor $A \in \pn$ and see whether $A \le C$.
+
+By Exact Ancestors for C, $A \le C \equiv A \le L \lor A \le R \lor A = C$.
+But $C \in py$ and $A \in \pn$ so $A \neq C$.  
+Thus $A \le C \equiv A \le L \lor A \le R$.
+
+By Unique Base of L and Transitive Ancestors,
+$A \le L \equiv A \le \baseof{L}$.
+
+\subsubsection{For $R \in \py$:}
+
+By Unique Base of $R$ and Transitive Ancestors,
+$A \le R \equiv A \le \baseof{R}$.
+
+But by Tip Merge condition on $\baseof{R}$,
+$A \le \baseof{L} \implies A \le \baseof{R}$, so
+$A \le \baseof{R} \lor A \le \baseof{L} \equiv A \le \baseof{R}$.
+Thus $A \le C \equiv A \le \baseof{R}$.  
+That is, $\baseof{C} = \baseof{R}$.
+
+\subsubsection{For $R \in \pn$:}
+
+By Tip Merge condition on $R$,
+$A \le \baseof{L} \implies A \le R$, so
+$A \le R \lor A \le \baseof{L} \equiv A \le R$.  
+Thus $A \le C \equiv A \le R$.  
+That is, $\baseof{C} = R$.
+
+$\qed$
 
 \end{document}