2 * inertia.c: Game involving navigating round a grid picking up
5 * Game rules and basic generator design by Ben Olmstead.
6 * This re-implementation was written by Simon Tatham.
18 /* Used in the game_state */
25 /* Used in the game IDs */
28 /* Used in the game generation */
31 /* Used only in the game_drawstate*/
35 #define DP1 (DIRECTIONS+1)
36 #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
37 #define DY(dir) ( DX((dir)+6) )
40 * Lvalue macro which expects x and y to be in range.
42 #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] )
45 * Rvalue macro which can cope with x and y being out of range.
47 #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \
48 WALL : LV_AT(w, h, grid, x, y) )
86 static game_params *default_params(void)
88 game_params *ret = snew(game_params);
96 static void free_params(game_params *params)
101 static game_params *dup_params(game_params *params)
103 game_params *ret = snew(game_params);
104 *ret = *params; /* structure copy */
108 static const struct game_params inertia_presets[] = {
114 static int game_fetch_preset(int i, char **name, game_params **params)
120 if (i < 0 || i >= lenof(inertia_presets))
123 p = inertia_presets[i];
124 ret = dup_params(&p);
125 sprintf(namebuf, "%dx%d", ret->w, ret->h);
126 retname = dupstr(namebuf);
133 static void decode_params(game_params *params, char const *string)
135 params->w = params->h = atoi(string);
136 while (*string && isdigit((unsigned char)*string)) string++;
137 if (*string == 'x') {
139 params->h = atoi(string);
143 static char *encode_params(game_params *params, int full)
147 sprintf(data, "%dx%d", params->w, params->h);
152 static config_item *game_configure(game_params *params)
157 ret = snewn(3, config_item);
159 ret[0].name = "Width";
160 ret[0].type = C_STRING;
161 sprintf(buf, "%d", params->w);
162 ret[0].sval = dupstr(buf);
165 ret[1].name = "Height";
166 ret[1].type = C_STRING;
167 sprintf(buf, "%d", params->h);
168 ret[1].sval = dupstr(buf);
179 static game_params *custom_params(config_item *cfg)
181 game_params *ret = snew(game_params);
183 ret->w = atoi(cfg[0].sval);
184 ret->h = atoi(cfg[1].sval);
189 static char *validate_params(game_params *params, int full)
192 * Avoid completely degenerate cases which only have one
193 * row/column. We probably could generate completable puzzles
194 * of that shape, but they'd be forced to be extremely boring
195 * and at large sizes would take a while to happen upon at
198 if (params->w < 2 || params->h < 2)
199 return "Width and height must both be at least two";
202 * The grid construction algorithm creates 1/5 as many gems as
203 * grid squares, and must create at least one gem to have an
204 * actual puzzle. However, an area-five grid is ruled out by
205 * the above constraint, so the practical minimum is six.
207 if (params->w * params->h < 6)
208 return "Grid area must be at least six squares";
213 /* ----------------------------------------------------------------------
214 * Solver used by grid generator.
217 struct solver_scratch {
218 unsigned char *reachable_from, *reachable_to;
222 static struct solver_scratch *new_scratch(int w, int h)
224 struct solver_scratch *sc = snew(struct solver_scratch);
226 sc->reachable_from = snewn(w * h * DIRECTIONS, unsigned char);
227 sc->reachable_to = snewn(w * h * DIRECTIONS, unsigned char);
228 sc->positions = snewn(w * h * DIRECTIONS, int);
233 static void free_scratch(struct solver_scratch *sc)
235 sfree(sc->reachable_from);
236 sfree(sc->reachable_to);
237 sfree(sc->positions);
241 static int can_go(int w, int h, char *grid,
242 int x1, int y1, int dir1, int x2, int y2, int dir2)
245 * Returns TRUE if we can transition directly from (x1,y1)
246 * going in direction dir1, to (x2,y2) going in direction dir2.
250 * If we're actually in the middle of an unoccupyable square,
251 * we cannot make any move.
253 if (AT(w, h, grid, x1, y1) == WALL ||
254 AT(w, h, grid, x1, y1) == MINE)
258 * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is
259 * the same coordinate as x1,y1, then we can make the
260 * transition (by stopping and changing direction).
262 * For this to be the case, we have to either have a wall
263 * beyond x1,y1,dir1, or have a stop on x1,y1.
265 if (x2 == x1 && y2 == y1 &&
266 (AT(w, h, grid, x1, y1) == STOP ||
267 AT(w, h, grid, x1, y1) == START ||
268 AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL))
272 * If a move is capable of continuing here, then x1,y1,dir1 can
273 * move one space further on.
275 if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 &&
276 (AT(w, h, grid, x2, y2) == BLANK ||
277 AT(w, h, grid, x2, y2) == GEM ||
278 AT(w, h, grid, x2, y2) == STOP ||
279 AT(w, h, grid, x2, y2) == START))
288 static int find_gem_candidates(int w, int h, char *grid,
289 struct solver_scratch *sc)
293 int sx, sy, gx, gy, gd, pass, possgems;
296 * This function finds all the candidate gem squares, which are
297 * precisely those squares which can be picked up on a loop
298 * from the starting point back to the starting point. Doing
299 * this may involve passing through such a square in the middle
300 * of a move; so simple breadth-first search over the _squares_
301 * of the grid isn't quite adequate, because it might be that
302 * we can only reach a gem from the start by moving over it in
303 * one direction, but can only return to the start if we were
304 * moving over it in another direction.
306 * Instead, we BFS over a space which mentions each grid square
307 * eight times - once for each direction. We also BFS twice:
308 * once to find out what square+direction pairs we can reach
309 * _from_ the start point, and once to find out what pairs we
310 * can reach the start point from. Then a square is reachable
311 * if any of the eight directions for that square has both
315 memset(sc->reachable_from, 0, wh * DIRECTIONS);
316 memset(sc->reachable_to, 0, wh * DIRECTIONS);
319 * Find the starting square.
321 sx = -1; /* placate optimiser */
322 for (sy = 0; sy < h; sy++) {
323 for (sx = 0; sx < w; sx++)
324 if (AT(w, h, grid, sx, sy) == START)
331 for (pass = 0; pass < 2; pass++) {
332 unsigned char *reachable = (pass == 0 ? sc->reachable_from :
334 int sign = (pass == 0 ? +1 : -1);
337 #ifdef SOLVER_DIAGNOSTICS
338 printf("starting pass %d\n", pass);
342 * `head' and `tail' are indices within sc->positions which
343 * track the list of board positions left to process.
346 for (dir = 0; dir < DIRECTIONS; dir++) {
347 int index = (sy*w+sx)*DIRECTIONS+dir;
348 sc->positions[tail++] = index;
349 reachable[index] = TRUE;
350 #ifdef SOLVER_DIAGNOSTICS
351 printf("starting point %d,%d,%d\n", sx, sy, dir);
356 * Now repeatedly pick an element off the list and process
359 while (head < tail) {
360 int index = sc->positions[head++];
361 int dir = index % DIRECTIONS;
362 int x = (index / DIRECTIONS) % w;
363 int y = index / (w * DIRECTIONS);
364 int n, x2, y2, d2, i2;
366 #ifdef SOLVER_DIAGNOSTICS
367 printf("processing point %d,%d,%d\n", x, y, dir);
370 * The places we attempt to switch to here are:
371 * - each possible direction change (all the other
372 * directions in this square)
373 * - one step further in the direction we're going (or
374 * one step back, if we're in the reachable_to pass).
376 for (n = -1; n < DIRECTIONS; n++) {
378 x2 = x + sign * DX(dir);
379 y2 = y + sign * DY(dir);
386 i2 = (y2*w+x2)*DIRECTIONS+d2;
387 if (x2 >= 0 && x2 < w &&
391 #ifdef SOLVER_DIAGNOSTICS
392 printf(" trying point %d,%d,%d", x2, y2, d2);
395 ok = can_go(w, h, grid, x, y, dir, x2, y2, d2);
397 ok = can_go(w, h, grid, x2, y2, d2, x, y, dir);
398 #ifdef SOLVER_DIAGNOSTICS
399 printf(" - %sok\n", ok ? "" : "not ");
402 sc->positions[tail++] = i2;
403 reachable[i2] = TRUE;
411 * And that should be it. Now all we have to do is find the
412 * squares for which there exists _some_ direction such that
413 * the square plus that direction form a tuple which is both
414 * reachable from the start and reachable to the start.
417 for (gy = 0; gy < h; gy++)
418 for (gx = 0; gx < w; gx++)
419 if (AT(w, h, grid, gx, gy) == BLANK) {
420 for (gd = 0; gd < DIRECTIONS; gd++) {
421 int index = (gy*w+gx)*DIRECTIONS+gd;
422 if (sc->reachable_from[index] && sc->reachable_to[index]) {
423 #ifdef SOLVER_DIAGNOSTICS
424 printf("space at %d,%d is reachable via"
425 " direction %d\n", gx, gy, gd);
427 LV_AT(w, h, grid, gx, gy) = POSSGEM;
437 /* ----------------------------------------------------------------------
438 * Grid generation code.
441 static char *gengrid(int w, int h, random_state *rs)
444 char *grid = snewn(wh+1, char);
445 struct solver_scratch *sc = new_scratch(w, h);
446 int maxdist_threshold, tries;
448 maxdist_threshold = 2;
454 int *dist, *list, head, tail, maxdist;
457 * We're going to fill the grid with the five basic piece
458 * types in about 1/5 proportion. For the moment, though,
459 * we leave out the gems, because we'll put those in
460 * _after_ we run the solver to tell us where the viable
464 for (j = 0; j < wh/5; j++)
466 for (j = 0; j < wh/5; j++)
468 for (j = 0; j < wh/5; j++)
474 shuffle(grid, wh, sizeof(*grid), rs);
477 * Find the viable gem locations, and immediately give up
478 * and try again if there aren't enough of them.
480 possgems = find_gem_candidates(w, h, grid, sc);
485 * We _could_ now select wh/5 of the POSSGEMs and set them
486 * to GEM, and have a viable level. However, there's a
487 * chance that a large chunk of the level will turn out to
488 * be unreachable, so first we test for that.
490 * We do this by finding the largest distance from any
491 * square to the nearest POSSGEM, by breadth-first search.
492 * If this is above a critical threshold, we abort and try
495 * (This search is purely geometric, without regard to
496 * walls and long ways round.)
498 dist = sc->positions;
499 list = sc->positions + wh;
500 for (i = 0; i < wh; i++)
503 for (i = 0; i < wh; i++)
504 if (grid[i] == POSSGEM) {
509 while (head < tail) {
513 if (maxdist < dist[pos])
519 for (d = 0; d < DIRECTIONS; d++) {
525 if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) {
528 dist[p2] = dist[pos] + 1;
534 assert(head == wh && tail == wh);
537 * Now abandon this grid and go round again if maxdist is
538 * above the required threshold.
540 * We can safely start the threshold as low as 2. As we
541 * accumulate failed generation attempts, we gradually
542 * raise it as we get more desperate.
544 if (maxdist > maxdist_threshold) {
554 * Now our reachable squares are plausibly evenly
555 * distributed over the grid. I'm not actually going to
556 * _enforce_ that I place the gems in such a way as not to
557 * increase that maxdist value; I'm now just going to trust
558 * to the RNG to pick a sensible subset of the POSSGEMs.
561 for (i = 0; i < wh; i++)
562 if (grid[i] == POSSGEM)
564 shuffle(list, j, sizeof(*list), rs);
565 for (i = 0; i < j; i++)
566 grid[list[i]] = (i < wh/5 ? GEM : BLANK);
577 static char *new_game_desc(game_params *params, random_state *rs,
578 char **aux, int interactive)
580 return gengrid(params->w, params->h, rs);
583 static char *validate_desc(game_params *params, char *desc)
585 int w = params->w, h = params->h, wh = w*h;
586 int starts = 0, gems = 0, i;
588 for (i = 0; i < wh; i++) {
590 return "Not enough data to fill grid";
591 if (desc[i] != WALL && desc[i] != START && desc[i] != STOP &&
592 desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK)
593 return "Unrecognised character in game description";
594 if (desc[i] == START)
600 return "Too much data to fill grid";
602 return "No starting square specified";
604 return "More than one starting square specified";
606 return "No gems specified";
611 static game_state *new_game(midend *me, game_params *params, char *desc)
613 int w = params->w, h = params->h, wh = w*h;
615 game_state *state = snew(game_state);
617 state->p = *params; /* structure copy */
619 state->grid = snewn(wh, char);
620 assert(strlen(desc) == wh);
621 memcpy(state->grid, desc, wh);
623 state->px = state->py = -1;
625 for (i = 0; i < wh; i++) {
626 if (state->grid[i] == START) {
627 state->grid[i] = STOP;
630 } else if (state->grid[i] == GEM) {
635 assert(state->gems > 0);
636 assert(state->px >= 0 && state->py >= 0);
638 state->distance_moved = 0;
641 state->cheated = FALSE;
648 static game_state *dup_game(game_state *state)
650 int w = state->p.w, h = state->p.h, wh = w*h;
651 game_state *ret = snew(game_state);
656 ret->gems = state->gems;
657 ret->grid = snewn(wh, char);
658 ret->distance_moved = state->distance_moved;
660 memcpy(ret->grid, state->grid, wh);
661 ret->cheated = state->cheated;
662 ret->soln = state->soln;
664 ret->soln->refcount++;
665 ret->solnpos = state->solnpos;
670 static void free_game(game_state *state)
672 if (state->soln && --state->soln->refcount == 0) {
673 sfree(state->soln->list);
681 * Internal function used by solver.
683 static int move_goes_to(int w, int h, char *grid, int x, int y, int d)
688 * See where we'd get to if we made this move.
690 dr = -1; /* placate optimiser */
692 if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) {
693 dr = DIRECTIONS; /* hit a wall, so end up stationary */
698 if (AT(w, h, grid, x, y) == STOP) {
699 dr = DIRECTIONS; /* hit a stop, so end up stationary */
702 if (AT(w, h, grid, x, y) == GEM) {
703 dr = d; /* hit a gem, so we're still moving */
706 if (AT(w, h, grid, x, y) == MINE)
707 return -1; /* hit a mine, so move is invalid */
710 return (y*w+x)*DP1+dr;
713 static int compare_integers(const void *av, const void *bv)
715 const int *a = (const int *)av;
716 const int *b = (const int *)bv;
725 static char *solve_game(game_state *state, game_state *currstate,
726 char *aux, char **error)
728 int w = state->p.w, h = state->p.h, wh = w*h;
729 int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit;
731 int *dist, *dist2, *list;
733 int circuitlen, circuitsize;
734 int head, tail, pass, i, j, n, x, y, d, dd;
735 char *err, *soln, *p;
738 * Before anything else, deal with the special case in which
739 * all the gems are already collected.
741 for (i = 0; i < wh; i++)
742 if (currstate->grid[i] == GEM)
745 *error = "Game is already solved";
750 * Solving Inertia is a question of first building up the graph
751 * of where you can get to from where, and secondly finding a
752 * tour of the graph which takes in every gem.
754 * This is of course a close cousin of the travelling salesman
755 * problem, which is NP-complete; so I rather doubt that any
756 * _optimal_ tour can be found in plausible time. Hence I'll
757 * restrict myself to merely finding a not-too-bad one.
759 * First construct the graph, by bfsing out move by move from
760 * the current player position. Graph vertices will be
761 * - every endpoint of a move (place the ball can be
763 * - every gem (place the ball can go through in motion).
764 * Vertices of this type have an associated direction, since
765 * if a gem can be collected by sliding through it in two
766 * different directions it doesn't follow that you can
767 * change direction at it.
769 * I'm going to refer to a non-directional vertex as
770 * (y*w+x)*DP1+DIRECTIONS, and a directional one as
775 * nodeindex[] maps node codes as shown above to numeric
776 * indices in the nodes[] array.
778 nodeindex = snewn(DP1*wh, int);
779 for (i = 0; i < DP1*wh; i++)
783 * Do the bfs to find all the interesting graph nodes.
785 nodes = snewn(DP1*wh, int);
788 nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS;
789 nodeindex[nodes[0]] = tail;
792 while (head < tail) {
793 int nc = nodes[head++], nnc;
798 * Plot all possible moves from this node. If the node is
799 * directed, there's only one.
801 for (dd = 0; dd < DIRECTIONS; dd++) {
806 if (d < DIRECTIONS && d != dd)
809 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
810 if (nnc >= 0 && nnc != nc) {
811 if (nodeindex[nnc] < 0) {
813 nodeindex[nnc] = tail;
822 * Now we know how many nodes we have, allocate the edge array
823 * and go through setting up the edges.
825 edges = snewn(DIRECTIONS*n, int);
826 edgei = snewn(n+1, int);
829 for (i = 0; i < n; i++) {
839 for (dd = 0; dd < DIRECTIONS; dd++) {
842 if (d >= DIRECTIONS || d == dd) {
843 nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
845 if (nnc >= 0 && nnc != nc)
846 edges[nedges++] = nodeindex[nnc];
853 * Now set up the backedges array.
855 backedges = snewn(nedges, int);
856 backedgei = snewn(n+1, int);
857 for (i = j = 0; i < nedges; i++) {
858 while (j+1 < n && i >= edgei[j+1])
860 backedges[i] = edges[i] * n + j;
862 qsort(backedges, nedges, sizeof(int), compare_integers);
864 for (i = j = 0; i < nedges; i++) {
865 int k = backedges[i] / n;
870 backedgei[n] = nedges;
873 * Set up the initial tour. At all times, our tour is a circuit
874 * of graph vertices (which may, and probably will often,
875 * repeat vertices). To begin with, it's got exactly one vertex
876 * in it, which is the player's current starting point.
879 circuit = snewn(circuitsize, int);
881 circuit[circuitlen++] = 0; /* node index 0 is the starting posn */
884 * Track which gems are as yet unvisited.
886 unvisited = snewn(wh, int);
887 for (i = 0; i < wh; i++)
888 unvisited[i] = FALSE;
889 for (i = 0; i < wh; i++)
890 if (currstate->grid[i] == GEM)
894 * Allocate space for doing bfses inside the main loop.
896 dist = snewn(n, int);
897 dist2 = snewn(n, int);
898 list = snewn(n, int);
904 * Now enter the main loop, in each iteration of which we
905 * extend the tour to take in an as yet uncollected gem.
908 int target, n1, n2, bestdist, extralen, targetpos;
910 #ifdef TSP_DIAGNOSTICS
911 printf("circuit is");
912 for (i = 0; i < circuitlen; i++) {
913 int nc = nodes[circuit[i]];
914 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
917 printf("moves are ");
918 x = nodes[circuit[0]] / DP1 % w;
919 y = nodes[circuit[0]] / DP1 / w;
920 for (i = 1; i < circuitlen; i++) {
922 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
924 x2 = nodes[circuit[i]] / DP1 % w;
925 y2 = nodes[circuit[i]] / DP1 / w;
926 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
927 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
928 for (d = 0; d < DIRECTIONS; d++)
929 if (DX(d) == dx && DY(d) == dy)
930 printf("%c", "89632147"[d]);
938 * First, start a pair of bfses at _every_ vertex currently
939 * in the tour, and extend them outwards to find the
940 * nearest as yet unreached gem vertex.
942 * This is largely a heuristic: we could pick _any_ doubly
943 * reachable node here and still get a valid tour as
944 * output. I hope that picking a nearby one will result in
945 * generally good tours.
947 for (pass = 0; pass < 2; pass++) {
948 int *ep = (pass == 0 ? edges : backedges);
949 int *ei = (pass == 0 ? edgei : backedgei);
950 int *dp = (pass == 0 ? dist : dist2);
952 for (i = 0; i < n; i++)
954 for (i = 0; i < circuitlen; i++) {
961 while (head < tail) {
962 int ni = list[head++];
963 for (i = ei[ni]; i < ei[ni+1]; i++) {
965 if (ti >= 0 && dp[ti] < 0) {
972 /* Now find the nearest unvisited gem. */
975 for (i = 0; i < n; i++) {
976 if (unvisited[nodes[i] / DP1] &&
977 dist[i] >= 0 && dist2[i] >= 0) {
978 int thisdist = dist[i] + dist2[i];
979 if (bestdist < 0 || bestdist > thisdist) {
988 * If we get to here, we haven't found a gem we can get
989 * at all, which means we terminate this loop.
995 * Now we have a graph vertex at list[tail-1] which is an
996 * unvisited gem. We want to add that vertex to our tour.
997 * So we run two more breadth-first searches: one starting
998 * from that vertex and following forward edges, and
999 * another starting from the same vertex and following
1000 * backward edges. This allows us to determine, for each
1001 * node on the current tour, how quickly we can get both to
1002 * and from the target vertex from that node.
1004 #ifdef TSP_DIAGNOSTICS
1005 printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w,
1006 nodes[target]/DP1/w, nodes[target]%DP1);
1009 for (pass = 0; pass < 2; pass++) {
1010 int *ep = (pass == 0 ? edges : backedges);
1011 int *ei = (pass == 0 ? edgei : backedgei);
1012 int *dp = (pass == 0 ? dist : dist2);
1014 for (i = 0; i < n; i++)
1019 list[tail++] = target;
1021 while (head < tail) {
1022 int ni = list[head++];
1023 for (i = ei[ni]; i < ei[ni+1]; i++) {
1025 if (ti >= 0 && dp[ti] < 0) {
1026 dp[ti] = dp[ni] + 1;
1027 /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
1035 * Now for every node n, dist[n] gives the length of the
1036 * shortest path from the target vertex to n, and dist2[n]
1037 * gives the length of the shortest path from n to the
1040 * Our next step is to search linearly along the tour to
1041 * find the optimum place to insert a trip to the target
1042 * vertex and back. Our two options are either
1043 * (a) to find two adjacent vertices A,B in the tour and
1044 * replace the edge A->B with the path A->target->B
1045 * (b) to find a single vertex X in the tour and replace
1046 * it with the complete round trip X->target->X.
1047 * We do whichever takes the fewest moves.
1051 for (i = 0; i < circuitlen; i++) {
1055 * Try a round trip from vertex i.
1057 if (dist[circuit[i]] >= 0 &&
1058 dist2[circuit[i]] >= 0) {
1059 thisdist = dist[circuit[i]] + dist2[circuit[i]];
1060 if (bestdist < 0 || thisdist < bestdist) {
1061 bestdist = thisdist;
1067 * Try a trip from vertex i via target to vertex i+1.
1069 if (i+1 < circuitlen &&
1070 dist2[circuit[i]] >= 0 &&
1071 dist[circuit[i+1]] >= 0) {
1072 thisdist = dist2[circuit[i]] + dist[circuit[i+1]];
1073 if (bestdist < 0 || thisdist < bestdist) {
1074 bestdist = thisdist;
1082 * We couldn't find a round trip taking in this gem _at
1085 err = "Unable to find a solution from this starting point";
1088 #ifdef TSP_DIAGNOSTICS
1089 printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist);
1092 #ifdef TSP_DIAGNOSTICS
1093 printf("circuit before lengthening is");
1094 for (i = 0; i < circuitlen; i++) {
1095 printf(" %d", circuit[i]);
1101 * Now actually lengthen the tour to take in this round
1104 extralen = dist2[circuit[n1]] + dist[circuit[n2]];
1107 circuitlen += extralen;
1108 if (circuitlen >= circuitsize) {
1109 circuitsize = circuitlen + 256;
1110 circuit = sresize(circuit, circuitsize, int);
1112 memmove(circuit + n2 + extralen, circuit + n2,
1113 (circuitlen - n2 - extralen) * sizeof(int));
1116 #ifdef TSP_DIAGNOSTICS
1117 printf("circuit in middle of lengthening is");
1118 for (i = 0; i < circuitlen; i++) {
1119 printf(" %d", circuit[i]);
1125 * Find the shortest-path routes to and from the target,
1126 * and write them into the circuit.
1128 targetpos = n1 + dist2[circuit[n1]];
1129 assert(targetpos - dist2[circuit[n1]] == n1);
1130 assert(targetpos + dist[circuit[n2]] == n2);
1131 for (pass = 0; pass < 2; pass++) {
1132 int dir = (pass == 0 ? -1 : +1);
1133 int *ep = (pass == 0 ? backedges : edges);
1134 int *ei = (pass == 0 ? backedgei : edgei);
1135 int *dp = (pass == 0 ? dist : dist2);
1136 int nn = (pass == 0 ? n2 : n1);
1137 int ni = circuit[nn], ti, dest = nn;
1145 /*printf("pass %d: looking at vertex %d\n", pass, ni);*/
1146 for (i = ei[ni]; i < ei[ni+1]; i++) {
1148 if (ti >= 0 && dp[ti] == dp[ni] - 1)
1151 assert(i < ei[ni+1] && ti >= 0);
1156 #ifdef TSP_DIAGNOSTICS
1157 printf("circuit after lengthening is");
1158 for (i = 0; i < circuitlen; i++) {
1159 printf(" %d", circuit[i]);
1165 * Finally, mark all gems that the new piece of circuit
1166 * passes through as visited.
1168 for (i = n1; i <= n2; i++) {
1169 int pos = nodes[circuit[i]] / DP1;
1170 assert(pos >= 0 && pos < wh);
1171 unvisited[pos] = FALSE;
1175 #ifdef TSP_DIAGNOSTICS
1176 printf("before reduction, moves are ");
1177 x = nodes[circuit[0]] / DP1 % w;
1178 y = nodes[circuit[0]] / DP1 / w;
1179 for (i = 1; i < circuitlen; i++) {
1181 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1183 x2 = nodes[circuit[i]] / DP1 % w;
1184 y2 = nodes[circuit[i]] / DP1 / w;
1185 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1186 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1187 for (d = 0; d < DIRECTIONS; d++)
1188 if (DX(d) == dx && DY(d) == dy)
1189 printf("%c", "89632147"[d]);
1197 * That's got a basic solution. Now optimise it by removing
1198 * redundant sections of the circuit: it's entirely possible
1199 * that a piece of circuit we carefully inserted at one stage
1200 * to collect a gem has become pointless because the steps
1201 * required to collect some _later_ gem necessarily passed
1202 * through the same one.
1204 * So first we go through and work out how many times each gem
1205 * is collected. Then we look for maximal sections of circuit
1206 * which are redundant in the sense that their removal would
1207 * not reduce any gem's collection count to zero, and replace
1208 * each one with a bfs-derived fastest path between their
1212 int oldlen = circuitlen;
1215 for (dir = +1; dir >= -1; dir -= 2) {
1217 for (i = 0; i < wh; i++)
1219 for (i = 0; i < circuitlen; i++) {
1220 int xy = nodes[circuit[i]] / DP1;
1221 if (currstate->grid[xy] == GEM)
1226 * If there's any gem we didn't end up visiting at all,
1229 for (i = 0; i < wh; i++) {
1230 if (currstate->grid[i] == GEM && unvisited[i] == 0) {
1231 err = "Unable to find a solution from this starting point";
1238 for (i = j = (dir > 0 ? 0 : circuitlen-1);
1239 i < circuitlen && i >= 0;
1241 int xy = nodes[circuit[i]] / DP1;
1242 if (currstate->grid[xy] == GEM && unvisited[xy] > 1) {
1244 } else if (currstate->grid[xy] == GEM || i == circuitlen-1) {
1246 * circuit[i] collects a gem for the only time,
1247 * or is the last node in the circuit.
1248 * Therefore it cannot be removed; so we now
1249 * want to replace the path from circuit[j] to
1250 * circuit[i] with a bfs-shortest path.
1252 int p, q, k, dest, ni, ti, thisdist;
1255 * Set up the upper and lower bounds of the
1261 #ifdef TSP_DIAGNOSTICS
1262 printf("optimising section from %d - %d\n", p, q);
1265 for (k = 0; k < n; k++)
1269 dist[circuit[p]] = 0;
1270 list[tail++] = circuit[p];
1272 while (head < tail && dist[circuit[q]] < 0) {
1273 int ni = list[head++];
1274 for (k = edgei[ni]; k < edgei[ni+1]; k++) {
1276 if (ti >= 0 && dist[ti] < 0) {
1277 dist[ti] = dist[ni] + 1;
1283 thisdist = dist[circuit[q]];
1284 assert(thisdist >= 0 && thisdist <= q-p);
1286 memmove(circuit+p+thisdist, circuit+q,
1287 (circuitlen - q) * sizeof(int));
1293 i = q; /* resume loop from the right place */
1295 #ifdef TSP_DIAGNOSTICS
1296 printf("new section runs from %d - %d\n", p, q);
1304 /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
1310 for (k = backedgei[ni]; k < backedgei[ni+1]; k++) {
1312 if (ti >= 0 && dist[ti] == dist[ni] - 1)
1315 assert(k < backedgei[ni+1] && ti >= 0);
1320 * Now re-increment the visit counts for the
1324 int xy = nodes[circuit[p]] / DP1;
1325 if (currstate->grid[xy] == GEM)
1331 #ifdef TSP_DIAGNOSTICS
1332 printf("during reduction, circuit is");
1333 for (k = 0; k < circuitlen; k++) {
1334 int nc = nodes[circuit[k]];
1335 printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
1338 printf("moves are ");
1339 x = nodes[circuit[0]] / DP1 % w;
1340 y = nodes[circuit[0]] / DP1 / w;
1341 for (k = 1; k < circuitlen; k++) {
1343 if (nodes[circuit[k]] % DP1 != DIRECTIONS)
1345 x2 = nodes[circuit[k]] / DP1 % w;
1346 y2 = nodes[circuit[k]] / DP1 / w;
1347 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1348 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1349 for (d = 0; d < DIRECTIONS; d++)
1350 if (DX(d) == dx && DY(d) == dy)
1351 printf("%c", "89632147"[d]);
1360 #ifdef TSP_DIAGNOSTICS
1361 printf("after reduction, moves are ");
1362 x = nodes[circuit[0]] / DP1 % w;
1363 y = nodes[circuit[0]] / DP1 / w;
1364 for (i = 1; i < circuitlen; i++) {
1366 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1368 x2 = nodes[circuit[i]] / DP1 % w;
1369 y2 = nodes[circuit[i]] / DP1 / w;
1370 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1371 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1372 for (d = 0; d < DIRECTIONS; d++)
1373 if (DX(d) == dx && DY(d) == dy)
1374 printf("%c", "89632147"[d]);
1383 * If we've managed an entire reduction pass in each
1384 * direction and not made the solution any shorter, we're
1387 if (circuitlen == oldlen)
1392 * Encode the solution as a move string.
1395 soln = snewn(circuitlen+2, char);
1398 x = nodes[circuit[0]] / DP1 % w;
1399 y = nodes[circuit[0]] / DP1 / w;
1400 for (i = 1; i < circuitlen; i++) {
1402 if (nodes[circuit[i]] % DP1 != DIRECTIONS)
1404 x2 = nodes[circuit[i]] / DP1 % w;
1405 y2 = nodes[circuit[i]] / DP1 / w;
1406 dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
1407 dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
1408 for (d = 0; d < DIRECTIONS; d++)
1409 if (DX(d) == dx && DY(d) == dy) {
1413 assert(d < DIRECTIONS);
1418 assert(p - soln < circuitlen+2);
1439 static char *game_text_format(game_state *state)
1452 static game_ui *new_ui(game_state *state)
1454 game_ui *ui = snew(game_ui);
1455 ui->anim_length = 0.0F;
1458 ui->just_made_move = FALSE;
1459 ui->just_died = FALSE;
1463 static void free_ui(game_ui *ui)
1468 static char *encode_ui(game_ui *ui)
1472 * The deaths counter needs preserving across a serialisation.
1474 sprintf(buf, "D%d", ui->deaths);
1478 static void decode_ui(game_ui *ui, char *encoding)
1481 sscanf(encoding, "D%d%n", &ui->deaths, &p);
1484 static void game_changed_state(game_ui *ui, game_state *oldstate,
1485 game_state *newstate)
1488 * Increment the deaths counter. We only do this if
1489 * ui->just_made_move is set (redoing a suicide move doesn't
1490 * kill you _again_), and also we only do it if the game wasn't
1491 * already completed (once you're finished, you can play).
1493 if (!oldstate->dead && newstate->dead && ui->just_made_move &&
1496 ui->just_died = TRUE;
1498 ui->just_died = FALSE;
1500 ui->just_made_move = FALSE;
1503 struct game_drawstate {
1507 unsigned short *grid;
1508 blitter *player_background;
1509 int player_bg_saved, pbgx, pbgy;
1512 #define PREFERRED_TILESIZE 32
1513 #define TILESIZE (ds->tilesize)
1514 #define BORDER (TILESIZE)
1515 #define HIGHLIGHT_WIDTH (TILESIZE / 10)
1516 #define COORD(x) ( (x) * TILESIZE + BORDER )
1517 #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
1519 static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
1520 int x, int y, int button)
1522 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1528 if (button == LEFT_BUTTON) {
1530 * Mouse-clicking near the target point (or, more
1531 * accurately, in the appropriate octant) is an alternative
1532 * way to input moves.
1535 if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) {
1539 dx = FROMCOORD(x) - state->px;
1540 dy = FROMCOORD(y) - state->py;
1541 /* I pass dx,dy rather than dy,dx so that the octants
1542 * end up the right way round. */
1543 angle = atan2(dx, -dy);
1545 angle = (angle + (PI/8)) / (PI/4);
1546 assert(angle > -16.0F);
1547 dir = (int)(angle + 16.0F) & 7;
1549 } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
1551 else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
1553 else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
1555 else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
1557 else if (button == (MOD_NUM_KEYPAD | '7'))
1559 else if (button == (MOD_NUM_KEYPAD | '1'))
1561 else if (button == (MOD_NUM_KEYPAD | '9'))
1563 else if (button == (MOD_NUM_KEYPAD | '3'))
1565 else if (button == ' ' && state->soln && state->solnpos < state->soln->len)
1566 dir = state->soln->list[state->solnpos];
1572 * Reject the move if we can't make it at all due to a wall
1575 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1579 * Reject the move if we're dead!
1585 * Otherwise, we can make the move. All we need to specify is
1588 ui->just_made_move = TRUE;
1589 sprintf(buf, "%d", dir);
1593 static game_state *execute_move(game_state *state, char *move)
1595 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1604 * This is a solve move, so we don't actually _change_ the
1605 * grid but merely set up a stored solution path.
1611 sol->list = snewn(len, unsigned char);
1612 for (i = 0; i < len; i++)
1613 sol->list[i] = move[i] - '0';
1614 ret = dup_game(state);
1615 ret->cheated = TRUE;
1623 if (dir < 0 || dir >= DIRECTIONS)
1624 return NULL; /* huh? */
1629 if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL)
1630 return NULL; /* wall in the way! */
1633 * Now make the move.
1635 ret = dup_game(state);
1636 ret->distance_moved = 0;
1640 ret->distance_moved++;
1642 if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) {
1643 LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK;
1647 if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) {
1652 if (AT(w, h, ret->grid, ret->px, ret->py) == STOP ||
1653 AT(w, h, ret->grid, ret->px+DX(dir),
1654 ret->py+DY(dir)) == WALL)
1660 * If this move is the correct next one in the stored
1661 * solution path, advance solnpos.
1663 if (ret->soln->list[ret->solnpos] == dir &&
1664 ret->solnpos+1 < ret->soln->len) {
1668 * Otherwise, the user has strayed from the path, so
1669 * the path is no longer valid.
1671 ret->soln->refcount--;
1672 assert(ret->soln->refcount > 0);/* `state' at least still exists */
1681 /* ----------------------------------------------------------------------
1685 static void game_compute_size(game_params *params, int tilesize,
1688 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1689 struct { int tilesize; } ads, *ds = &ads;
1690 ads.tilesize = tilesize;
1692 *x = 2 * BORDER + 1 + params->w * TILESIZE;
1693 *y = 2 * BORDER + 1 + params->h * TILESIZE;
1696 static void game_set_size(drawing *dr, game_drawstate *ds,
1697 game_params *params, int tilesize)
1699 ds->tilesize = tilesize;
1701 assert(!ds->player_background); /* set_size is never called twice */
1702 assert(!ds->player_bg_saved);
1704 ds->player_background = blitter_new(dr, TILESIZE, TILESIZE);
1707 static float *game_colours(frontend *fe, int *ncolours)
1709 float *ret = snewn(3 * NCOLOURS, float);
1712 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1714 ret[COL_OUTLINE * 3 + 0] = 0.0F;
1715 ret[COL_OUTLINE * 3 + 1] = 0.0F;
1716 ret[COL_OUTLINE * 3 + 2] = 0.0F;
1718 ret[COL_PLAYER * 3 + 0] = 0.0F;
1719 ret[COL_PLAYER * 3 + 1] = 1.0F;
1720 ret[COL_PLAYER * 3 + 2] = 0.0F;
1722 ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F;
1723 ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F;
1724 ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F;
1726 ret[COL_MINE * 3 + 0] = 0.0F;
1727 ret[COL_MINE * 3 + 1] = 0.0F;
1728 ret[COL_MINE * 3 + 2] = 0.0F;
1730 ret[COL_GEM * 3 + 0] = 0.6F;
1731 ret[COL_GEM * 3 + 1] = 1.0F;
1732 ret[COL_GEM * 3 + 2] = 1.0F;
1734 for (i = 0; i < 3; i++) {
1735 ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] +
1736 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
1739 ret[COL_HINT * 3 + 0] = 1.0F;
1740 ret[COL_HINT * 3 + 1] = 1.0F;
1741 ret[COL_HINT * 3 + 2] = 0.0F;
1743 *ncolours = NCOLOURS;
1747 static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
1749 int w = state->p.w, h = state->p.h, wh = w*h;
1750 struct game_drawstate *ds = snew(struct game_drawstate);
1755 /* We can't allocate the blitter rectangle for the player background
1756 * until we know what size to make it. */
1757 ds->player_background = NULL;
1758 ds->player_bg_saved = FALSE;
1759 ds->pbgx = ds->pbgy = -1;
1761 ds->p = state->p; /* structure copy */
1762 ds->started = FALSE;
1763 ds->grid = snewn(wh, unsigned short);
1764 for (i = 0; i < wh; i++)
1765 ds->grid[i] = UNDRAWN;
1770 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1772 if (ds->player_background)
1773 blitter_free(dr, ds->player_background);
1778 static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
1779 int dead, int hintdir)
1782 int coords[DIRECTIONS*4];
1785 for (d = 0; d < DIRECTIONS; d++) {
1786 float x1, y1, x2, y2, x3, y3, len;
1790 len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len;
1794 len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len;
1799 coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1);
1800 coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1);
1801 coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2);
1802 coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2);
1804 draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE);
1806 draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
1807 TILESIZE/3, COL_PLAYER, COL_OUTLINE);
1810 if (!dead && hintdir >= 0) {
1811 float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F);
1812 int ax = (TILESIZE*2/5) * scale * DX(hintdir);
1813 int ay = (TILESIZE*2/5) * scale * DY(hintdir);
1814 int px = -ay, py = ax;
1815 int ox = x + TILESIZE/2, oy = y + TILESIZE/2;
1821 *c++ = ox + px/9 + ax*2/3;
1822 *c++ = oy + py/9 + ay*2/3;
1823 *c++ = ox + px/3 + ax*2/3;
1824 *c++ = oy + py/3 + ay*2/3;
1827 *c++ = ox - px/3 + ax*2/3;
1828 *c++ = oy - py/3 + ay*2/3;
1829 *c++ = ox - px/9 + ax*2/3;
1830 *c++ = oy - py/9 + ay*2/3;
1833 draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE);
1836 draw_update(dr, x, y, TILESIZE, TILESIZE);
1839 #define FLASH_DEAD 0x100
1840 #define FLASH_WIN 0x200
1841 #define FLASH_MASK 0x300
1843 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v)
1845 int tx = COORD(x), ty = COORD(y);
1846 int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER :
1847 v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND);
1851 clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1);
1852 draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg);
1857 coords[0] = tx + TILESIZE;
1858 coords[1] = ty + TILESIZE;
1859 coords[2] = tx + TILESIZE;
1862 coords[5] = ty + TILESIZE;
1863 draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
1867 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1869 draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH,
1870 TILESIZE - 2*HIGHLIGHT_WIDTH,
1871 TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL);
1872 } else if (v == MINE) {
1873 int cx = tx + TILESIZE / 2;
1874 int cy = ty + TILESIZE / 2;
1875 int r = TILESIZE / 2 - 3;
1877 int xdx = 1, xdy = 0, ydx = 0, ydy = 1;
1880 for (i = 0; i < 4*5*2; i += 5*2) {
1881 coords[i+2*0+0] = cx - r/6*xdx + r*4/5*ydx;
1882 coords[i+2*0+1] = cy - r/6*xdy + r*4/5*ydy;
1883 coords[i+2*1+0] = cx - r/6*xdx + r*ydx;
1884 coords[i+2*1+1] = cy - r/6*xdy + r*ydy;
1885 coords[i+2*2+0] = cx + r/6*xdx + r*ydx;
1886 coords[i+2*2+1] = cy + r/6*xdy + r*ydy;
1887 coords[i+2*3+0] = cx + r/6*xdx + r*4/5*ydx;
1888 coords[i+2*3+1] = cy + r/6*xdy + r*4/5*ydy;
1889 coords[i+2*4+0] = cx + r*3/5*xdx + r*3/5*ydx;
1890 coords[i+2*4+1] = cy + r*3/5*xdy + r*3/5*ydy;
1900 draw_polygon(dr, coords, 5*4, COL_MINE, COL_MINE);
1902 draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT);
1903 } else if (v == STOP) {
1904 draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1905 TILESIZE*3/7, -1, COL_OUTLINE);
1906 draw_rect(dr, tx + TILESIZE*3/7, ty+1,
1907 TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg);
1908 draw_rect(dr, tx+1, ty + TILESIZE*3/7,
1909 TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg);
1910 } else if (v == GEM) {
1913 coords[0] = tx+TILESIZE/2;
1914 coords[1] = ty+TILESIZE/2-TILESIZE*5/14;
1915 coords[2] = tx+TILESIZE/2-TILESIZE*5/14;
1916 coords[3] = ty+TILESIZE/2;
1917 coords[4] = tx+TILESIZE/2;
1918 coords[5] = ty+TILESIZE/2+TILESIZE*5/14;
1919 coords[6] = tx+TILESIZE/2+TILESIZE*5/14;
1920 coords[7] = ty+TILESIZE/2;
1922 draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE);
1926 draw_update(dr, tx, ty, TILESIZE, TILESIZE);
1929 #define BASE_ANIM_LENGTH 0.1F
1930 #define FLASH_LENGTH 0.3F
1932 static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
1933 game_state *state, int dir, game_ui *ui,
1934 float animtime, float flashtime)
1936 int w = state->p.w, h = state->p.h /*, wh = w*h */;
1945 !((int)(flashtime * 3 / FLASH_LENGTH) % 2))
1946 flashtype = ui->flashtype;
1951 * Erase the player sprite.
1953 if (ds->player_bg_saved) {
1954 assert(ds->player_background);
1955 blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy);
1956 draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE);
1957 ds->player_bg_saved = FALSE;
1961 * Initialise a fresh drawstate.
1967 * Blank out the window initially.
1969 game_compute_size(&ds->p, TILESIZE, &wid, &ht);
1970 draw_rect(dr, 0, 0, wid, ht, COL_BACKGROUND);
1971 draw_update(dr, 0, 0, wid, ht);
1974 * Draw the grid lines.
1976 for (y = 0; y <= h; y++)
1977 draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y),
1979 for (x = 0; x <= w; x++)
1980 draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h),
1987 * If we're in the process of animating a move, let's start by
1988 * working out how far the player has moved from their _older_
1992 ap = animtime / ui->anim_length;
1993 player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved;
2000 * Draw the grid contents.
2002 * We count the gems as we go round this loop, for the purposes
2003 * of the status bar. Of course we have a gems counter in the
2004 * game_state already, but if we do the counting in this loop
2005 * then it tracks gems being picked up in a sliding move, and
2006 * updates one by one.
2009 for (y = 0; y < h; y++)
2010 for (x = 0; x < w; x++) {
2011 unsigned short v = (unsigned char)state->grid[y*w+x];
2014 * Special case: if the player is in the process of
2015 * moving over a gem, we draw the gem iff they haven't
2018 if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) {
2020 * Compute the distance from this square to the
2021 * original player position.
2023 int dist = max(abs(x - oldstate->px), abs(y - oldstate->py));
2026 * If the player has reached here, use the new grid
2027 * element. Otherwise use the old one.
2029 if (player_dist < dist)
2030 v = oldstate->grid[y*w+x];
2032 v = state->grid[y*w+x];
2036 * Special case: erase the mine the dead player is
2037 * sitting on. Only at the end of the move.
2039 if (v == MINE && !oldstate && state->dead &&
2040 x == state->px && y == state->py)
2048 if (ds->grid[y*w+x] != v) {
2049 draw_tile(dr, ds, x, y, v);
2050 ds->grid[y*w+x] = v;
2055 * Gem counter in the status bar. We replace it with
2056 * `COMPLETED!' when it reaches zero ... or rather, when the
2057 * _current state_'s gem counter is zero. (Thus, `Gems: 0' is
2058 * shown between the collection of the last gem and the
2059 * completion of the move animation that did it.)
2061 if (state->dead && (!oldstate || oldstate->dead)) {
2062 sprintf(status, "DEAD!");
2063 } else if (state->gems || (oldstate && oldstate->gems)) {
2065 sprintf(status, "Auto-solver used. ");
2068 sprintf(status + strlen(status), "Gems: %d", gems);
2069 } else if (state->cheated) {
2070 sprintf(status, "Auto-solved.");
2072 sprintf(status, "COMPLETED!");
2074 /* We subtract one from the visible death counter if we're still
2075 * animating the move at the end of which the death took place. */
2076 deaths = ui->deaths;
2077 if (oldstate && ui->just_died) {
2082 sprintf(status + strlen(status), " Deaths: %d", deaths);
2083 status_bar(dr, status);
2086 * Draw the player sprite.
2088 assert(!ds->player_bg_saved);
2089 assert(ds->player_background);
2092 nx = COORD(state->px);
2093 ny = COORD(state->py);
2095 ox = COORD(oldstate->px);
2096 oy = COORD(oldstate->py);
2101 ds->pbgx = ox + ap * (nx - ox);
2102 ds->pbgy = oy + ap * (ny - oy);
2104 blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
2105 draw_player(dr, ds, ds->pbgx, ds->pbgy,
2106 (state->dead && !oldstate),
2107 (!oldstate && state->soln ?
2108 state->soln->list[state->solnpos] : -1));
2109 ds->player_bg_saved = TRUE;
2112 static float game_anim_length(game_state *oldstate, game_state *newstate,
2113 int dir, game_ui *ui)
2117 dist = newstate->distance_moved;
2119 dist = oldstate->distance_moved;
2120 ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH;
2121 return ui->anim_length;
2124 static float game_flash_length(game_state *oldstate, game_state *newstate,
2125 int dir, game_ui *ui)
2127 if (!oldstate->dead && newstate->dead) {
2128 ui->flashtype = FLASH_DEAD;
2129 return FLASH_LENGTH;
2130 } else if (oldstate->gems && !newstate->gems) {
2131 ui->flashtype = FLASH_WIN;
2132 return FLASH_LENGTH;
2137 static int game_timing_state(game_state *state, game_ui *ui)
2142 static void game_print_size(game_params *params, float *x, float *y)
2146 static void game_print(drawing *dr, game_state *state, int tilesize)
2151 #define thegame inertia
2154 const struct game thegame = {
2155 "Inertia", "games.inertia",
2162 TRUE, game_configure, custom_params,
2170 FALSE, game_text_format,
2178 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2181 game_free_drawstate,
2185 FALSE, FALSE, game_print_size, game_print,
2186 TRUE, /* wants_statusbar */
2187 FALSE, game_timing_state,