chiark / gitweb /
This patch replaces the existing OsLayer::VirtualToPhysical stub with
[stressapptest] / src / sat.cc
1 // Copyright 2006 Google Inc. All Rights Reserved.
2
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6
7 //      http://www.apache.org/licenses/LICENSE-2.0
8
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // sat.cc : a stress test for stressful testing
16
17 // stressapptest (or SAT, from Stressful Application Test) is a test
18 // designed to stress the system, as well as provide a comprehensive
19 // memory interface test.
20
21 // stressapptest can be run using memory only, or using many system components.
22
23 #include <errno.h>
24 #include <pthread.h>
25 #include <signal.h>
26 #include <stdarg.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <unistd.h>
31
32 #include <sys/stat.h>
33 #include <sys/times.h>
34
35 // #define __USE_GNU
36 // #define __USE_LARGEFILE64
37 #include <fcntl.h>
38
39 #include <list>
40 #include <string>
41
42 // This file must work with autoconf on its public version,
43 // so these includes are correct.
44 #include "disk_blocks.h"
45 #include "logger.h"
46 #include "os.h"
47 #include "sat.h"
48 #include "sattypes.h"
49 #include "worker.h"
50
51 // stressapptest versioning here.
52 #ifndef PACKAGE_VERSION
53 static const char* kVersion = "1.0.0";
54 #else
55 static const char* kVersion = PACKAGE_VERSION;
56 #endif
57
58 // Global stressapptest reference, for use by signal handler.
59 // This makes Sat objects not safe for multiple instances.
60 namespace {
61   Sat *g_sat = NULL;
62
63   // Signal handler for catching break or kill.
64   //
65   // This must be installed after g_sat is assigned and while there is a single
66   // thread.
67   //
68   // This must be uninstalled while there is only a single thread, and of course
69   // before g_sat is cleared or deleted.
70   void SatHandleBreak(int signal) {
71     g_sat->Break();
72   }
73 }
74
75 // Opens the logfile for writing if necessary
76 bool Sat::InitializeLogfile() {
77   // Open logfile.
78   if (use_logfile_) {
79     logfile_ = open(logfilename_,
80 #if defined(O_DSYNC)
81                     O_DSYNC |
82 #elif defined(O_SYNC)
83                     O_SYNC |
84 #elif defined(O_FSYNC)
85                     O_FSYNC |
86 #endif
87                     O_WRONLY | O_CREAT,
88                     S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
89     if (logfile_ < 0) {
90       printf("Fatal Error: cannot open file %s for logging\n",
91              logfilename_);
92       bad_status();
93       return false;
94     }
95     // We seek to the end once instead of opening in append mode because no
96     // other processes should be writing to it while this one exists.
97     if (lseek(logfile_, 0, SEEK_END) == -1) {
98       printf("Fatal Error: cannot seek to end of logfile (%s)\n",
99              logfilename_);
100       bad_status();
101       return false;
102     }
103     Logger::GlobalLogger()->SetLogFd(logfile_);
104   }
105   return true;
106 }
107
108 // Check that the environment is known and safe to run on.
109 // Return 1 if good, 0 if unsuppported.
110 bool Sat::CheckEnvironment() {
111   // Check that this is not a debug build. Debug builds lack
112   // enough performance to stress the system.
113 #if !defined NDEBUG
114   if (run_on_anything_) {
115     logprintf(1, "Log: Running DEBUG version of SAT, "
116                  "with significantly reduced coverage.\n");
117   } else {
118     logprintf(0, "Process Error: Running DEBUG version of SAT, "
119                  "with significantly reduced coverage.\n");
120     logprintf(0, "Log: Command line option '-A' bypasses this error.\n");
121     bad_status();
122     return false;
123   }
124 #elif !defined CHECKOPTS
125   #error Build system regression - COPTS disregarded.
126 #endif
127
128   // Use all CPUs if nothing is specified.
129   if (memory_threads_ == -1) {
130     memory_threads_ = os_->num_cpus();
131     logprintf(7, "Log: Defaulting to %d copy threads\n", memory_threads_);
132   }
133
134   // Use all memory if no size is specified.
135   if (size_mb_ == 0)
136     size_mb_ = os_->FindFreeMemSize() / kMegabyte;
137   size_ = static_cast<int64>(size_mb_) * kMegabyte;
138
139   // Autodetect file locations.
140   if (findfiles_ && (file_threads_ == 0)) {
141     // Get a space separated sting of disk locations.
142     list<string> locations = os_->FindFileDevices();
143
144     // Extract each one.
145     while (!locations.empty()) {
146       // Copy and remove the disk name.
147       string disk = locations.back();
148       locations.pop_back();
149
150       logprintf(12, "Log: disk at %s\n", disk.c_str());
151       file_threads_++;
152       filename_.push_back(disk + "/sat_disk.a");
153       file_threads_++;
154       filename_.push_back(disk + "/sat_disk.b");
155     }
156   }
157
158   // We'd better have some memory by this point.
159   if (size_ < 1) {
160     logprintf(0, "Process Error: No memory found to test.\n");
161     bad_status();
162     return false;
163   }
164
165   if (tag_mode_ && ((file_threads_ > 0) ||
166                     (disk_threads_ > 0) ||
167                     (net_threads_ > 0))) {
168     logprintf(0, "Process Error: Memory tag mode incompatible "
169                  "with disk/network DMA.\n");
170     bad_status();
171     return false;
172   }
173
174   // If platform is 32 bit Xeon, floor memory size to multiple of 4.
175   if (address_mode_ == 32) {
176     size_mb_ = (size_mb_ / 4) * 4;
177     size_ = size_mb_ * kMegabyte;
178     logprintf(1, "Log: Flooring memory allocation to multiple of 4: %lldMB\n",
179               size_mb_);
180   }
181
182   // Check if this system is on the whitelist for supported systems.
183   if (!os_->IsSupported()) {
184     if (run_on_anything_) {
185       logprintf(1, "Log: Unsupported system. Running with reduced coverage.\n");
186       // This is ok, continue on.
187     } else {
188       logprintf(0, "Process Error: Unsupported system, "
189                    "no error reporting available\n");
190       logprintf(0, "Log: Command line option '-A' bypasses this error.\n");
191       bad_status();
192       return false;
193     }
194   }
195
196   return true;
197 }
198
199 // Allocates memory to run the test on
200 bool Sat::AllocateMemory() {
201   // Allocate our test memory.
202   bool result = os_->AllocateTestMem(size_, paddr_base_);
203   if (!result) {
204     logprintf(0, "Process Error: failed to allocate memory\n");
205     bad_status();
206     return false;
207   }
208   return true;
209 }
210
211 // Sets up access to data patterns
212 bool Sat::InitializePatterns() {
213   // Initialize pattern data.
214   patternlist_ = new PatternList();
215   if (!patternlist_) {
216     logprintf(0, "Process Error: failed to allocate patterns\n");
217     bad_status();
218     return false;
219   }
220   if (!patternlist_->Initialize()) {
221     logprintf(0, "Process Error: failed to initialize patternlist\n");
222     bad_status();
223     return false;
224   }
225   return true;
226 }
227
228 // Get any valid page, no tag specified.
229 bool Sat::GetValid(struct page_entry *pe) {
230   return GetValid(pe, kDontCareTag);
231 }
232
233
234 // Fetch and return empty and full pages into the empty and full pools.
235 bool Sat::GetValid(struct page_entry *pe, int32 tag) {
236   bool result = false;
237   // Get valid page depending on implementation.
238   if (pe_q_implementation_ == SAT_FINELOCK)
239     result = finelock_q_->GetValid(pe, tag);
240   else if (pe_q_implementation_ == SAT_ONELOCK)
241     result = valid_->PopRandom(pe);
242
243   if (result) {
244     pe->addr = os_->PrepareTestMem(pe->offset, page_length_);  // Map it.
245
246     // Tag this access and current pattern.
247     pe->ts = os_->GetTimestamp();
248     pe->lastpattern = pe->pattern;
249
250     return (pe->addr != 0);     // Return success or failure.
251   }
252   return false;
253 }
254
255 bool Sat::PutValid(struct page_entry *pe) {
256   if (pe->addr != 0)
257     os_->ReleaseTestMem(pe->addr, pe->offset, page_length_);  // Unmap the page.
258   pe->addr = 0;
259
260   // Put valid page depending on implementation.
261   if (pe_q_implementation_ == SAT_FINELOCK)
262     return finelock_q_->PutValid(pe);
263   else if (pe_q_implementation_ == SAT_ONELOCK)
264     return valid_->Push(pe);
265   else
266     return false;
267 }
268
269 // Get an empty page with any tag.
270 bool Sat::GetEmpty(struct page_entry *pe) {
271   return GetEmpty(pe, kDontCareTag);
272 }
273
274 bool Sat::GetEmpty(struct page_entry *pe, int32 tag) {
275   bool result = false;
276   // Get empty page depending on implementation.
277   if (pe_q_implementation_ == SAT_FINELOCK)
278     result = finelock_q_->GetEmpty(pe, tag);
279   else if (pe_q_implementation_ == SAT_ONELOCK)
280     result = empty_->PopRandom(pe);
281
282   if (result) {
283     pe->addr = os_->PrepareTestMem(pe->offset, page_length_);  // Map it.
284     return (pe->addr != 0);     // Return success or failure.
285   }
286   return false;
287 }
288
289 bool Sat::PutEmpty(struct page_entry *pe) {
290   if (pe->addr != 0)
291     os_->ReleaseTestMem(pe->addr, pe->offset, page_length_);  // Unmap the page.
292   pe->addr = 0;
293
294   // Put empty page depending on implementation.
295   if (pe_q_implementation_ == SAT_FINELOCK)
296     return finelock_q_->PutEmpty(pe);
297   else if (pe_q_implementation_ == SAT_ONELOCK)
298     return empty_->Push(pe);
299   else
300     return false;
301 }
302
303 // Set up the bitmap of physical pages in case we want to see which pages were
304 // accessed under this run of SAT.
305 void Sat::AddrMapInit() {
306   if (!do_page_map_)
307     return;
308   // Find about how much physical mem is in the system.
309   // TODO(nsanders): Find some way to get the max
310   // and min phys addr in the system.
311   uint64 maxsize = os_->FindFreeMemSize() * 4;
312   sat_assert(maxsize != 0);
313
314   // Make a bitmask of this many pages. Assume that the memory is relatively
315   // zero based. This is true on x86, typically.
316   // This is one bit per page.
317   uint64 arraysize = maxsize / 4096 / 8;
318   unsigned char *bitmap = new unsigned char[arraysize];
319   sat_assert(bitmap);
320
321   // Mark every page as 0, not seen.
322   memset(bitmap, 0, arraysize);
323
324   page_bitmap_size_ = maxsize;
325   page_bitmap_ = bitmap;
326 }
327
328 // Add the 4k pages in this block to the array of pages SAT has seen.
329 void Sat::AddrMapUpdate(struct page_entry *pe) {
330   if (!do_page_map_)
331     return;
332
333   // Go through 4k page blocks.
334   uint64 arraysize = page_bitmap_size_ / 4096 / 8;
335
336   char *base = reinterpret_cast<char*>(pe->addr);
337   for (int i = 0; i < page_length_; i += 4096) {
338     uint64 paddr = os_->VirtualToPhysical(base + i);
339
340     uint32 offset = paddr / 4096 / 8;
341     unsigned char mask = 1 << ((paddr / 4096) % 8);
342
343     if (offset >= arraysize) {
344       logprintf(0, "Process Error: Physical address %#llx is "
345                    "greater than expected %#llx.\n",
346                 paddr, page_bitmap_size_);
347       sat_assert(0);
348     }
349     page_bitmap_[offset] |= mask;
350   }
351 }
352
353 // Print out the physical memory ranges that SAT has accessed.
354 void Sat::AddrMapPrint() {
355   if (!do_page_map_)
356     return;
357
358   uint64 pages = page_bitmap_size_ / 4096;
359
360   uint64 last_page = 0;
361   bool valid_range = false;
362
363   logprintf(4, "Log: Printing tested physical ranges.\n");
364
365   for (uint64 i = 0; i < pages; i ++) {
366     int offset = i / 8;
367     unsigned char mask = 1 << (i % 8);
368
369     bool touched = page_bitmap_[offset] & mask;
370     if (touched && !valid_range) {
371       valid_range = true;
372       last_page = i * 4096;
373     } else if (!touched && valid_range) {
374       valid_range = false;
375       logprintf(4, "Log: %#016llx - %#016llx\n", last_page, (i * 4096) - 1);
376     }
377   }
378   logprintf(4, "Log: Done printing physical ranges.\n");
379 }
380
381 // Initializes page lists and fills pages with data patterns.
382 bool Sat::InitializePages() {
383   int result = 1;
384   // Calculate needed page totals.
385   int64 neededpages = memory_threads_ +
386     invert_threads_ +
387     check_threads_ +
388     net_threads_ +
389     file_threads_;
390
391   // Empty-valid page ratio is adjusted depending on queue implementation.
392   // since fine-grain-locked queue keeps both valid and empty entries in the
393   // same queue and randomly traverse to find pages, the empty-valid ratio
394   // should be more even.
395   if (pe_q_implementation_ == SAT_FINELOCK)
396     freepages_ = pages_ / 5 * 2;  // Mark roughly 2/5 of all pages as Empty.
397   else
398     freepages_ = (pages_ / 100) + (2 * neededpages);
399
400   if (freepages_ < neededpages) {
401     logprintf(0, "Process Error: freepages < neededpages.\n");
402     logprintf(1, "Stats: Total: %lld, Needed: %lld, Marked free: %lld\n",
403               static_cast<int64>(pages_),
404               static_cast<int64>(neededpages),
405               static_cast<int64>(freepages_));
406     bad_status();
407     return false;
408   }
409
410   if (freepages_ >  pages_/2) {
411     logprintf(0, "Process Error: not enough pages for IO\n");
412     logprintf(1, "Stats: Total: %lld, Needed: %lld, Available: %lld\n",
413               static_cast<int64>(pages_),
414               static_cast<int64>(freepages_),
415               static_cast<int64>(pages_/2));
416     bad_status();
417     return false;
418   }
419   logprintf(12, "Log: Allocating pages, Total: %lld Free: %lld\n",
420             pages_,
421             freepages_);
422
423   // Initialize page locations.
424   for (int64 i = 0; i < pages_; i++) {
425     struct page_entry pe;
426     init_pe(&pe);
427     pe.offset = i * page_length_;
428     result &= PutEmpty(&pe);
429   }
430
431   if (!result) {
432     logprintf(0, "Process Error: while initializing empty_ list\n");
433     bad_status();
434     return false;
435   }
436
437   // Fill valid pages with test patterns.
438   // Use fill threads to do this.
439   WorkerStatus fill_status;
440   WorkerVector fill_vector;
441
442   logprintf(12, "Starting Fill threads: %d threads, %d pages\n",
443             fill_threads_, pages_);
444   // Initialize the fill threads.
445   for (int i = 0; i < fill_threads_; i++) {
446     FillThread *thread = new FillThread();
447     thread->InitThread(i, this, os_, patternlist_, &fill_status);
448     if (i != fill_threads_ - 1) {
449         logprintf(12, "Starting Fill Threads %d: %d pages\n",
450                   i, pages_ / fill_threads_);
451         thread->SetFillPages(pages_ / fill_threads_);
452       // The last thread finishes up all the leftover pages.
453     } else {
454       logprintf(12, "Starting Fill Threads %d: %d pages\n",
455                 i, pages_ - pages_ / fill_threads_ * i);
456         thread->SetFillPages(pages_ - pages_ / fill_threads_ * i);
457     }
458     fill_vector.push_back(thread);
459   }
460
461   // Spawn the fill threads.
462   fill_status.Initialize();
463   for (WorkerVector::const_iterator it = fill_vector.begin();
464        it != fill_vector.end(); ++it)
465     (*it)->SpawnThread();
466
467   // Reap the finished fill threads.
468   for (WorkerVector::const_iterator it = fill_vector.begin();
469        it != fill_vector.end(); ++it) {
470     (*it)->JoinThread();
471     if ((*it)->GetStatus() != 1) {
472       logprintf(0, "Thread %d failed with status %d at %.2f seconds\n",
473                 (*it)->ThreadID(), (*it)->GetStatus(),
474                 (*it)->GetRunDurationUSec() * 1.0/1000000);
475       bad_status();
476       return false;
477     }
478     delete (*it);
479   }
480   fill_vector.clear();
481   fill_status.Destroy();
482   logprintf(12, "Log: Done filling pages.\n");
483   logprintf(12, "Log: Allocating pages.\n");
484
485   AddrMapInit();
486
487   // Initialize page locations.
488   for (int64 i = 0; i < pages_; i++) {
489     struct page_entry pe;
490     // Only get valid pages with uninitialized tags here.
491     char buf[256];
492     if (GetValid(&pe, kInvalidTag)) {
493       int64 paddr = os_->VirtualToPhysical(pe.addr);
494       int32 region = os_->FindRegion(paddr);
495
496       os_->FindDimm(paddr, buf, sizeof(buf));
497       if (i < 256) {
498         logprintf(12, "Log: address: %#llx, %s\n", paddr, buf);
499       }
500       region_[region]++;
501       pe.paddr = paddr;
502       pe.tag = 1 << region;
503       region_mask_ |= pe.tag;
504
505       // Generate a physical region map
506       AddrMapUpdate(&pe);
507
508       // Note: this does not allocate free pages among all regions
509       // fairly. However, with large enough (thousands) random number
510       // of pages being marked free in each region, the free pages
511       // count in each region end up pretty balanced.
512       if (i < freepages_) {
513         result &= PutEmpty(&pe);
514       } else {
515         result &= PutValid(&pe);
516       }
517     } else {
518       logprintf(0, "Log: didn't tag all pages. %d - %d = %d\n",
519                 pages_, i, pages_ - i);
520       return false;
521     }
522   }
523   logprintf(12, "Log: Done allocating pages.\n");
524
525   AddrMapPrint();
526
527   for (int i = 0; i < 32; i++) {
528     if (region_mask_ & (1 << i)) {
529       region_count_++;
530       logprintf(12, "Log: Region %d: %d.\n", i, region_[i]);
531     }
532   }
533   logprintf(5, "Log: Region mask: 0x%x\n", region_mask_);
534
535   return true;
536 }
537
538 // Print SAT version info.
539 bool Sat::PrintVersion() {
540   logprintf(1, "Stats: SAT revision %s, %d bit binary\n",
541             kVersion, address_mode_);
542   logprintf(5, "Log: %s from %s\n", Timestamp(), BuildChangelist());
543
544   return true;
545 }
546
547
548 // Initializes the resources that SAT needs to run.
549 // This needs to be called before Run(), and after ParseArgs().
550 // Returns true on success, false on error, and will exit() on help message.
551 bool Sat::Initialize() {
552   g_sat = this;
553
554   // Initializes sync'd log file to ensure output is saved.
555   if (!InitializeLogfile())
556     return false;
557   Logger::GlobalLogger()->StartThread();
558
559   logprintf(5, "Log: Commandline - %s\n", cmdline_.c_str());
560   PrintVersion();
561
562   std::map<std::string, std::string> options;
563
564   GoogleOsOptions(&options);
565
566   // Initialize OS/Hardware interface.
567   os_ = OsLayerFactory(options);
568   if (!os_) {
569     bad_status();
570     return false;
571   }
572
573   if (min_hugepages_mbytes_ > 0)
574     os_->SetMinimumHugepagesSize(min_hugepages_mbytes_ * kMegabyte);
575
576   if (!os_->Initialize()) {
577     logprintf(0, "Process Error: Failed to initialize OS layer\n");
578     bad_status();
579     delete os_;
580     return false;
581   }
582
583   // Checks that OS/Build/Platform is supported.
584   if (!CheckEnvironment())
585     return false;
586
587   if (error_injection_)
588     os_->set_error_injection(true);
589
590   // Run SAT in monitor only mode, do not continue to allocate resources.
591   if (monitor_mode_) {
592     logprintf(5, "Log: Running in monitor-only mode. "
593                  "Will not allocate any memory nor run any stress test. "
594                  "Only polling ECC errors.\n");
595     return true;
596   }
597
598   // Allocate the memory to test.
599   if (!AllocateMemory())
600     return false;
601
602   logprintf(5, "Stats: Starting SAT, %dM, %d seconds\n",
603             static_cast<int>(size_/kMegabyte),
604             runtime_seconds_);
605
606   if (!InitializePatterns())
607     return false;
608
609   // Initialize memory allocation.
610   pages_ = size_ / page_length_;
611
612   // Allocate page queue depending on queue implementation switch.
613   if (pe_q_implementation_ == SAT_FINELOCK) {
614       finelock_q_ = new FineLockPEQueue(pages_, page_length_);
615       if (finelock_q_ == NULL)
616         return false;
617       finelock_q_->set_os(os_);
618       os_->set_err_log_callback(finelock_q_->get_err_log_callback());
619   } else if (pe_q_implementation_ == SAT_ONELOCK) {
620       empty_ = new PageEntryQueue(pages_);
621       valid_ = new PageEntryQueue(pages_);
622       if ((empty_ == NULL) || (valid_ == NULL))
623         return false;
624   }
625
626   if (!InitializePages()) {
627     logprintf(0, "Process Error: Initialize Pages failed\n");
628     return false;
629   }
630
631   return true;
632 }
633
634 // Constructor and destructor.
635 Sat::Sat() {
636   // Set defaults, command line might override these.
637   runtime_seconds_ = 20;
638   page_length_ = kSatPageSize;
639   disk_pages_ = kSatDiskPage;
640   pages_ = 0;
641   size_mb_ = 0;
642   size_ = size_mb_ * kMegabyte;
643   min_hugepages_mbytes_ = 0;
644   freepages_ = 0;
645   paddr_base_ = 0;
646
647   user_break_ = false;
648   verbosity_ = 8;
649   Logger::GlobalLogger()->SetVerbosity(verbosity_);
650   strict_ = 1;
651   warm_ = 0;
652   run_on_anything_ = 0;
653   use_logfile_ = 0;
654   logfile_ = 0;
655   // Detect 32/64 bit binary.
656   void *pvoid = 0;
657   address_mode_ = sizeof(pvoid) * 8;
658   error_injection_ = false;
659   crazy_error_injection_ = false;
660   max_errorcount_ = 0;  // Zero means no early exit.
661   stop_on_error_ = false;
662   error_poll_ = true;
663   findfiles_ = false;
664
665   do_page_map_ = false;
666   page_bitmap_ = 0;
667   page_bitmap_size_ = 0;
668
669   // Cache coherency data initialization.
670   cc_test_ = false;         // Flag to trigger cc threads.
671   cc_cacheline_count_ = 2;  // Two datastructures of cache line size.
672   cc_inc_count_ = 1000;     // Number of times to increment the shared variable.
673   cc_cacheline_data_ = 0;   // Cache Line size datastructure.
674
675   sat_assert(0 == pthread_mutex_init(&worker_lock_, NULL));
676   file_threads_ = 0;
677   net_threads_ = 0;
678   listen_threads_ = 0;
679   // Default to autodetect number of cpus, and run that many threads.
680   memory_threads_ = -1;
681   invert_threads_ = 0;
682   fill_threads_ = 8;
683   check_threads_ = 0;
684   cpu_stress_threads_ = 0;
685   disk_threads_ = 0;
686   total_threads_ = 0;
687
688   region_mask_ = 0;
689   region_count_ = 0;
690   for (int i = 0; i < 32; i++) {
691     region_[i] = 0;
692   }
693   region_mode_ = 0;
694
695   errorcount_ = 0;
696   statuscount_ = 0;
697
698   valid_ = 0;
699   empty_ = 0;
700   finelock_q_ = 0;
701   // Default to use fine-grain lock for better performance.
702   pe_q_implementation_ = SAT_FINELOCK;
703
704   os_ = 0;
705   patternlist_ = 0;
706   logfilename_[0] = 0;
707
708   read_block_size_ = 512;
709   write_block_size_ = -1;
710   segment_size_ = -1;
711   cache_size_ = -1;
712   blocks_per_segment_ = -1;
713   read_threshold_ = -1;
714   write_threshold_ = -1;
715   non_destructive_ = 1;
716   monitor_mode_ = 0;
717   tag_mode_ = 0;
718   random_threads_ = 0;
719
720   pause_delay_ = 600;
721   pause_duration_ = 15;
722 }
723
724 // Destructor.
725 Sat::~Sat() {
726   // We need to have called Cleanup() at this point.
727   // We should probably enforce this.
728 }
729
730
731 #define ARG_KVALUE(argument, variable, value)         \
732   if (!strcmp(argv[i], argument)) {                   \
733     variable = value;                                 \
734     continue;                                         \
735   }
736
737 #define ARG_IVALUE(argument, variable)                \
738   if (!strcmp(argv[i], argument)) {                   \
739     i++;                                              \
740     if (i < argc)                                     \
741       variable = strtoull(argv[i], NULL, 0);          \
742     continue;                                         \
743   }
744
745 #define ARG_SVALUE(argument, variable)                     \
746   if (!strcmp(argv[i], argument)) {                        \
747     i++;                                                   \
748     if (i < argc)                                          \
749       snprintf(variable, sizeof(variable), "%s", argv[i]); \
750     continue;                                              \
751   }
752
753 // Configures SAT from command line arguments.
754 // This will call exit() given a request for
755 // self-documentation or unexpected args.
756 bool Sat::ParseArgs(int argc, char **argv) {
757   int i;
758   uint64 filesize = page_length_ * disk_pages_;
759
760   // Parse each argument.
761   for (i = 1; i < argc; i++) {
762     // Switch to fall back to corase-grain-lock queue. (for benchmarking)
763     ARG_KVALUE("--coarse_grain_lock", pe_q_implementation_, SAT_ONELOCK);
764
765     // Set number of megabyte to use.
766     ARG_IVALUE("-M", size_mb_);
767
768     // Set minimum megabytes of hugepages to require.
769     ARG_IVALUE("-H", min_hugepages_mbytes_);
770
771     // Set number of seconds to run.
772     ARG_IVALUE("-s", runtime_seconds_);
773
774     // Set number of memory copy threads.
775     ARG_IVALUE("-m", memory_threads_);
776
777     // Set number of memory invert threads.
778     ARG_IVALUE("-i", invert_threads_);
779
780     // Set number of check-only threads.
781     ARG_IVALUE("-c", check_threads_);
782
783     // Set number of cache line size datastructures.
784     ARG_IVALUE("--cc_inc_count", cc_inc_count_);
785
786     // Set number of cache line size datastructures
787     ARG_IVALUE("--cc_line_count", cc_cacheline_count_);
788
789     // Flag set when cache coherency tests need to be run
790     ARG_KVALUE("--cc_test", cc_test_, 1);
791
792     // Set number of CPU stress threads.
793     ARG_IVALUE("-C", cpu_stress_threads_);
794
795     // Set logfile name.
796     ARG_SVALUE("-l", logfilename_);
797
798     // Verbosity level.
799     ARG_IVALUE("-v", verbosity_);
800
801     // Set maximum number of errors to collect. Stop running after this many.
802     ARG_IVALUE("--max_errors", max_errorcount_);
803
804     // Set pattern block size.
805     ARG_IVALUE("-p", page_length_);
806
807     // Set pattern block size.
808     ARG_IVALUE("--filesize", filesize);
809
810     // NUMA options.
811     ARG_KVALUE("--local_numa", region_mode_, kLocalNuma);
812     ARG_KVALUE("--remote_numa", region_mode_, kRemoteNuma);
813
814     // Autodetect tempfile locations.
815     ARG_KVALUE("--findfiles", findfiles_, 1);
816
817     // Inject errors to force miscompare code paths
818     ARG_KVALUE("--force_errors", error_injection_, true);
819     ARG_KVALUE("--force_errors_like_crazy", crazy_error_injection_, true);
820     if (crazy_error_injection_)
821       error_injection_ = true;
822
823     // Stop immediately on any arror, for debugging HW problems.
824     ARG_KVALUE("--stop_on_errors", stop_on_error_, 1);
825
826     // Don't use internal error polling, allow external detection.
827     ARG_KVALUE("--no_errors", error_poll_, 0);
828
829     // Never check data as you go.
830     ARG_KVALUE("-F", strict_, 0);
831
832     // Warm the cpu as you go.
833     ARG_KVALUE("-W", warm_, 1);
834
835     // Allow runnign on unknown systems with base unimplemented OsLayer
836     ARG_KVALUE("-A", run_on_anything_, 1);
837
838     // Size of read blocks for disk test.
839     ARG_IVALUE("--read-block-size", read_block_size_);
840
841     // Size of write blocks for disk test.
842     ARG_IVALUE("--write-block-size", write_block_size_);
843
844     // Size of segment for disk test.
845     ARG_IVALUE("--segment-size", segment_size_);
846
847     // Size of disk cache size for disk test.
848     ARG_IVALUE("--cache-size", cache_size_);
849
850     // Number of blocks to test per segment.
851     ARG_IVALUE("--blocks-per-segment", blocks_per_segment_);
852
853     // Maximum time a block read should take before warning.
854     ARG_IVALUE("--read-threshold", read_threshold_);
855
856     // Maximum time a block write should take before warning.
857     ARG_IVALUE("--write-threshold", write_threshold_);
858
859     // Do not write anything to disk in the disk test.
860     ARG_KVALUE("--destructive", non_destructive_, 0);
861
862     // Run SAT in monitor mode. No test load at all.
863     ARG_KVALUE("--monitor_mode", monitor_mode_, true);
864
865     // Run SAT in address mode. Tag all cachelines by virt addr.
866     ARG_KVALUE("--tag_mode", tag_mode_, true);
867
868     // Dump range map of tested pages..
869     ARG_KVALUE("--do_page_map", do_page_map_, true);
870
871     // Specify the physical address base to test.
872     ARG_IVALUE("--paddr_base", paddr_base_);
873
874     // Specify the frequency for power spikes.
875     ARG_IVALUE("--pause_delay", pause_delay_);
876
877     // Specify the duration of each pause (for power spikes).
878     ARG_IVALUE("--pause_duration", pause_duration_);
879
880     // Disk device names
881     if (!strcmp(argv[i], "-d")) {
882       i++;
883       if (i < argc) {
884         disk_threads_++;
885         diskfilename_.push_back(string(argv[i]));
886         blocktables_.push_back(new DiskBlockTable());
887       }
888       continue;
889     }
890
891     // Set number of disk random threads for each disk write thread.
892     ARG_IVALUE("--random-threads", random_threads_);
893
894     // Set a tempfile to use in a file thread.
895     if (!strcmp(argv[i], "-f")) {
896       i++;
897       if (i < argc) {
898         file_threads_++;
899         filename_.push_back(string(argv[i]));
900       }
901       continue;
902     }
903
904     // Set a hostname to use in a network thread.
905     if (!strcmp(argv[i], "-n")) {
906       i++;
907       if (i < argc) {
908         net_threads_++;
909         ipaddrs_.push_back(string(argv[i]));
910       }
911       continue;
912     }
913
914     // Run threads that listen for incoming SAT net connections.
915     ARG_KVALUE("--listen", listen_threads_, 1);
916
917     if (CheckGoogleSpecificArgs(argc, argv, &i)) {
918       continue;
919     }
920
921     // Default:
922     PrintVersion();
923     PrintHelp();
924     if (strcmp(argv[i], "-h") && strcmp(argv[i], "--help")) {
925       printf("\n Unknown argument %s\n", argv[i]);
926       bad_status();
927       exit(1);
928     }
929     // Forget it, we printed the help, just bail.
930     // We don't want to print test status, or any log parser stuff.
931     exit(0);
932   }
933
934   Logger::GlobalLogger()->SetVerbosity(verbosity_);
935
936   // Update relevant data members with parsed input.
937   // Translate MB into bytes.
938   size_ = static_cast<int64>(size_mb_) * kMegabyte;
939
940   // Set logfile flag.
941   if (strcmp(logfilename_, ""))
942     use_logfile_ = 1;
943   // Checks valid page length.
944   if (page_length_ &&
945       !(page_length_ & (page_length_ - 1)) &&
946       (page_length_ > 1023)) {
947     // Prints if we have changed from default.
948     if (page_length_ != kSatPageSize)
949       logprintf(12, "Log: Updating page size to %d\n", page_length_);
950   } else {
951     // Revert to default page length.
952     logprintf(6, "Process Error: "
953               "Invalid page size %d\n", page_length_);
954     page_length_ = kSatPageSize;
955     return false;
956   }
957
958   // Set disk_pages_ if filesize or page size changed.
959   if (filesize != static_cast<uint64>(page_length_) *
960                   static_cast<uint64>(disk_pages_)) {
961     disk_pages_ = filesize / page_length_;
962     if (disk_pages_ == 0)
963       disk_pages_ = 1;
964   }
965
966   // Print each argument.
967   for (int i = 0; i < argc; i++) {
968     if (i)
969       cmdline_ += " ";
970     cmdline_ += argv[i];
971   }
972
973   return true;
974 }
975
976 void Sat::PrintHelp() {
977   printf("Usage: ./sat(32|64) [options]\n"
978          " -M mbytes        megabytes of ram to test\n"
979          " -H mbytes        minimum megabytes of hugepages to require\n"
980          " -s seconds       number of seconds to run\n"
981          " -m threads       number of memory copy threads to run\n"
982          " -i threads       number of memory invert threads to run\n"
983          " -C threads       number of memory CPU stress threads to run\n"
984          " --findfiles      find locations to do disk IO automatically\n"
985          " -d device        add a direct write disk thread with block "
986          "device (or file) 'device'\n"
987          " -f filename      add a disk thread with "
988          "tempfile 'filename'\n"
989          " -l logfile       log output to file 'logfile'\n"
990          " --max_errors n   exit early after finding 'n' errors\n"
991          " -v level         verbosity (0-20), default is 8\n"
992          " -W               Use more CPU-stressful memory copy\n"
993          " -A               run in degraded mode on incompatible systems\n"
994          " -p pagesize      size in bytes of memory chunks\n"
995          " --filesize size  size of disk IO tempfiles\n"
996          " -n ipaddr        add a network thread connecting to "
997          "system at 'ipaddr'\n"
998          " --listen         run a thread to listen for and respond "
999          "to network threads.\n"
1000          " --no_errors      run without checking for ECC or other errors\n"
1001          " --force_errors   inject false errors to test error handling\n"
1002          " --force_errors_like_crazy   inject a lot of false errors "
1003          "to test error handling\n"
1004          " -F               don't result check each transaction\n"
1005          " --stop_on_errors  Stop after finding the first error.\n"
1006          " --read-block-size     size of block for reading (-d)\n"
1007          " --write-block-size    size of block for writing (-d). If not "
1008          "defined, the size of block for writing will be defined as the "
1009          "size of block for reading\n"
1010          " --segment-size   size of segments to split disk into (-d)\n"
1011          " --cache-size     size of disk cache (-d)\n"
1012          " --blocks-per-segment  number of blocks to read/write per "
1013          "segment per iteration (-d)\n"
1014          " --read-threshold      maximum time (in us) a block read should "
1015          "take (-d)\n"
1016          " --write-threshold     maximum time (in us) a block write "
1017          "should take (-d)\n"
1018          " --random-threads      number of random threads for each disk "
1019          "write thread (-d)\n"
1020          " --destructive    write/wipe disk partition (-d)\n"
1021          " --monitor_mode   only do ECC error polling, no stress load.\n"
1022          " --cc_test        do the cache coherency testing\n"
1023          " --cc_inc_count   number of times to increment the "
1024          "cacheline's member\n"
1025          " --cc_line_count  number of cache line sized datastructures "
1026          "to allocate for the cache coherency threads to operate\n"
1027          " --paddr_base     allocate memory starting from this address\n"
1028          " --pause_delay    delay (in seconds) between power spikes\n"
1029          " --pause_duration duration (in seconds) of each pause\n"
1030          " --local_numa : choose memory regions associated with "
1031          "each CPU to be tested by that CPU\n"
1032          " --remote_numa : choose memory regions not associated with "
1033          "each CPU to be tested by that CPU\n");
1034 }
1035
1036 bool Sat::CheckGoogleSpecificArgs(int argc, char **argv, int *i) {
1037   // Do nothing, no google-specific argument on public stressapptest
1038   return false;
1039 }
1040
1041 void Sat::GoogleOsOptions(std::map<std::string, std::string> *options) {
1042   // Do nothing, no OS-specific argument on public stressapptest
1043 }
1044
1045 // Launch the SAT task threads. Returns 0 on error.
1046 void Sat::InitializeThreads() {
1047   // Memory copy threads.
1048   AcquireWorkerLock();
1049
1050   logprintf(12, "Log: Starting worker threads\n");
1051   WorkerVector *memory_vector = new WorkerVector();
1052
1053   // Error polling thread.
1054   // This may detect ECC corrected errors, disk problems, or
1055   // any other errors normally hidden from userspace.
1056   WorkerVector *error_vector = new WorkerVector();
1057   if (error_poll_) {
1058     ErrorPollThread *thread = new ErrorPollThread();
1059     thread->InitThread(total_threads_++, this, os_, patternlist_,
1060                        &continuous_status_);
1061
1062     error_vector->insert(error_vector->end(), thread);
1063   } else {
1064     logprintf(5, "Log: Skipping error poll thread due to --no_errors flag\n");
1065   }
1066   workers_map_.insert(make_pair(kErrorType, error_vector));
1067
1068   // Only start error poll threads for monitor-mode SAT,
1069   // skip all other types of worker threads.
1070   if (monitor_mode_) {
1071     ReleaseWorkerLock();
1072     return;
1073   }
1074
1075   for (int i = 0; i < memory_threads_; i++) {
1076     CopyThread *thread = new CopyThread();
1077     thread->InitThread(total_threads_++, this, os_, patternlist_,
1078                        &power_spike_status_);
1079
1080     if ((region_count_ > 1) && (region_mode_)) {
1081       int32 region = region_find(i % region_count_);
1082       cpu_set_t *cpuset = os_->FindCoreMask(region);
1083       sat_assert(cpuset);
1084       if (region_mode_ == kLocalNuma) {
1085         // Choose regions associated with this CPU.
1086         thread->set_cpu_mask(cpuset);
1087         thread->set_tag(1 << region);
1088       } else if (region_mode_ == kRemoteNuma) {
1089         // Choose regions not associated with this CPU..
1090         thread->set_cpu_mask(cpuset);
1091         thread->set_tag(region_mask_ & ~(1 << region));
1092       }
1093     } else {
1094       cpu_set_t available_cpus;
1095       thread->AvailableCpus(&available_cpus);
1096       int cores = cpuset_count(&available_cpus);
1097       // Don't restrict thread location if we have more than one
1098       // thread per core. Not so good for performance.
1099       if (cpu_stress_threads_ + memory_threads_ <= cores) {
1100         // Place a thread on alternating cores first.
1101         // This assures interleaved core use with no overlap.
1102         int nthcore = i;
1103         int nthbit = (((2 * nthcore) % cores) +
1104                       (((2 * nthcore) / cores) % 2)) % cores;
1105         cpu_set_t all_cores;
1106         cpuset_set_ab(&all_cores, 0, cores);
1107         if (!cpuset_isequal(&available_cpus, &all_cores)) {
1108           // We are assuming the bits are contiguous.
1109           // Complain if this is not so.
1110           logprintf(0, "Log: cores = %s, expected %s\n",
1111                     cpuset_format(&available_cpus).c_str(),
1112                     cpuset_format(&all_cores).c_str());
1113         }
1114
1115         // Set thread affinity.
1116         thread->set_cpu_mask_to_cpu(nthbit);
1117       }
1118     }
1119     memory_vector->insert(memory_vector->end(), thread);
1120   }
1121   workers_map_.insert(make_pair(kMemoryType, memory_vector));
1122
1123   // File IO threads.
1124   WorkerVector *fileio_vector = new WorkerVector();
1125   for (int i = 0; i < file_threads_; i++) {
1126     FileThread *thread = new FileThread();
1127     thread->InitThread(total_threads_++, this, os_, patternlist_,
1128                        &power_spike_status_);
1129     thread->SetFile(filename_[i].c_str());
1130     // Set disk threads high priority. They don't take much processor time,
1131     // but blocking them will delay disk IO.
1132     thread->SetPriority(WorkerThread::High);
1133
1134     fileio_vector->insert(fileio_vector->end(), thread);
1135   }
1136   workers_map_.insert(make_pair(kFileIOType, fileio_vector));
1137
1138   // Net IO threads.
1139   WorkerVector *netio_vector = new WorkerVector();
1140   WorkerVector *netslave_vector = new WorkerVector();
1141   if (listen_threads_ > 0) {
1142     // Create a network slave thread. This listens for connections.
1143     NetworkListenThread *thread = new NetworkListenThread();
1144     thread->InitThread(total_threads_++, this, os_, patternlist_,
1145                        &continuous_status_);
1146
1147     netslave_vector->insert(netslave_vector->end(), thread);
1148   }
1149   for (int i = 0; i < net_threads_; i++) {
1150     NetworkThread *thread = new NetworkThread();
1151     thread->InitThread(total_threads_++, this, os_, patternlist_,
1152                        &continuous_status_);
1153     thread->SetIP(ipaddrs_[i].c_str());
1154
1155     netio_vector->insert(netio_vector->end(), thread);
1156   }
1157   workers_map_.insert(make_pair(kNetIOType, netio_vector));
1158   workers_map_.insert(make_pair(kNetSlaveType, netslave_vector));
1159
1160   // Result check threads.
1161   WorkerVector *check_vector = new WorkerVector();
1162   for (int i = 0; i < check_threads_; i++) {
1163     CheckThread *thread = new CheckThread();
1164     thread->InitThread(total_threads_++, this, os_, patternlist_,
1165                        &continuous_status_);
1166
1167     check_vector->insert(check_vector->end(), thread);
1168   }
1169   workers_map_.insert(make_pair(kCheckType, check_vector));
1170
1171   // Memory invert threads.
1172   logprintf(12, "Log: Starting invert threads\n");
1173   WorkerVector *invert_vector = new WorkerVector();
1174   for (int i = 0; i < invert_threads_; i++) {
1175     InvertThread *thread = new InvertThread();
1176     thread->InitThread(total_threads_++, this, os_, patternlist_,
1177                        &continuous_status_);
1178
1179     invert_vector->insert(invert_vector->end(), thread);
1180   }
1181   workers_map_.insert(make_pair(kInvertType, invert_vector));
1182
1183   // Disk stress threads.
1184   WorkerVector *disk_vector = new WorkerVector();
1185   WorkerVector *random_vector = new WorkerVector();
1186   logprintf(12, "Log: Starting disk stress threads\n");
1187   for (int i = 0; i < disk_threads_; i++) {
1188     // Creating write threads
1189     DiskThread *thread = new DiskThread(blocktables_[i]);
1190     thread->InitThread(total_threads_++, this, os_, patternlist_,
1191                        &power_spike_status_);
1192     thread->SetDevice(diskfilename_[i].c_str());
1193     if (thread->SetParameters(read_block_size_, write_block_size_,
1194                               segment_size_, cache_size_,
1195                               blocks_per_segment_,
1196                               read_threshold_, write_threshold_,
1197                               non_destructive_)) {
1198       disk_vector->insert(disk_vector->end(), thread);
1199     } else {
1200       logprintf(12, "Log: DiskThread::SetParameters() failed\n");
1201       delete thread;
1202     }
1203
1204     for (int j = 0; j < random_threads_; j++) {
1205       // Creating random threads
1206       RandomDiskThread *rthread = new RandomDiskThread(blocktables_[i]);
1207       rthread->InitThread(total_threads_++, this, os_, patternlist_,
1208                           &power_spike_status_);
1209       rthread->SetDevice(diskfilename_[i].c_str());
1210       if (rthread->SetParameters(read_block_size_, write_block_size_,
1211                                  segment_size_, cache_size_,
1212                                  blocks_per_segment_,
1213                                  read_threshold_, write_threshold_,
1214                                  non_destructive_)) {
1215         random_vector->insert(random_vector->end(), rthread);
1216       } else {
1217       logprintf(12, "Log: RandomDiskThread::SetParameters() failed\n");
1218         delete rthread;
1219       }
1220     }
1221   }
1222
1223   workers_map_.insert(make_pair(kDiskType, disk_vector));
1224   workers_map_.insert(make_pair(kRandomDiskType, random_vector));
1225
1226   // CPU stress threads.
1227   WorkerVector *cpu_vector = new WorkerVector();
1228   logprintf(12, "Log: Starting cpu stress threads\n");
1229   for (int i = 0; i < cpu_stress_threads_; i++) {
1230     CpuStressThread *thread = new CpuStressThread();
1231     thread->InitThread(total_threads_++, this, os_, patternlist_,
1232                        &continuous_status_);
1233
1234     // Don't restrict thread location if we have more than one
1235     // thread per core. Not so good for performance.
1236     cpu_set_t available_cpus;
1237     thread->AvailableCpus(&available_cpus);
1238     int cores = cpuset_count(&available_cpus);
1239     if (cpu_stress_threads_ + memory_threads_ <= cores) {
1240       // Place a thread on alternating cores first.
1241       // Go in reverse order for CPU stress threads. This assures interleaved
1242       // core use with no overlap.
1243       int nthcore = (cores - 1) - i;
1244       int nthbit = (((2 * nthcore) % cores) +
1245                     (((2 * nthcore) / cores) % 2)) % cores;
1246       cpu_set_t all_cores;
1247       cpuset_set_ab(&all_cores, 0, cores);
1248       if (!cpuset_isequal(&available_cpus, &all_cores)) {
1249         logprintf(0, "Log: cores = %s, expected %s\n",
1250                   cpuset_format(&available_cpus).c_str(),
1251                   cpuset_format(&all_cores).c_str());
1252       }
1253
1254       // Set thread affinity.
1255       thread->set_cpu_mask_to_cpu(nthbit);
1256     }
1257
1258
1259     cpu_vector->insert(cpu_vector->end(), thread);
1260   }
1261   workers_map_.insert(make_pair(kCPUType, cpu_vector));
1262
1263   // CPU Cache Coherency Threads - one for each core available.
1264   if (cc_test_) {
1265     WorkerVector *cc_vector = new WorkerVector();
1266     logprintf(12, "Log: Starting cpu cache coherency threads\n");
1267
1268     // Allocate the shared datastructure to be worked on by the threads.
1269     cc_cacheline_data_ = reinterpret_cast<cc_cacheline_data*>(
1270         malloc(sizeof(cc_cacheline_data) * cc_cacheline_count_));
1271     sat_assert(cc_cacheline_data_ != NULL);
1272
1273     // Initialize the strucutre.
1274     memset(cc_cacheline_data_, 0,
1275            sizeof(cc_cacheline_data) * cc_cacheline_count_);
1276
1277     int num_cpus = CpuCount();
1278     // Allocate all the nums once so that we get a single chunk
1279     // of contiguous memory.
1280     int *num;
1281 #ifdef HAVE_POSIX_MEMALIGN
1282     int err_result = posix_memalign(
1283         reinterpret_cast<void**>(&num),
1284         kCacheLineSize, sizeof(*num) * num_cpus * cc_cacheline_count_);
1285 #else
1286     num = reinterpret_cast<int*>(memalign(kCacheLineSize,
1287                         sizeof(*num) * num_cpus * cc_cacheline_count_));
1288     int err_result = (num == 0);
1289 #endif
1290     sat_assert(err_result == 0);
1291
1292     int cline;
1293     for (cline = 0; cline < cc_cacheline_count_; cline++) {
1294       memset(num, 0, sizeof(num_cpus) * num_cpus);
1295       cc_cacheline_data_[cline].num = num;
1296       num += num_cpus;
1297     }
1298
1299     int tnum;
1300     for (tnum = 0; tnum < num_cpus; tnum++) {
1301       CpuCacheCoherencyThread *thread =
1302           new CpuCacheCoherencyThread(cc_cacheline_data_, cc_cacheline_count_,
1303                                       tnum, cc_inc_count_);
1304       thread->InitThread(total_threads_++, this, os_, patternlist_,
1305                          &continuous_status_);
1306       // Pin the thread to a particular core.
1307       thread->set_cpu_mask_to_cpu(tnum);
1308
1309       // Insert the thread into the vector.
1310       cc_vector->insert(cc_vector->end(), thread);
1311     }
1312     workers_map_.insert(make_pair(kCCType, cc_vector));
1313   }
1314   ReleaseWorkerLock();
1315 }
1316
1317 // Return the number of cpus actually present in the machine.
1318 int Sat::CpuCount() {
1319   return sysconf(_SC_NPROCESSORS_CONF);
1320 }
1321
1322 // Notify and reap worker threads.
1323 void Sat::JoinThreads() {
1324   logprintf(12, "Log: Joining worker threads\n");
1325   power_spike_status_.StopWorkers();
1326   continuous_status_.StopWorkers();
1327
1328   AcquireWorkerLock();
1329   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1330        map_it != workers_map_.end(); ++map_it) {
1331     for (WorkerVector::const_iterator it = map_it->second->begin();
1332          it != map_it->second->end(); ++it) {
1333       logprintf(12, "Log: Joining thread %d\n", (*it)->ThreadID());
1334       (*it)->JoinThread();
1335     }
1336   }
1337   ReleaseWorkerLock();
1338
1339   QueueStats();
1340
1341   // Finish up result checking.
1342   // Spawn 4 check threads to minimize check time.
1343   logprintf(12, "Log: Finished countdown, begin to result check\n");
1344   WorkerStatus reap_check_status;
1345   WorkerVector reap_check_vector;
1346
1347   // No need for check threads for monitor mode.
1348   if (!monitor_mode_) {
1349     // Initialize the check threads.
1350     for (int i = 0; i < fill_threads_; i++) {
1351       CheckThread *thread = new CheckThread();
1352       thread->InitThread(total_threads_++, this, os_, patternlist_,
1353                          &reap_check_status);
1354       logprintf(12, "Log: Finished countdown, begin to result check\n");
1355       reap_check_vector.push_back(thread);
1356     }
1357   }
1358
1359   reap_check_status.Initialize();
1360   // Check threads should be marked to stop ASAP.
1361   reap_check_status.StopWorkers();
1362
1363   // Spawn the check threads.
1364   for (WorkerVector::const_iterator it = reap_check_vector.begin();
1365        it != reap_check_vector.end(); ++it) {
1366     logprintf(12, "Log: Spawning thread %d\n", (*it)->ThreadID());
1367     (*it)->SpawnThread();
1368   }
1369
1370   // Join the check threads.
1371   for (WorkerVector::const_iterator it = reap_check_vector.begin();
1372        it != reap_check_vector.end(); ++it) {
1373     logprintf(12, "Log: Joining thread %d\n", (*it)->ThreadID());
1374     (*it)->JoinThread();
1375   }
1376
1377   // Reap all children. Stopped threads should have already ended.
1378   // Result checking threads will end when they have finished
1379   // result checking.
1380   logprintf(12, "Log: Join all outstanding threads\n");
1381
1382   // Find all errors.
1383   errorcount_ = GetTotalErrorCount();
1384
1385   AcquireWorkerLock();
1386   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1387        map_it != workers_map_.end(); ++map_it) {
1388     for (WorkerVector::const_iterator it = map_it->second->begin();
1389          it != map_it->second->end(); ++it) {
1390       logprintf(12, "Log: Reaping thread status %d\n", (*it)->ThreadID());
1391       if ((*it)->GetStatus() != 1) {
1392         logprintf(0, "Process Error: Thread %d failed with status %d at "
1393                   "%.2f seconds\n",
1394                   (*it)->ThreadID(), (*it)->GetStatus(),
1395                   (*it)->GetRunDurationUSec()*1.0/1000000);
1396         bad_status();
1397       }
1398       int priority = 12;
1399       if ((*it)->GetErrorCount())
1400         priority = 5;
1401       logprintf(priority, "Log: Thread %d found %lld hardware incidents\n",
1402                 (*it)->ThreadID(), (*it)->GetErrorCount());
1403     }
1404   }
1405   ReleaseWorkerLock();
1406
1407
1408   // Add in any errors from check threads.
1409   for (WorkerVector::const_iterator it = reap_check_vector.begin();
1410        it != reap_check_vector.end(); ++it) {
1411     logprintf(12, "Log: Reaping thread status %d\n", (*it)->ThreadID());
1412     if ((*it)->GetStatus() != 1) {
1413       logprintf(0, "Process Error: Thread %d failed with status %d at "
1414                 "%.2f seconds\n",
1415                 (*it)->ThreadID(), (*it)->GetStatus(),
1416                 (*it)->GetRunDurationUSec()*1.0/1000000);
1417       bad_status();
1418     }
1419     errorcount_ += (*it)->GetErrorCount();
1420     int priority = 12;
1421     if ((*it)->GetErrorCount())
1422       priority = 5;
1423     logprintf(priority, "Log: Thread %d found %lld hardware incidents\n",
1424               (*it)->ThreadID(), (*it)->GetErrorCount());
1425     delete (*it);
1426   }
1427   reap_check_vector.clear();
1428   reap_check_status.Destroy();
1429 }
1430
1431 // Print queuing information.
1432 void Sat::QueueStats() {
1433   finelock_q_->QueueAnalysis();
1434 }
1435
1436 void Sat::AnalysisAllStats() {
1437   float max_runtime_sec = 0.;
1438   float total_data = 0.;
1439   float total_bandwidth = 0.;
1440   float thread_runtime_sec = 0.;
1441
1442   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1443        map_it != workers_map_.end(); ++map_it) {
1444     for (WorkerVector::const_iterator it = map_it->second->begin();
1445          it != map_it->second->end(); ++it) {
1446       thread_runtime_sec = (*it)->GetRunDurationUSec()*1.0/1000000;
1447       total_data += (*it)->GetMemoryCopiedData();
1448       total_data += (*it)->GetDeviceCopiedData();
1449       if (thread_runtime_sec > max_runtime_sec) {
1450         max_runtime_sec = thread_runtime_sec;
1451       }
1452     }
1453   }
1454
1455   total_bandwidth = total_data / max_runtime_sec;
1456
1457   logprintf(0, "Stats: Completed: %.2fM in %.2fs %.2fMB/s, "
1458             "with %d hardware incidents, %d errors\n",
1459             total_data,
1460             max_runtime_sec,
1461             total_bandwidth,
1462             errorcount_,
1463             statuscount_);
1464 }
1465
1466 void Sat::MemoryStats() {
1467   float memcopy_data = 0.;
1468   float memcopy_bandwidth = 0.;
1469   WorkerMap::const_iterator mem_it = workers_map_.find(
1470       static_cast<int>(kMemoryType));
1471   WorkerMap::const_iterator file_it = workers_map_.find(
1472       static_cast<int>(kFileIOType));
1473   sat_assert(mem_it != workers_map_.end());
1474   sat_assert(file_it != workers_map_.end());
1475   for (WorkerVector::const_iterator it = mem_it->second->begin();
1476        it != mem_it->second->end(); ++it) {
1477     memcopy_data += (*it)->GetMemoryCopiedData();
1478     memcopy_bandwidth += (*it)->GetMemoryBandwidth();
1479   }
1480   for (WorkerVector::const_iterator it = file_it->second->begin();
1481        it != file_it->second->end(); ++it) {
1482     memcopy_data += (*it)->GetMemoryCopiedData();
1483     memcopy_bandwidth += (*it)->GetMemoryBandwidth();
1484   }
1485   GoogleMemoryStats(&memcopy_data, &memcopy_bandwidth);
1486   logprintf(4, "Stats: Memory Copy: %.2fM at %.2fMB/s\n",
1487             memcopy_data,
1488             memcopy_bandwidth);
1489 }
1490
1491 void Sat::GoogleMemoryStats(float *memcopy_data,
1492                             float *memcopy_bandwidth) {
1493   // Do nothing, should be implemented by subclasses.
1494 }
1495
1496 void Sat::FileStats() {
1497   float file_data = 0.;
1498   float file_bandwidth = 0.;
1499   WorkerMap::const_iterator file_it = workers_map_.find(
1500       static_cast<int>(kFileIOType));
1501   sat_assert(file_it != workers_map_.end());
1502   for (WorkerVector::const_iterator it = file_it->second->begin();
1503        it != file_it->second->end(); ++it) {
1504     file_data += (*it)->GetDeviceCopiedData();
1505     file_bandwidth += (*it)->GetDeviceBandwidth();
1506   }
1507   logprintf(4, "Stats: File Copy: %.2fM at %.2fMB/s\n",
1508             file_data,
1509             file_bandwidth);
1510 }
1511
1512 void Sat::CheckStats() {
1513   float check_data = 0.;
1514   float check_bandwidth = 0.;
1515   WorkerMap::const_iterator check_it = workers_map_.find(
1516       static_cast<int>(kCheckType));
1517   sat_assert(check_it != workers_map_.end());
1518   for (WorkerVector::const_iterator it = check_it->second->begin();
1519        it != check_it->second->end(); ++it) {
1520     check_data += (*it)->GetMemoryCopiedData();
1521     check_bandwidth += (*it)->GetMemoryBandwidth();
1522   }
1523   logprintf(4, "Stats: Data Check: %.2fM at %.2fMB/s\n",
1524             check_data,
1525             check_bandwidth);
1526 }
1527
1528 void Sat::NetStats() {
1529   float net_data = 0.;
1530   float net_bandwidth = 0.;
1531   WorkerMap::const_iterator netio_it = workers_map_.find(
1532       static_cast<int>(kNetIOType));
1533   WorkerMap::const_iterator netslave_it = workers_map_.find(
1534       static_cast<int>(kNetSlaveType));
1535   sat_assert(netio_it != workers_map_.end());
1536   sat_assert(netslave_it != workers_map_.end());
1537   for (WorkerVector::const_iterator it = netio_it->second->begin();
1538        it != netio_it->second->end(); ++it) {
1539     net_data += (*it)->GetDeviceCopiedData();
1540     net_bandwidth += (*it)->GetDeviceBandwidth();
1541   }
1542   for (WorkerVector::const_iterator it = netslave_it->second->begin();
1543        it != netslave_it->second->end(); ++it) {
1544     net_data += (*it)->GetDeviceCopiedData();
1545     net_bandwidth += (*it)->GetDeviceBandwidth();
1546   }
1547   logprintf(4, "Stats: Net Copy: %.2fM at %.2fMB/s\n",
1548             net_data,
1549             net_bandwidth);
1550 }
1551
1552 void Sat::InvertStats() {
1553   float invert_data = 0.;
1554   float invert_bandwidth = 0.;
1555   WorkerMap::const_iterator invert_it = workers_map_.find(
1556       static_cast<int>(kInvertType));
1557   sat_assert(invert_it != workers_map_.end());
1558   for (WorkerVector::const_iterator it = invert_it->second->begin();
1559        it != invert_it->second->end(); ++it) {
1560     invert_data += (*it)->GetMemoryCopiedData();
1561     invert_bandwidth += (*it)->GetMemoryBandwidth();
1562   }
1563   logprintf(4, "Stats: Invert Data: %.2fM at %.2fMB/s\n",
1564             invert_data,
1565             invert_bandwidth);
1566 }
1567
1568 void Sat::DiskStats() {
1569   float disk_data = 0.;
1570   float disk_bandwidth = 0.;
1571   WorkerMap::const_iterator disk_it = workers_map_.find(
1572       static_cast<int>(kDiskType));
1573   WorkerMap::const_iterator random_it = workers_map_.find(
1574       static_cast<int>(kRandomDiskType));
1575   sat_assert(disk_it != workers_map_.end());
1576   sat_assert(random_it != workers_map_.end());
1577   for (WorkerVector::const_iterator it = disk_it->second->begin();
1578        it != disk_it->second->end(); ++it) {
1579     disk_data += (*it)->GetDeviceCopiedData();
1580     disk_bandwidth += (*it)->GetDeviceBandwidth();
1581   }
1582   for (WorkerVector::const_iterator it = random_it->second->begin();
1583        it != random_it->second->end(); ++it) {
1584     disk_data += (*it)->GetDeviceCopiedData();
1585     disk_bandwidth += (*it)->GetDeviceBandwidth();
1586   }
1587
1588   logprintf(4, "Stats: Disk: %.2fM at %.2fMB/s\n",
1589             disk_data,
1590             disk_bandwidth);
1591 }
1592
1593 // Process worker thread data for bandwidth information, and error results.
1594 // You can add more methods here just subclassing SAT.
1595 void Sat::RunAnalysis() {
1596   AnalysisAllStats();
1597   MemoryStats();
1598   FileStats();
1599   NetStats();
1600   CheckStats();
1601   InvertStats();
1602   DiskStats();
1603 }
1604
1605 // Get total error count, summing across all threads..
1606 int64 Sat::GetTotalErrorCount() {
1607   int64 errors = 0;
1608
1609   AcquireWorkerLock();
1610   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1611        map_it != workers_map_.end(); ++map_it) {
1612     for (WorkerVector::const_iterator it = map_it->second->begin();
1613          it != map_it->second->end(); ++it) {
1614       errors += (*it)->GetErrorCount();
1615     }
1616   }
1617   ReleaseWorkerLock();
1618   return errors;
1619 }
1620
1621
1622 void Sat::SpawnThreads() {
1623   logprintf(12, "Log: Initializing WorkerStatus objects\n");
1624   power_spike_status_.Initialize();
1625   continuous_status_.Initialize();
1626   logprintf(12, "Log: Spawning worker threads\n");
1627   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1628        map_it != workers_map_.end(); ++map_it) {
1629     for (WorkerVector::const_iterator it = map_it->second->begin();
1630          it != map_it->second->end(); ++it) {
1631       logprintf(12, "Log: Spawning thread %d\n", (*it)->ThreadID());
1632       (*it)->SpawnThread();
1633     }
1634   }
1635 }
1636
1637 // Delete used worker thread objects.
1638 void Sat::DeleteThreads() {
1639   logprintf(12, "Log: Deleting worker threads\n");
1640   for (WorkerMap::const_iterator map_it = workers_map_.begin();
1641        map_it != workers_map_.end(); ++map_it) {
1642     for (WorkerVector::const_iterator it = map_it->second->begin();
1643          it != map_it->second->end(); ++it) {
1644       logprintf(12, "Log: Deleting thread %d\n", (*it)->ThreadID());
1645       delete (*it);
1646     }
1647     delete map_it->second;
1648   }
1649   workers_map_.clear();
1650   logprintf(12, "Log: Destroying WorkerStatus objects\n");
1651   power_spike_status_.Destroy();
1652   continuous_status_.Destroy();
1653 }
1654
1655 namespace {
1656 // Calculates the next time an action in Sat::Run() should occur, based on a
1657 // schedule derived from a start point and a regular frequency.
1658 //
1659 // Using frequencies instead of intervals with their accompanying drift allows
1660 // users to better predict when the actions will occur throughout a run.
1661 //
1662 // Arguments:
1663 //   frequency: seconds
1664 //   start: unixtime
1665 //   now: unixtime
1666 //
1667 // Returns: unixtime
1668 inline time_t NextOccurance(time_t frequency, time_t start, time_t now) {
1669   return start + frequency + (((now - start) / frequency) * frequency);
1670 }
1671 }
1672
1673 // Run the actual test.
1674 bool Sat::Run() {
1675   // Install signal handlers to gracefully exit in the middle of a run.
1676   //
1677   // Why go through this whole rigmarole?  It's the only standards-compliant
1678   // (C++ and POSIX) way to handle signals in a multithreaded program.
1679   // Specifically:
1680   //
1681   // 1) (C++) The value of a variable not of type "volatile sig_atomic_t" is
1682   //    unspecified upon entering a signal handler and, if modified by the
1683   //    handler, is unspecified after leaving the handler.
1684   //
1685   // 2) (POSIX) After the value of a variable is changed in one thread, another
1686   //    thread is only guaranteed to see the new value after both threads have
1687   //    acquired or released the same mutex or rwlock, synchronized to the
1688   //    same barrier, or similar.
1689   //
1690   // #1 prevents the use of #2 in a signal handler, so the signal handler must
1691   // be called in the same thread that reads the "volatile sig_atomic_t"
1692   // variable it sets.  We enforce that by blocking the signals in question in
1693   // the worker threads, forcing them to be handled by this thread.
1694   logprintf(12, "Log: Installing signal handlers\n");
1695   sigset_t new_blocked_signals;
1696   sigemptyset(&new_blocked_signals);
1697   sigaddset(&new_blocked_signals, SIGINT);
1698   sigaddset(&new_blocked_signals, SIGTERM);
1699   sigset_t prev_blocked_signals;
1700   pthread_sigmask(SIG_BLOCK, &new_blocked_signals, &prev_blocked_signals);
1701   sighandler_t prev_sigint_handler = signal(SIGINT, SatHandleBreak);
1702   sighandler_t prev_sigterm_handler = signal(SIGTERM, SatHandleBreak);
1703
1704   // Kick off all the worker threads.
1705   logprintf(12, "Log: Launching worker threads\n");
1706   InitializeThreads();
1707   SpawnThreads();
1708   pthread_sigmask(SIG_SETMASK, &prev_blocked_signals, NULL);
1709
1710   logprintf(12, "Log: Starting countdown with %d seconds\n", runtime_seconds_);
1711
1712   // In seconds.
1713   static const time_t kSleepFrequency = 5;
1714   // All of these are in seconds.  You probably want them to be >=
1715   // kSleepFrequency and multiples of kSleepFrequency, but neither is necessary.
1716   static const time_t kInjectionFrequency = 10;
1717   static const time_t kPrintFrequency = 10;
1718
1719   const time_t start = time(NULL);
1720   const time_t end = start + runtime_seconds_;
1721   time_t now = start;
1722   time_t next_print = start + kPrintFrequency;
1723   time_t next_pause = start + pause_delay_;
1724   time_t next_resume = 0;
1725   time_t next_injection;
1726   if (crazy_error_injection_) {
1727     next_injection = start + kInjectionFrequency;
1728   } else {
1729     next_injection = 0;
1730   }
1731
1732   while (now < end) {
1733     // This is an int because it's for logprintf().
1734     const int seconds_remaining = end - now;
1735
1736     if (user_break_) {
1737       // Handle early exit.
1738       logprintf(0, "Log: User exiting early (%d seconds remaining)\n",
1739                 seconds_remaining);
1740       break;
1741     }
1742
1743     // If we have an error limit, check it here and see if we should exit.
1744     if (max_errorcount_ != 0) {
1745       uint64 errors = GetTotalErrorCount();
1746       if (errors > max_errorcount_) {
1747         logprintf(0, "Log: Exiting early (%d seconds remaining) "
1748                      "due to excessive failures (%lld)\n",
1749                   seconds_remaining,
1750                   errors);
1751         break;
1752       }
1753     }
1754
1755     if (now >= next_print) {
1756       // Print a count down message.
1757       logprintf(5, "Log: Seconds remaining: %d\n", seconds_remaining);
1758       next_print = NextOccurance(kPrintFrequency, start, now);
1759     }
1760
1761     if (next_injection && now >= next_injection) {
1762       // Inject an error.
1763       logprintf(4, "Log: Injecting error (%d seconds remaining)\n",
1764                 seconds_remaining);
1765       struct page_entry src;
1766       GetValid(&src);
1767       src.pattern = patternlist_->GetPattern(0);
1768       PutValid(&src);
1769       next_injection = NextOccurance(kInjectionFrequency, start, now);
1770     }
1771
1772     if (next_pause && now >= next_pause) {
1773       // Tell worker threads to pause in preparation for a power spike.
1774       logprintf(4, "Log: Pausing worker threads in preparation for power spike "
1775                 "(%d seconds remaining)\n", seconds_remaining);
1776       power_spike_status_.PauseWorkers();
1777       logprintf(12, "Log: Worker threads paused\n");
1778       next_pause = 0;
1779       next_resume = now + pause_duration_;
1780     }
1781
1782     if (next_resume && now >= next_resume) {
1783       // Tell worker threads to resume in order to cause a power spike.
1784       logprintf(4, "Log: Resuming worker threads to cause a power spike (%d "
1785                 "seconds remaining)\n", seconds_remaining);
1786       power_spike_status_.ResumeWorkers();
1787       logprintf(12, "Log: Worker threads resumed\n");
1788       next_pause = NextOccurance(pause_delay_, start, now);
1789       next_resume = 0;
1790     }
1791
1792     sat_sleep(NextOccurance(kSleepFrequency, start, now) - now);
1793     now = time(NULL);
1794   }
1795
1796   JoinThreads();
1797
1798   logprintf(0, "Stats: Found %lld hardware incidents\n", errorcount_);
1799
1800   if (!monitor_mode_)
1801     RunAnalysis();
1802
1803   DeleteThreads();
1804
1805   logprintf(12, "Log: Uninstalling signal handlers\n");
1806   signal(SIGINT, prev_sigint_handler);
1807   signal(SIGTERM, prev_sigterm_handler);
1808
1809   return true;
1810 }
1811
1812 // Clean up all resources.
1813 bool Sat::Cleanup() {
1814   g_sat = NULL;
1815   Logger::GlobalLogger()->StopThread();
1816   Logger::GlobalLogger()->SetStdoutOnly();
1817   if (logfile_) {
1818     close(logfile_);
1819     logfile_ = 0;
1820   }
1821   if (patternlist_) {
1822     patternlist_->Destroy();
1823     delete patternlist_;
1824     patternlist_ = 0;
1825   }
1826   if (os_) {
1827     os_->FreeTestMem();
1828     delete os_;
1829     os_ = 0;
1830   }
1831   if (empty_) {
1832     delete empty_;
1833     empty_ = 0;
1834   }
1835   if (valid_) {
1836     delete valid_;
1837     valid_ = 0;
1838   }
1839   if (finelock_q_) {
1840     delete finelock_q_;
1841     finelock_q_ = 0;
1842   }
1843   if (page_bitmap_) {
1844     delete[] page_bitmap_;
1845   }
1846
1847   for (size_t i = 0; i < blocktables_.size(); i++) {
1848     delete blocktables_[i];
1849   }
1850
1851   if (cc_cacheline_data_) {
1852     // The num integer arrays for all the cacheline structures are
1853     // allocated as a single chunk. The pointers in the cacheline struct
1854     // are populated accordingly. Hence calling free on the first
1855     // cacheline's num's address is going to free the entire array.
1856     // TODO(aganti): Refactor this to have a class for the cacheline
1857     // structure (currently defined in worker.h) and clean this up
1858     // in the destructor of that class.
1859     if (cc_cacheline_data_[0].num) {
1860       free(cc_cacheline_data_[0].num);
1861     }
1862     free(cc_cacheline_data_);
1863   }
1864
1865   sat_assert(0 == pthread_mutex_destroy(&worker_lock_));
1866
1867   return true;
1868 }
1869
1870
1871 // Pretty print really obvious results.
1872 bool Sat::PrintResults() {
1873   bool result = true;
1874
1875   logprintf(4, "\n");
1876   if (statuscount_) {
1877     logprintf(4, "Status: FAIL - test encountered procedural errors\n");
1878     result = false;
1879   } else if (errorcount_) {
1880     logprintf(4, "Status: FAIL - test discovered HW problems\n");
1881     result = false;
1882   } else {
1883     logprintf(4, "Status: PASS - please verify no corrected errors\n");
1884   }
1885   logprintf(4, "\n");
1886
1887   return result;
1888 }
1889
1890 // Helper functions.
1891 void Sat::AcquireWorkerLock() {
1892   sat_assert(0 == pthread_mutex_lock(&worker_lock_));
1893 }
1894 void Sat::ReleaseWorkerLock() {
1895   sat_assert(0 == pthread_mutex_unlock(&worker_lock_));
1896 }
1897
1898 void logprintf(int priority, const char *format, ...) {
1899   va_list args;
1900   va_start(args, format);
1901   Logger::GlobalLogger()->VLogF(priority, format, args);
1902   va_end(args);
1903 }