chiark / gitweb /
75ddeb785524124abba4768a2e9fad7483203bc3
[sgt-puzzles.git] / devel.but
1 \cfg{text-indent}{0}
2 \cfg{text-width}{72}
3 \cfg{text-title-align}{left}
4 \cfg{text-chapter-align}{left}
5 \cfg{text-chapter-numeric}{true}
6 \cfg{text-chapter-suffix}{. }
7 \cfg{text-chapter-underline}{-}
8 \cfg{text-section-align}{0}{left}
9 \cfg{text-section-numeric}{0}{true}
10 \cfg{text-section-suffix}{0}{. }
11 \cfg{text-section-underline}{0}{-}
12 \cfg{text-section-align}{1}{left}
13 \cfg{text-section-numeric}{1}{true}
14 \cfg{text-section-suffix}{1}{. }
15 \cfg{text-section-underline}{1}{-}
16 \cfg{text-versionid}{0}
17
18 \cfg{html-contents-filename}{index.html}
19 \cfg{html-template-filename}{%k.html}
20 \cfg{html-index-filename}{docindex.html}
21 \cfg{html-leaf-level}{1}
22 \cfg{html-contents-depth-0}{1}
23 \cfg{html-contents-depth-1}{3}
24 \cfg{html-leaf-contains-contents}{true}
25
26 \define{dash} \u2013{-}
27
28 \title Developer documentation for Simon Tatham's puzzle collection
29
30 This is a guide to the internal structure of Simon Tatham's Portable
31 Puzzle Collection (henceforth referred to simply as \q{Puzzles}),
32 for use by anyone attempting to implement a new puzzle or port to a
33 new platform.
34
35 This guide is believed correct as of r6190. Hopefully it will be
36 updated along with the code in future, but if not, I've at least
37 left this version number in here so you can figure out what's
38 changed by tracking commit comments from there onwards.
39
40 \C{intro} Introduction
41
42 The Puzzles code base is divided into four parts: a set of
43 interchangeable front ends, a set of interchangeable back ends, a
44 universal \q{middle end} which acts as a buffer between the two, and
45 a bunch of miscellaneous utility functions. In the following
46 sections I give some general discussion of each of these parts.
47
48 \H{intro-frontend} Front end
49
50 The front end is the non-portable part of the code: it's the bit
51 that you replace completely when you port to a different platform.
52 So it's responsible for all system calls, all GUI interaction, and
53 anything else platform-specific.
54
55 The current front ends in the main code base are for Windows, GTK
56 and MacOS X; I also know of a third-party front end for PalmOS.
57
58 The front end contains \cw{main()} or the local platform's
59 equivalent. Top-level control over the application's execution flow
60 belongs to the front end (it isn't, for example, a set of functions
61 called by a universal \cw{main()} somewhere else).
62
63 The front end has complete freedom to design the GUI for any given
64 port of Puzzles. There is no centralised mechanism for maintaining
65 the menu layout, for example. This has a cost in consistency (when I
66 \e{do} want the same menu layout on more than one platform, I have
67 to edit two pieces of code in parallel every time I make a change),
68 but the advantage is that local GUI conventions can be conformed to
69 and local constraints adapted to. For example, MacOS X has strict
70 human interface guidelines which specify a different menu layout
71 from the one I've used on Windows and GTK; there's nothing stopping
72 the OS X front end from providing a menu layout consistent with
73 those guidelines.
74
75 Although the front end is mostly caller rather than the callee in
76 its interactions with other parts of the code, it is required to
77 implement a small API for other modules to call, mostly of drawing
78 functions for games to use when drawing their graphics. The drawing
79 API is documented in \k{drawing}; the other miscellaneous front end
80 API functions are documented in \k{frontend-api}.
81
82 \H{intro-backend} Back end
83
84 A \q{back end}, in this collection, is synonymous with a \q{puzzle}.
85 Each back end implements a different game.
86
87 At the top level, a back end is simply a data structure, containing
88 a few constants (flag words, preferred pixel size) and a large
89 number of function pointers. Back ends are almost invariably callee
90 rather than caller, which means there's a limitation on what a back
91 end can do on its own initiative.
92
93 The persistent state in a back end is divided into a number of data
94 structures, which are used for different purposes and therefore
95 likely to be switched around, changed without notice, and otherwise
96 updated by the rest of the code. It is important when designing a
97 back end to put the right pieces of data into the right structures,
98 or standard midend-provided features (such as Undo) may fail to
99 work.
100
101 The functions and variables provided in the back end data structure
102 are documented in \k{backend}.
103
104 \H{intro-midend} Middle end
105
106 Puzzles has a single and universal \q{middle end}. This code is
107 common to all platforms and all games; it sits in between the front
108 end and the back end and provides standard functionality everywhere.
109
110 People adding new back ends or new front ends should generally not
111 need to edit the middle end. On rare occasions there might be a
112 change that can be made to the middle end to permit a new game to do
113 something not currently anticipated by the middle end's present
114 design; however, this is terribly easy to get wrong and should
115 probably not be undertaken without consulting the primary maintainer
116 (me). Patch submissions containing unannounced mid-end changes will
117 be treated on their merits like any other patch; this is just a
118 friendly warning that mid-end changes will need quite a lot of
119 merits to make them acceptable.
120
121 Functionality provided by the mid-end includes:
122
123 \b Maintaining a list of game state structures and moving back and
124 forth along that list to provide Undo and Redo.
125
126 \b Handling timers (for move animations, flashes on completion, and
127 in some cases actually timing the game).
128
129 \b Handling the container format of game IDs: receiving them,
130 picking them apart into parameters, description and/or random seed,
131 and so on. The game back end need only handle the individual parts
132 of a game ID (encoded parameters and encoded game description);
133 everything else is handled centrally by the mid-end.
134
135 \b Handling standard keystrokes and menu commands, such as \q{New
136 Game}, \q{Restart Game} and \q{Quit}.
137
138 \b Pre-processing mouse events so that the game back ends can rely
139 on them arriving in a sensible order (no missing button-release
140 events, no sudden changes of which button is currently pressed,
141 etc).
142
143 \b Handling the dialog boxes which ask the user for a game ID.
144
145 \b Handling serialisation of entire games (for loading and saving a
146 half-finished game to a disk file, or for handling application
147 shutdown and restart on platforms such as PalmOS where state is
148 expected to be saved).
149
150 Thus, there's a lot of work done once by the mid-end so that
151 individual back ends don't have to worry about it. All the back end
152 has to do is cooperate in ensuring the mid-end can do its work
153 properly.
154
155 The API of functions provided by the mid-end to be called by the
156 front end is documented in \k{midend}.
157
158 \H{intro-utils} Miscellaneous utilities
159
160 In addition to these three major structural components, the Puzzles
161 code also contains a variety of utility modules usable by all of the
162 above components. There is a set of functions to provide
163 platform-independent random number generation; functions to make
164 memory allocation easier; functions which implement a balanced tree
165 structure to be used as necessary in complex algorithms; and a few
166 other miscellaneous functions. All of these are documented in
167 \k{utils}.
168
169 \H{intro-structure} Structure of this guide
170
171 There are a number of function call interfaces within Puzzles, and
172 this guide will discuss each one in a chapter of its own. After
173 that, \k{writing} discusses how to design new games, with some
174 general design thoughts and tips.
175
176 \C{backend} Interface to the back end
177
178 This chapter gives a detailed discussion of the interface that each
179 back end must implement.
180
181 At the top level, each back end source file exports a single global
182 symbol, which is a \c{const struct game} containing a large number
183 of function pointers and a small amount of constant data. This
184 structure is called by different names depending on what kind of
185 platform the puzzle set is being compiled on:
186
187 \b On platforms such as Windows and GTK, which build a separate
188 binary for each puzzle, the game structure in every back end has the
189 same name, \cq{thegame}; the front end refers directly to this name,
190 so that compiling the same front end module against a different back
191 end module builds a different puzzle.
192
193 \b On platforms such as MacOS X and PalmOS, which build all the
194 puzzles into a single monolithic binary, the game structure in each
195 back end must have a different name, and there's a helper module
196 \c{list.c} (constructed automatically by the same Perl script that
197 builds the \cw{Makefile}s) which contains a complete list of those
198 game structures.
199
200 On the latter type of platform, source files may assume that the
201 preprocessor symbol \c{COMBINED} has been defined. Thus, the usual
202 code to declare the game structure looks something like this:
203
204 \c #ifdef COMBINED
205 \c #define thegame net    /* or whatever this game is called */
206 \e                 iii    iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
207 \c #endif
208 \c 
209 \c const struct game thegame = {
210 \c     /* lots of structure initialisation in here */
211 \e     iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
212 \c };
213
214 Game back ends must also internally define a number of data
215 structures, for storing their various persistent state. This chapter
216 will first discuss the nature and use of those structures, and then
217 go on to give details of every element of the game structure.
218
219 \H{backend-structs} Data structures
220
221 Each game is required to define four separate data structures. This
222 section discusses each one and suggests what sorts of things need to
223 be put in it.
224
225 \S{backend-game-params} \c{game_params}
226
227 The \c{game_params} structure contains anything which affects the
228 automatic generation of new puzzles. So if puzzle generation is
229 parametrised in any way, those parameters need to be stored in
230 \c{game_params}.
231
232 Most puzzles currently in this collection are played on a grid of
233 squares, meaning that the most obvious parameter is the grid size.
234 Many puzzles have additional parameters; for example, Mines allows
235 you to control the number of mines in the grid independently of its
236 size, Net can be wrapping or non-wrapping, Solo has difficulty
237 levels and symmetry settings, and so on.
238
239 A simple rule for deciding whether a data item needs to go in
240 \c{game_params} is: would the user expect to be able to control this
241 data item from either the preset-game-types menu or the \q{Custom}
242 game type configuration? If so, it's part of \c{game_params}.
243
244 \c{game_params} structures are permitted to contain pointers to
245 subsidiary data if they need to. The back end is required to provide
246 functions to create and destroy \c{game_params}, and those functions
247 can allocate and free additional memory if necessary. (It has not
248 yet been necessary to do this in any puzzle so far, but the
249 capability is there just in case.)
250
251 \c{game_params} is also the only structure which the game's
252 \cw{compute_size()} function may refer to; this means that any
253 aspect of the game which affects the size of the window it needs to
254 be drawn in must be stored in \c{game_params}. In particular, this
255 imposes the fundamental limitation that random game generation may
256 not have a random effect on the window size: game generation
257 algorithms are constrained to work by starting from the grid size
258 rather than generating it as an emergent phenomenon. (Although this
259 is a restriction in theory, it has not yet seemed to be a problem.)
260
261 \S{backend-game-state} \c{game_state}
262
263 While the user is actually playing a puzzle, the \c{game_state}
264 structure stores all the data corresponding to the current state of
265 play.
266
267 The mid-end keeps \c{game_state}s in a list, and adds to the list
268 every time the player makes a move; the Undo and Redo functions step
269 back and forth through that list.
270
271 Therefore, a good means of deciding whether a data item needs to go
272 in \c{game_state} is: would a player expect that data item to be
273 restored on undo? If so, put it in \c{game_state}, and this will
274 automatically happen without you having to lift a finger. If not
275 \dash for example, the deaths counter in Mines is precisely
276 something that does \e{not} want to be reset to its previous state
277 on an undo \dash then you might have found a data item that needs to
278 go in \c{game_ui} instead.
279
280 During play, \c{game_state}s are often passed around without an
281 accompanying \c{game_params} structure. Therefore, any information
282 in \c{game_params} which is important during play (such as the grid
283 size) must be duplicated within the \c{game_state}. One simple
284 method of doing this is to have the \c{game_state} structure
285 \e{contain} a \c{game_params} structure as one of its members,
286 although this isn't obligatory if you prefer to do it another way.
287
288 \S{backend-game-drawstate} \c{game_drawstate}
289
290 \c{game_drawstate} carries persistent state relating to the current
291 graphical contents of the puzzle window. The same \c{game_drawstate}
292 is passed to every call to the game redraw function, so that it can
293 remember what it has already drawn and what needs redrawing.
294
295 A typical use for a \c{game_drawstate} is to have an array mirroring
296 the array of grid squares in the \c{game_state}; then every time the
297 redraw function was passed a \c{game_state}, it would loop over all
298 the squares, and physically redraw any whose description in the
299 \c{game_state} (i.e. what the square needs to look like when the
300 redraw is completed) did not match its description in the
301 \c{game_drawstate} (i.e. what the square currently looks like).
302
303 \c{game_drawstate} is occasionally completely torn down and
304 reconstructed by the mid-end, if the user somehow forces a full
305 redraw. Therefore, no data should be stored in \c{game_drawstate}
306 which is \e{not} related to the state of the puzzle window, because
307 it might be unexpectedly destroyed.
308
309 The back end provides functions to create and destroy
310 \c{game_drawstate}, which means it can contain pointers to
311 subsidiary allocated data if it needs to. A common thing to want to
312 allocate in a \c{game_drawstate} is a \c{blitter}; see
313 \k{drawing-blitter} for more on this subject.
314
315 \S{backend-game-ui} \c{game_ui}
316
317 \c{game_ui} contains whatever doesn't fit into the above three
318 structures!
319
320 A new \c{game_ui} is created when the user begins playing a new
321 instance of a puzzle (i.e. during \q{New Game} or after entering a
322 game ID etc). It persists until the user finishes playing that game
323 and begins another one (or closes the window); in particular,
324 \q{Restart Game} does \e{not} destroy the \c{game_ui}.
325
326 \c{game_ui} is useful for implementing user-interface state which is
327 not part of \c{game_state}. Common examples are keyboard control
328 (you wouldn't want to have to separately Undo through every cursor
329 motion) and mouse dragging. See \k{writing-keyboard-cursor} and
330 \k{writing-howto-dragging}, respectively, for more details.
331
332 Another use for \c{game_ui} is to store highly persistent data such
333 as the Mines death counter. This is conceptually rather different:
334 where the Net cursor position was \e{not important enough} to
335 preserve for the player to restore by Undo, the Mines death counter
336 is \e{too important} to permit the player to revert by Undo!
337
338 A final use for \c{game_ui} is to pass information to the redraw
339 function about recent changes to the game state. This is used in
340 Mines, for example, to indicate whether a requested \q{flash} should
341 be a white flash for victory or a red flash for defeat; see
342 \k{writing-flash-types}.
343
344 \H{backend-simple} Simple data in the back end
345
346 In this section I begin to discuss each individual element in the
347 back end structure. To begin with, here are some simple
348 self-contained data elements.
349
350 \S{backend-name} \c{name}
351
352 \c const char *name;
353
354 This is a simple ASCII string giving the name of the puzzle. This
355 name will be used in window titles, in game selection menus on
356 monolithic platforms, and anywhere else that the front end needs to
357 know the name of a game.
358
359 \S{backend-winhelp} \c{winhelp_topic}
360
361 \c const char *winhelp_topic;
362
363 This member is used on Windows only, to provide online help.
364 Although the Windows front end provides a separate binary for each
365 puzzle, it has a single monolithic help file; so when a user selects
366 \q{Help} from the menu, the program needs to open the help file and
367 jump to the chapter describing that particular puzzle.
368
369 Therefore, each chapter in \c{puzzles.but} is labelled with a
370 \e{help topic} name, similar to this:
371
372 \c \cfg{winhelp-topic}{games.net}
373
374 And then the corresponding game back end encodes the topic string
375 (here \cq{games.net}) in the \c{winhelp_topic} element of the game
376 structure.
377
378 \H{backend-params} Handling game parameter sets
379
380 In this section I present the various functions which handle the
381 \c{game_params} structure.
382
383 \S{backend-default-params} \cw{default_params()}
384
385 \c game_params *(*default_params)(void);
386
387 This function allocates a new \c{game_params} structure, fills it
388 with the default values, and returns a pointer to it.
389
390 \S{backend-fetch-preset} \cw{fetch_preset()}
391
392 \c int (*fetch_preset)(int i, char **name, game_params **params);
393
394 This function is used to populate the \q{Type} menu, which provides
395 a list of conveniently accessible preset parameters for most games.
396
397 The function is called with \c{i} equal to the index of the preset
398 required (numbering from zero). It returns \cw{FALSE} if that preset
399 does not exist (if \c{i} is less than zero or greater than the
400 largest preset index). Otherwise, it sets \c{*params} to point at a
401 newly allocated \c{game_params} structure containing the preset
402 information, sets \c{*name} to point at a newly allocated C string
403 containing the preset title (to go on the \q{Type} menu), and
404 returns \cw{TRUE}.
405
406 If the game does not wish to support any presets at all, this
407 function is permitted to return \cw{FALSE} always.
408
409 \S{backend-encode-params} \cw{encode_params()}
410
411 \c char *(*encode_params)(game_params *params, int full);
412
413 The job of this function is to take a \c{game_params}, and encode it
414 in a string form for use in game IDs. The return value must be a
415 newly allocated C string, and \e{must} not contain a colon or a hash
416 (since those characters are used to mark the end of the parameter
417 section in a game ID).
418
419 Ideally, it should also not contain any other potentially
420 controversial punctuation; bear in mind when designing a string
421 parameter format that it will probably be used on both Windows and
422 Unix command lines under a variety of exciting shell quoting and
423 metacharacter rules. Sticking entirely to alphanumerics is the
424 safest thing; if you really need punctuation, you can probably get
425 away with commas, periods or underscores without causing anybody any
426 major inconvenience. If you venture far beyond that, you're likely
427 to irritate \e{somebody}.
428
429 (At the time of writing this, all existing games have purely
430 alphanumeric string parameter formats. Usually these involve a
431 letter denoting a parameter, followed optionally by a number giving
432 the value of that parameter, with a few mandatory parts at the
433 beginning such as numeric width and height separated by \cq{x}.)
434
435 If the \c{full} parameter is \cw{TRUE}, this function should encode
436 absolutely everything in the \c{game_params}, such that a subsequent
437 call to \cw{decode_params()} (\k{backend-decode-params}) will yield
438 an identical structure. If \c{full} is \cw{FALSE}, however, you
439 should leave out anything which is not necessary to describe a
440 \e{specific puzzle instance}, i.e. anything which only takes effect
441 when a new puzzle is \e{generated}. For example, the Solo
442 \c{game_params} includes a difficulty rating used when constructing
443 new puzzles; but a Solo game ID need not explicitly include the
444 difficulty, since to describe a puzzle once generated it's
445 sufficient to give the grid dimensions and the location and contents
446 of the clue squares. (Indeed, one might very easily type in a puzzle
447 out of a newspaper without \e{knowing} what its difficulty level is
448 in Solo's terminology.) Therefore, Solo's \cw{encode_params()} only
449 encodes the difficulty level if \c{full} is set.
450
451 \S{backend-decode-params} \cw{decode_params()}
452
453 \c void (*decode_params)(game_params *params, char const *string);
454
455 This function is the inverse of \cw{encode_params()}
456 (\k{backend-encode-params}). It parses the supplied string and fills
457 in the supplied \c{game_params} structure. Note that the structure
458 will \e{already} have been allocated: this function is not expected
459 to create a \e{new} \c{game_params}, but to modify an existing one.
460
461 This function can receive a string which only encodes a subset of
462 the parameters. The most obvious way in which this can happen is if
463 the string was constructed by \cw{encode_params()} with its \c{full}
464 parameter set to \cw{FALSE}; however, it could also happen if the
465 user typed in a parameter set manually and missed something out. Be
466 prepared to deal with a wide range of possibilities.
467
468 When dealing with a parameter which is not specified in the input
469 string, what to do requires a judgment call on the part of the
470 programmer. Sometimes it makes sense to adjust other parameters to
471 bring them into line with the new ones. In Mines, for example, you
472 would probably not want to keep the same mine count if the user
473 dropped the grid size and didn't specify one, since you might easily
474 end up with more mines than would actually fit in the grid! On the
475 other hand, sometimes it makes sense to leave the parameter alone: a
476 Solo player might reasonably expect to be able to configure size and
477 difficulty independently of one another.
478
479 This function currently has no direct means of returning an error if
480 the string cannot be parsed at all. However, the returned
481 \c{game_params} is almost always subsequently passed to
482 \cw{validate_params()} (\k{backend-validate-params}), so if you
483 really want to signal parse errors, you could always have a \c{char
484 *} in your parameters structure which stored an error message, and
485 have \cw{validate_params()} return it if it is non-\cw{NULL}.
486
487 \S{backend-free-params} \cw{free_params()}
488
489 \c void (*free_params)(game_params *params);
490
491 This function frees a \c{game_params} structure, and any subsidiary
492 allocations contained within it.
493
494 \S{backend-dup-params} \cw{dup_params()}
495
496 \c game_params *(*dup_params)(game_params *params);
497
498 This function allocates a new \c{game_params} structure and
499 initialises it with an exact copy of the information in the one
500 provided as input. It returns a pointer to the new duplicate.
501
502 \S{backend-can-configure} \c{can_configure}
503
504 \c int can_configure;
505
506 This boolean data element is set to \cw{TRUE} if the back end
507 supports custom parameter configuration via a dialog box. If it is
508 \cw{TRUE}, then the functions \cw{configure()} and
509 \cw{custom_params()} are expected to work. See \k{backend-configure}
510 and \k{backend-custom-params} for more details.
511
512 \S{backend-configure} \cw{configure()}
513
514 \c config_item *(*configure)(game_params *params);
515
516 This function is called when the user requests a dialog box for
517 custom parameter configuration. It returns a newly allocated array
518 of \cw{config_item} structures, describing the GUI elements required
519 in the dialog box. The array should have one more element than the
520 number of controls, since it is terminated with a \cw{C_END} marker
521 (see below). Each array element describes the control together with
522 its initial value; the front end will modify the value fields and
523 return the updated array to \cw{custom_params()} (see
524 \k{backend-custom-params}).
525
526 The \cw{config_item} structure contains the following elements:
527
528 \c char *name;
529 \c int type;
530 \c char *sval;
531 \c int ival;
532
533 \c{name} is an ASCII string giving the textual label for a GUI
534 control. It is \e{not} expected to be dynamically allocated.
535
536 \c{type} contains one of a small number of \c{enum} values defining
537 what type of control is being described. The meaning of the \c{sval}
538 and \c{ival} fields depends on the value in \c{type}. The valid
539 values are:
540
541 \dt \c{C_STRING}
542
543 \dd Describes a text input box. (This is also used for numeric
544 input. The back end does not bother informing the front end that the
545 box is numeric rather than textual; some front ends do have the
546 capacity to take this into account, but I decided it wasn't worth
547 the extra complexity in the interface.) For this type, \c{ival} is
548 unused, and \c{sval} contains a dynamically allocated string
549 representing the contents of the input box.
550
551 \dt \c{C_BOOLEAN}
552
553 \dd Describes a simple checkbox. For this type, \c{sval} is unused,
554 and \c{ival} is \cw{TRUE} or \cw{FALSE}.
555
556 \dt \c{C_CHOICES}
557
558 \dd Describes a drop-down list presenting one of a small number of
559 fixed choices. For this type, \c{sval} contains a list of strings
560 describing the choices; the very first character of \c{sval} is used
561 as a delimiter when processing the rest (so that the strings
562 \cq{:zero:one:two}, \cq{!zero!one!two} and \cq{xzeroxonextwo} all
563 define a three-element list containing \cq{zero}, \cq{one} and
564 \cq{two}). \c{ival} contains the index of the currently selected
565 element, numbering from zero (so that in the above example, 0 would
566 mean \cq{zero} and 2 would mean \cq{two}).
567
568 \lcont{
569
570 Note that for this control type, \c{sval} is \e{not} dynamically
571 allocated, whereas it was for \c{C_STRING}.
572
573 }
574
575 \dt \c{C_END}
576
577 \dd Marks the end of the array of \c{config_item}s. All other fields
578 are unused.
579
580 The array returned from this function is expected to have filled in
581 the initial values of all the controls according to the input
582 \c{game_params} structure.
583
584 If the game's \c{can_configure} flag is set to \cw{FALSE}, this
585 function is never called and need not do anything at all.
586
587 \S{backend-custom-params} \cw{custom_params()}
588
589 \c game_params *(*custom_params)(config_item *cfg);
590
591 This function is the counterpart to \cw{configure()}
592 (\k{backend-configure}). It receives as input an array of
593 \c{config_item}s which was originally created by \cw{configure()},
594 but in which the control values have since been changed in
595 accordance with user input. Its function is to read the new values
596 out of the controls and return a newly allocated \c{game_params}
597 structure representing the user's chosen parameter set.
598
599 (The front end will have modified the controls' \e{values}, but
600 there will still always be the same set of controls, in the same
601 order, as provided by \cw{configure()}. It is not necessary to check
602 the \c{name} and \c{type} fields, although you could use
603 \cw{assert()} if you were feeling energetic.)
604
605 This function is not expected to (and indeed \e{must not}) free the
606 input \c{config_item} array. (If the parameters fail to validate,
607 the dialog box will stay open.)
608
609 If the game's \c{can_configure} flag is set to \cw{FALSE}, this
610 function is never called and need not do anything at all.
611
612 \S{backend-validate-params} \cw{validate_params()}
613
614 \c char *(*validate_params)(game_params *params, int full);
615
616 This function takes a \c{game_params} structure as input, and checks
617 that the parameters described in it fall within sensible limits. (At
618 the very least, grid dimensions should almost certainly be strictly
619 positive, for example.)
620
621 Return value is \cw{NULL} if no problems were found, or
622 alternatively a (non-dynamically-allocated) ASCII string describing
623 the error in human-readable form.
624
625 If the \c{full} parameter is set, full validation should be
626 performed: any set of parameters which would not permit generation
627 of a sensible puzzle should be faulted. If \c{full} is \e{not} set,
628 the implication is that these parameters are not going to be used
629 for \e{generating} a puzzle; so parameters which can't even sensibly
630 \e{describe} a valid puzzle should still be faulted, but parameters
631 which only affect puzzle generation should not be.
632
633 (The \c{full} option makes a difference when parameter combinations
634 are non-orthogonal. For example, Net has a boolean option
635 controlling whether it enforces a unique solution; it turns out that
636 it's impossible to generate a uniquely soluble puzzle with wrapping
637 walls and width 2, so \cw{validate_params()} will complain if you
638 ask for one. However, if the user had just been playing a unique
639 wrapping puzzle of a more sensible width, and then pastes in a game
640 ID acquired from somebody else which happens to describe a
641 \e{non}-unique wrapping width-2 puzzle, then \cw{validate_params()}
642 will be passed a \c{game_params} containing the width and wrapping
643 settings from the new game ID and the uniqueness setting from the
644 old one. This would be faulted, if it weren't for the fact that
645 \c{full} is not set during this call, so Net ignores the
646 inconsistency. The resulting \c{game_params} is never subsequently
647 used to generate a puzzle; this is a promise made by the mid-end
648 when it asks for a non-full validation.)
649
650 \H{backend-descs} Handling game descriptions
651
652 In this section I present the functions that deal with a textual
653 description of a puzzle, i.e. the part that comes after the colon in
654 a descriptive-format game ID.
655
656 \S{backend-new-desc} \cw{new_desc()}
657
658 \c char *(*new_desc)(const game_params *params, random_state *rs,
659 \c                   char **aux, int interactive);
660
661 This function is where all the really hard work gets done. This is
662 the function whose job is to randomly generate a new puzzle,
663 ensuring solubility and uniqueness as appropriate.
664
665 As input it is given a \c{game_params} structure and a random state
666 (see \k{utils-random} for the random number API). It must invent a
667 puzzle instance, encode it in string form, and return a dynamically
668 allocated C string containing that encoding.
669
670 Additionally, it may return a second dynamically allocated string in
671 \c{*aux}. (If it doesn't want to, then it can leave that parameter
672 completely alone; it isn't required to set it to \cw{NULL}, although
673 doing so is harmless.) That string, if present, will be passed to
674 \cw{solve()} (\k{backend-solve}) later on; so if the puzzle is
675 generated in such a way that a solution is known, then information
676 about that solution can be saved in \c{*aux} for \cw{solve()} to
677 use.
678
679 The \c{interactive} parameter should be ignored by almost all
680 puzzles. Its purpose is to distinguish between generating a puzzle
681 within a GUI context for immediate play, and generating a puzzle in
682 a command-line context for saving to be played later. The only
683 puzzle that currently uses this distinction (and, I fervently hope,
684 the only one which will \e{ever} need to use it) is Mines, which
685 chooses a random first-click location when generating puzzles
686 non-interactively, but which waits for the user to place the first
687 click when interactive. If you think you have come up with another
688 puzzle which needs to make use of this parameter, please think for
689 at least ten minutes about whether there is \e{any} alternative!
690
691 Note that game description strings are not required to contain an
692 encoding of parameters such as grid size; a game description is
693 never separated from the \c{game_params} it was generated with, so
694 any information contained in that structure need not be encoded
695 again in the game description.
696
697 \S{backend-validate-desc} \cw{validate_desc()}
698
699 \c char *(*validate_desc)(const game_params *params, char *desc);
700
701 This function is given a game description, and its job is to
702 validate that it describes a puzzle which makes sense.
703
704 To some extent it's up to the user exactly how far they take the
705 phrase \q{makes sense}; there are no particularly strict rules about
706 how hard the user is permitted to shoot themself in the foot when
707 typing in a bogus game description by hand. (For example, Rectangles
708 will not verify that the sum of all the numbers in the grid equals
709 the grid's area. So a user could enter a puzzle which was provably
710 not soluble, and the program wouldn't complain; there just wouldn't
711 happen to be any sequence of moves which solved it.)
712
713 The one non-negotiable criterion is that any game description which
714 makes it through \cw{validate_desc()} \e{must not} subsequently
715 cause a crash or an assertion failure when fed to \cw{new_game()}
716 and thence to the rest of the back end.
717
718 The return value is \cw{NULL} on success, or a
719 non-dynamically-allocated C string containing an error message.
720
721 \S{backend-new-game} \cw{new_game()}
722
723 \c game_state *(*new_game)(midend *me, game_params *params,
724 \c                         char *desc);
725
726 This function takes a game description as input, together with its
727 accompanying \c{game_params}, and constructs a \c{game_state}
728 describing the initial state of the puzzle. It returns a newly
729 allocated \c{game_state} structure.
730
731 Almost all puzzles should ignore the \c{me} parameter. It is
732 required by Mines, which needs it for later passing to
733 \cw{midend_supersede_game_desc()} (see \k{backend-supersede}) once
734 the user has placed the first click. I fervently hope that no other
735 puzzle will be awkward enough to require it, so everybody else
736 should ignore it. As with the \c{interactive} parameter in
737 \cw{new_desc()} (\k{backend-new-desc}), if you think you have a
738 reason to need this parameter, please try very hard to think of an
739 alternative approach!
740
741 \H{backend-states} Handling game states
742
743 This section describes the functions which create and destroy
744 \c{game_state} structures.
745
746 (Well, except \cw{new_game()}, which is in \k{backend-new-game}
747 instead of under here; but it deals with game descriptions \e{and}
748 game states and it had to go in one section or the other.)
749
750 \S{backend-dup-game} \cw{dup_game()}
751
752 \c game_state *(*dup_game)(game_state *state);
753
754 This function allocates a new \c{game_state} structure and
755 initialises it with an exact copy of the information in the one
756 provided as input. It returns a pointer to the new duplicate.
757
758 \S{backend-free-game} \cw{free_game()}
759
760 \c void (*free_game)(game_state *state);
761
762 This function frees a \c{game_state} structure, and any subsidiary
763 allocations contained within it.
764
765 \H{backend-ui} Handling \c{game_ui}
766
767 \S{backend-new-ui} \cw{new_ui()}
768
769 \c game_ui *(*new_ui)(game_state *state);
770
771 This function allocates and returns a new \c{game_ui} structure for
772 playing a particular puzzle. It is passed a pointer to the initial
773 \c{game_state}, in case it needs to refer to that when setting up
774 the initial values for the new game.
775
776 \S{backend-free-ui} \cw{free_ui()}
777
778 \c void (*free_ui)(game_ui *ui);
779
780 This function frees a \c{game_ui} structure, and any subsidiary
781 allocations contained within it.
782
783 \S{backend-encode-ui} \cw{encode_ui()}
784
785 \c char *(*encode_ui)(game_ui *ui);
786
787 This function encodes any \e{important} data in a \c{game_ui}
788 structure in string form. It is only called when saving a
789 half-finished game to a file.
790
791 It should be used sparingly. Almost all data in a \c{game_ui} is not
792 important enough to save. The location of the keyboard-controlled
793 cursor, for example, can be reset to a default position on reloading
794 the game without impacting the user experience. If the user should
795 somehow manage to save a game while a mouse drag was in progress,
796 then discarding that mouse drag would be an outright \e{feature}.
797
798 A typical thing that \e{would} be worth encoding in this function is
799 the Mines death counter: it's in the \c{game_ui} rather than the
800 \c{game_state} because it's too important to allow the user to
801 revert it by using Undo, and therefore it's also too important to
802 allow the user to revert it by saving and reloading. (Of course, the
803 user could edit the save file by hand... But if the user is \e{that}
804 determined to cheat, they could just as easily modify the game's
805 source.)
806
807 \S{backend-decode-ui} \cw{decode_ui()}
808
809 \c void (*decode_ui)(game_ui *ui, char *encoding);
810
811 This function parses a string previously output by \cw{encode_ui()},
812 and writes the decoded data back into the provided \c{game_ui}
813 structure.
814
815 \S{backend-changed-state} \cw{changed_state()}
816
817 \c void (*changed_state)(game_ui *ui, game_state *oldstate,
818 \c                       game_state *newstate);
819
820 This function is called by the mid-end whenever the current game
821 state changes, for any reason. Those reasons include:
822
823 \b a fresh move being made by \cw{interpret_move()} and
824 \cw{execute_move()}
825
826 \b a solve operation being performed by \cw{solve()} and
827 \cw{execute_move()}
828
829 \b the user moving back and forth along the undo list by means of
830 the Undo and Redo operations
831
832 \b the user selecting Restart to go back to the initial game state.
833
834 The job of \cw{changed_state()} is to update the \c{game_ui} for
835 consistency with the new game state, if any update is necessary. For
836 example, Same Game stores data about the currently selected tile
837 group in its \c{game_ui}, and this data is intrinsically related to
838 the game state it was derived from. So it's very likely to become
839 invalid when the game state changes; thus, Same Game's
840 \cw{changed_state()} function clears the current selection whenever
841 it is called.
842
843 When \cw{anim_length()} or \cw{flash_length()} are called, you can
844 be sure that there has been a previous call to \cw{changed_state()}.
845 So \cw{changed_state()} can set up data in the \c{game_ui} which will
846 be read by \cw{anim_length()} and \cw{flash_length()}, and those
847 functions will not have to worry about being called without the data
848 having been initialised.
849
850 \H{backend-moves} Making moves
851
852 This section describes the functions which actually make moves in
853 the game: that is, the functions which process user input and end up
854 producing new \c{game_state}s.
855
856 \S{backend-interpret-move} \cw{interpret_move()}
857
858 \c char *(*interpret_move)(game_state *state, game_ui *ui,
859 \c                         const game_drawstate *ds,
860 \c                         int x, int y, int button);
861
862 This function receives user input and processes it. Its input
863 parameters are the current \c{game_state}, the current \c{game_ui}
864 and the current \c{game_drawstate}, plus details of the input event.
865 \c{button} is either an ASCII value or a special code (listed below)
866 indicating an arrow or function key or a mouse event; when
867 \c{button} is a mouse event, \c{x} and \c{y} contain the pixel
868 coordinates of the mouse pointer relative to the top left of the
869 puzzle's drawing area.
870
871 (The pointer to the \c{game_drawstate} is marked \c{const}, because
872 \c{interpret_move} should not write to it. The normal use of that
873 pointer will be to read the game's tile size parameter in order to
874 divide mouse coordinates by it.)
875
876 \cw{interpret_move()} may return in three different ways:
877
878 \b Returning \cw{NULL} indicates that no action whatsoever occurred
879 in response to the input event; the puzzle was not interested in it
880 at all.
881
882 \b Returning the empty string (\cw{""}) indicates that the input
883 event has resulted in a change being made to the \c{game_ui} which
884 will require a redraw of the game window, but that no actual
885 \e{move} was made (i.e. no new \c{game_state} needs to be created).
886
887 \b Returning anything else indicates that a move was made and that a
888 new \c{game_state} must be created. However, instead of actually
889 constructing a new \c{game_state} itself, this function is required
890 to return a string description of the details of the move. This
891 string will be passed to \cw{execute_move()}
892 (\k{backend-execute-move}) to actually create the new
893 \c{game_state}. (Encoding moves as strings in this way means that
894 the mid-end can keep the strings as well as the game states, and the
895 strings can be written to disk when saving the game and fed to
896 \cw{execute_move()} again on reloading.)
897
898 The return value from \cw{interpret_move()} is expected to be
899 dynamically allocated if and only if it is not either \cw{NULL}
900 \e{or} the empty string.
901
902 After this function is called, the back end is permitted to rely on
903 some subsequent operations happening in sequence:
904
905 \b \cw{execute_move()} will be called to convert this move
906 description into a new \c{game_state}
907
908 \b \cw{changed_state()} will be called with the new \c{game_state}.
909
910 This means that if \cw{interpret_move()} needs to do updates to the
911 \c{game_ui} which are easier to perform by referring to the new
912 \c{game_state}, it can safely leave them to be done in
913 \cw{changed_state()} and not worry about them failing to happen.
914
915 (Note, however, that \cw{execute_move()} may \e{also} be called in
916 other circumstances. It is only \cw{interpret_move()} which can rely
917 on a subsequent call to \cw{changed_state()}.)
918
919 The special key codes supported by this function are:
920
921 \dt \cw{LEFT_BUTTON}, \cw{MIDDLE_BUTTON}, \cw{RIGHT_BUTTON}
922
923 \dd Indicate that one of the mouse buttons was pressed down.
924
925 \dt \cw{LEFT_DRAG}, \cw{MIDDLE_DRAG}, \cw{RIGHT_DRAG}
926
927 \dd Indicate that the mouse was moved while one of the mouse buttons
928 was still down. The mid-end guarantees that when one of these events
929 is received, it will always have been preceded by a button-down
930 event (and possibly other drag events) for the same mouse button,
931 and no event involving another mouse button will have appeared in
932 between.
933
934 \dt \cw{LEFT_RELEASE}, \cw{MIDDLE_RELEASE}, \cw{RIGHT_RELEASE}
935
936 \dd Indicate that a mouse button was released.  The mid-end
937 guarantees that when one of these events is received, it will always
938 have been preceded by a button-down event (and possibly some drag
939 events) for the same mouse button, and no event involving another
940 mouse button will have appeared in between.
941
942 \dt \cw{CURSOR_UP}, \cw{CURSOR_DOWN}, \cw{CURSOR_LEFT},
943 \cw{CURSOR_RIGHT}
944
945 \dd Indicate that an arrow key was pressed.
946
947 \dt \cw{CURSOR_SELECT}
948
949 \dd On platforms which have a prominent \q{select} button alongside
950 their cursor keys, indicates that that button was pressed.
951
952 In addition, there are some modifiers which can be bitwise-ORed into
953 the \c{button} parameter:
954
955 \dt \cw{MOD_CTRL}, \cw{MOD_SHFT}
956
957 \dd These indicate that the Control or Shift key was pressed
958 alongside the key. They only apply to the cursor keys, not to mouse
959 buttons or anything else.
960
961 \dt \cw{MOD_NUM_KEYPAD}
962
963 \dd This applies to some ASCII values, and indicates that the key
964 code was input via the numeric keypad rather than the main keyboard.
965 Some puzzles may wish to treat this differently (for example, a
966 puzzle might want to use the numeric keypad as an eight-way
967 directional pad), whereas others might not (a game involving numeric
968 input probably just wants to treat the numeric keypad as numbers).
969
970 \dt \cw{MOD_MASK}
971
972 \dd This mask is the bitwise OR of all the available modifiers; you
973 can bitwise-AND with \cw{~MOD_MASK} to strip all the modifiers off
974 any input value.
975
976 \S{backend-execute-move} \cw{execute_move()}
977
978 \c game_state *(*execute_move)(game_state *state, char *move);
979
980 This function takes an input \c{game_state} and a move string as
981 output from \cw{interpret_move()}. It returns a newly allocated
982 \c{game_state} which contains the result of applying the specified
983 move to the input game state.
984
985 This function may return \cw{NULL} if it cannot parse the move
986 string (and this is definitely preferable to crashing or failing an
987 assertion, since one way this can happen is if loading a corrupt
988 save file). However, it must not return \cw{NULL} for any move
989 string that really was output from \cw{interpret_move()}: this is
990 punishable by assertion failure in the mid-end.
991
992 \S{backend-can-solve} \c{can_solve}
993
994 \c int can_solve;
995
996 This boolean field is set to \cw{TRUE} if the game's \cw{solve()}
997 function does something. If it's set to \cw{FALSE}, the game will
998 not even offer the \q{Solve} menu option.
999
1000 \S{backend-solve} \cw{solve()}
1001
1002 \c char *(*solve)(game_state *orig, game_state *curr,
1003 \c                char *aux, char **error);
1004
1005 This function is called when the user selects the \q{Solve} option
1006 from the menu.
1007
1008 It is passed two input game states: \c{orig} is the game state from
1009 the very start of the puzzle, and \c{curr} is the current one.
1010 (Different games find one or other or both of these convenient.) It
1011 is also passed the \c{aux} string saved by \cw{new_desc()}
1012 (\k{backend-new-desc}), in case that encodes important information
1013 needed to provide the solution.
1014
1015 If this function is unable to produce a solution (perhaps, for
1016 example, the game has no in-built solver so it can only solve
1017 puzzles it invented internally and has an \c{aux} string for) then
1018 it may return \cw{NULL}. If it does this, it must also set
1019 \c{*error} to an error message to be presented to the user (such as
1020 \q{Solution not known for this puzzle}); that error message is not
1021 expected to be dynamically allocated.
1022
1023 If this function \e{does} produce a solution, it returns a move string
1024 suitable for feeding to \cw{execute_move()}
1025 (\k{backend-execute-move}). Like a (non-empty) string returned from
1026 \cw{interpret_move()}, the returned string should be dynamically
1027 allocated.
1028
1029 \H{backend-drawing} Drawing the game graphics
1030
1031 This section discusses the back end functions that deal with
1032 drawing.
1033
1034 \S{backend-new-drawstate} \cw{new_drawstate()}
1035
1036 \c game_drawstate *(*new_drawstate)(drawing *dr, game_state *state);
1037
1038 This function allocates and returns a new \c{game_drawstate}
1039 structure for drawing a particular puzzle. It is passed a pointer to
1040 a \c{game_state}, in case it needs to refer to that when setting up
1041 any initial data.
1042
1043 This function may not rely on the puzzle having been newly started;
1044 a new draw state can be constructed at any time if the front end
1045 requests a forced redraw. For games like Pattern, in which initial
1046 game states are much simpler than general ones, this might be
1047 important to keep in mind.
1048
1049 The parameter \c{dr} is a drawing object (see \k{drawing}) which the
1050 function might need to use to allocate blitters. (However, this
1051 isn't recommended; it's usually more sensible to wait to allocate a
1052 blitter until \cw{set_size()} is called, because that way you can
1053 tailor it to the scale at which the puzzle is being drawn.)
1054
1055 \S{backend-free-drawstate} \cw{free_drawstate()}
1056
1057 \c void (*free_drawstate)(drawing *dr, game_drawstate *ds);
1058
1059 This function frees a \c{game_drawstate} structure, and any
1060 subsidiary allocations contained within it.
1061
1062 The parameter \c{dr} is a drawing object (see \k{drawing}), which
1063 might be required if you are freeing a blitter.
1064
1065 \S{backend-preferred-tilesize} \c{preferred_tilesize}
1066
1067 \c int preferred_tilesize;
1068
1069 Each game is required to define a single integer parameter which
1070 expresses, in some sense, the scale at which it is drawn. This is
1071 described in the APIs as \cq{tilesize}, since most puzzles are on a
1072 square (or possibly triangular or hexagonal) grid and hence a
1073 sensible interpretation of this parameter is to define it as the
1074 size of one grid tile in pixels; however, there's no actual
1075 requirement that the \q{tile size} be proportional to the game
1076 window size. Window size is required to increase monotonically with
1077 \q{tile size}, however.
1078
1079 The data element \c{preferred_tilesize} indicates the tile size
1080 which should be used in the absence of a good reason to do otherwise
1081 (such as the screen being too small, or the user explicitly
1082 requesting a resize if that ever gets implemented).
1083
1084 \S{backend-compute-size} \cw{compute_size()}
1085
1086 \c void (*compute_size)(game_params *params, int tilesize,
1087 \c                      int *x, int *y);
1088
1089 This function is passed a \c{game_params} structure and a tile size.
1090 It returns, in \c{*x} and \c{*y}, the size in pixels of the drawing
1091 area that would be required to render a puzzle with those parameters
1092 at that tile size.
1093
1094 \S{backend-set-size} \cw{set_size()}
1095
1096 \c void (*set_size)(drawing *dr, game_drawstate *ds,
1097 \c                  game_params *params, int tilesize);
1098
1099 This function is responsible for setting up a \c{game_drawstate} to
1100 draw at a given tile size. Typically this will simply involve
1101 copying the supplied \c{tilesize} parameter into a \c{tilesize}
1102 field inside the draw state; for some more complex games it might
1103 also involve setting up other dimension fields, or possibly
1104 allocating a blitter (see \k{drawing-blitter}).
1105
1106 The parameter \c{dr} is a drawing object (see \k{drawing}), which is
1107 required if a blitter needs to be allocated.
1108
1109 Back ends may assume (and may enforce by assertion) that this
1110 function will be called at most once for any \c{game_drawstate}. If
1111 a puzzle needs to be redrawn at a different size, the mid-end will
1112 create a fresh drawstate.
1113
1114 \S{backend-colours} \cw{colours()}
1115
1116 \c float *(*colours)(frontend *fe, int *ncolours);
1117
1118 This function is responsible for telling the front end what colours
1119 the puzzle will need to draw itself.
1120
1121 It returns the number of colours required in \c{*ncolours}, and the
1122 return value from the function itself is a dynamically allocated
1123 array of three times that many \c{float}s, containing the red, green
1124 and blue components of each colour respectively as numbers in the
1125 range [0,1].
1126
1127 The second parameter passed to this function is a front end handle.
1128 The only things it is permitted to do with this handle are to call
1129 the front-end function called \cw{frontend_default_colour()} (see
1130 \k{frontend-default-colour}) or the utility function called
1131 \cw{game_mkhighlight()} (see \k{utils-game-mkhighlight}). (The
1132 latter is a wrapper on the former, so front end implementors only
1133 need to provide \cw{frontend_default_colour()}.) This allows
1134 \cw{colours()} to take local configuration into account when
1135 deciding on its own colour allocations. Most games use the front
1136 end's default colour as their background, apart from a few which
1137 depend on drawing relief highlights so they adjust the background
1138 colour if it's too light for highlights to show up against it.
1139
1140 Note that the colours returned from this function are for
1141 \e{drawing}, not for printing. Printing has an entirely different
1142 colour allocation policy.
1143
1144 \S{backend-anim-length} \cw{anim_length()}
1145
1146 \c float (*anim_length)(game_state *oldstate, game_state *newstate,
1147 \c                      int dir, game_ui *ui);
1148
1149 This function is called when a move is made, undone or redone. It is
1150 given the old and the new \c{game_state}, and its job is to decide
1151 whether the transition between the two needs to be animated or can
1152 be instant.
1153
1154 \c{oldstate} is the state that was current until this call;
1155 \c{newstate} is the state that will be current after it. \c{dir}
1156 specifies the chronological order of those states: if it is
1157 positive, then the transition is the result of a move or a redo (and
1158 so \c{newstate} is the later of the two moves), whereas if it is
1159 negative then the transition is the result of an undo (so that
1160 \c{newstate} is the \e{earlier} move).
1161
1162 If this function decides the transition should be animated, it
1163 returns the desired length of the animation in seconds. If not, it
1164 returns zero.
1165
1166 State changes as a result of a Restart operation are never animated;
1167 the mid-end will handle them internally and never consult this
1168 function at all. State changes as a result of Solve operations are
1169 also not animated by default, although you can change this for a
1170 particular game by setting a flag in \c{flags} (\k{backend-flags}).
1171
1172 The function is also passed a pointer to the local \c{game_ui}. It
1173 may refer to information in here to help with its decision (see
1174 \k{writing-conditional-anim} for an example of this), and/or it may
1175 \e{write} information about the nature of the animation which will
1176 be read later by \cw{redraw()}.
1177
1178 When this function is called, it may rely on \cw{changed_state()}
1179 having been called previously, so if \cw{anim_length()} needs to
1180 refer to information in the \c{game_ui}, then \cw{changed_state()}
1181 is a reliable place to have set that information up.
1182
1183 Move animations do not inhibit further input events. If the user
1184 continues playing before a move animation is complete, the animation
1185 will be abandoned and the display will jump straight to the final
1186 state.
1187
1188 \S{backend-flash-length} \cw{flash_length()}
1189
1190 \c float (*flash_length)(game_state *oldstate, game_state *newstate,
1191 \c                       int dir, game_ui *ui);
1192
1193 This function is called when a move is completed. (\q{Completed}
1194 means that not only has the move been made, but any animation which
1195 accompanied it has finished.) It decides whether the transition from
1196 \c{oldstate} to \c{newstate} merits a \q{flash}.
1197
1198 A flash is much like a move animation, but it is \e{not} interrupted
1199 by further user interface activity; it runs to completion in
1200 parallel with whatever else might be going on on the display. The
1201 only thing which will rush a flash to completion is another flash.
1202
1203 The purpose of flashes is to indicate that the game has been
1204 completed. They were introduced as a separate concept from move
1205 animations because of Net: the habit of most Net players (and
1206 certainly me) is to rotate a tile into place and immediately lock
1207 it, then move on to another tile. When you make your last move, at
1208 the instant the final tile is rotated into place the screen starts
1209 to flash to indicate victory \dash but if you then press the lock
1210 button out of habit, then the move animation is cancelled, and the
1211 victory flash does not complete. (And if you \e{don't} press the
1212 lock button, the completed grid will look untidy because there will
1213 be one unlocked square.) Therefore, I introduced a specific concept
1214 of a \q{flash} which is separate from a move animation and can
1215 proceed in parallel with move animations and any other display
1216 activity, so that the victory flash in Net is not cancelled by that
1217 final locking move.
1218
1219 The input parameters to \cw{flash_length()} are exactly the same as
1220 the ones to \cw{anim_length()}.
1221
1222 Just like \cw{anim_length()}, when this function is called, it may
1223 rely on \cw{changed_state()} having been called previously, so if it
1224 needs to refer to information in the \c{game_ui} then
1225 \cw{changed_state()} is a reliable place to have set that
1226 information up.
1227
1228 (Some games use flashes to indicate defeat as well as victory;
1229 Mines, for example, flashes in a different colour when you tread on
1230 a mine from the colour it uses when you complete the game. In order
1231 to achieve this, its \cw{flash_length()} function has to store a
1232 flag in the \c{game_ui} to indicate which flash type is required.)
1233
1234 \S{backend-status} \cw{status()}
1235
1236 \c int (*status)(game_state *state);
1237
1238 This function returns a status value indicating whether the current
1239 game is still in play, or has been won, or has been conclusively lost.
1240 The mid-end uses this to implement \cw{midend_status()}
1241 (\k{midend-status}).
1242
1243 The return value should be +1 if the game has been successfully
1244 solved. If the game has been lost in a situation where further play is
1245 unlikely, the return value should be -1. If neither is true (so play
1246 is still ongoing), return zero.
1247
1248 Front ends may wish to use a non-zero status as a cue to proactively
1249 offer the option of starting a new game. Therefore, back ends should
1250 not return -1 if the game has been \e{technically} lost but undoing
1251 and continuing is still a realistic possibility.
1252
1253 (For instance, games with hidden information such as Guess or Mines
1254 might well return a non-zero status whenever they reveal the solution,
1255 whether or not the player guessed it correctly, on the grounds that a
1256 player would be unlikely to hide the solution and continue playing
1257 after the answer was spoiled. On the other hand, games where you can
1258 merely get into a dead end such as Same Game or Inertia might choose
1259 to return 0 in that situation, on the grounds that the player would
1260 quite likely press Undo and carry on playing.)
1261
1262 \S{backend-redraw} \cw{redraw()}
1263
1264 \c void (*redraw)(drawing *dr, game_drawstate *ds,
1265 \c                game_state *oldstate, game_state *newstate, int dir,
1266 \c                game_ui *ui, float anim_time, float flash_time);
1267
1268 This function is responsible for actually drawing the contents of
1269 the game window, and for redrawing every time the game state or the
1270 \c{game_ui} changes.
1271
1272 The parameter \c{dr} is a drawing object which may be passed to the
1273 drawing API functions (see \k{drawing} for documentation of the
1274 drawing API). This function may not save \c{dr} and use it
1275 elsewhere; it must only use it for calling back to the drawing API
1276 functions within its own lifetime.
1277
1278 \c{ds} is the local \c{game_drawstate}, of course, and \c{ui} is the
1279 local \c{game_ui}.
1280
1281 \c{newstate} is the semantically-current game state, and is always
1282 non-\cw{NULL}. If \c{oldstate} is also non-\cw{NULL}, it means that
1283 a move has recently been made and the game is still in the process
1284 of displaying an animation linking the old and new states; in this
1285 situation, \c{anim_time} will give the length of time (in seconds)
1286 that the animation has already been running. If \c{oldstate} is
1287 \cw{NULL}, then \c{anim_time} is unused (and will hopefully be set
1288 to zero to avoid confusion).
1289
1290 \c{flash_time}, if it is is non-zero, denotes that the game is in
1291 the middle of a flash, and gives the time since the start of the
1292 flash. See \k{backend-flash-length} for general discussion of
1293 flashes.
1294
1295 The very first time this function is called for a new
1296 \c{game_drawstate}, it is expected to redraw the \e{entire} drawing
1297 area. Since this often involves drawing visual furniture which is
1298 never subsequently altered, it is often simplest to arrange this by
1299 having a special \q{first time} flag in the draw state, and
1300 resetting it after the first redraw.
1301
1302 When this function (or any subfunction) calls the drawing API, it is
1303 expected to pass colour indices which were previously defined by the
1304 \cw{colours()} function.
1305
1306 \H{backend-printing} Printing functions
1307
1308 This section discusses the back end functions that deal with
1309 printing puzzles out on paper.
1310
1311 \S{backend-can-print} \c{can_print}
1312
1313 \c int can_print;
1314
1315 This flag is set to \cw{TRUE} if the puzzle is capable of printing
1316 itself on paper. (This makes sense for some puzzles, such as Solo,
1317 which can be filled in with a pencil. Other puzzles, such as
1318 Twiddle, inherently involve moving things around and so would not
1319 make sense to print.)
1320
1321 If this flag is \cw{FALSE}, then the functions \cw{print_size()}
1322 and \cw{print()} will never be called.
1323
1324 \S{backend-can-print-in-colour} \c{can_print_in_colour}
1325
1326 \c int can_print_in_colour;
1327
1328 This flag is set to \cw{TRUE} if the puzzle is capable of printing
1329 itself differently when colour is available. For example, Map can
1330 actually print coloured regions in different \e{colours} rather than
1331 resorting to cross-hatching.
1332
1333 If the \c{can_print} flag is \cw{FALSE}, then this flag will be
1334 ignored.
1335
1336 \S{backend-print-size} \cw{print_size()}
1337
1338 \c void (*print_size)(game_params *params, float *x, float *y);
1339
1340 This function is passed a \c{game_params} structure and a tile size.
1341 It returns, in \c{*x} and \c{*y}, the preferred size in
1342 \e{millimetres} of that puzzle if it were to be printed out on paper.
1343
1344 If the \c{can_print} flag is \cw{FALSE}, this function will never be
1345 called.
1346
1347 \S{backend-print} \cw{print()}
1348
1349 \c void (*print)(drawing *dr, game_state *state, int tilesize);
1350
1351 This function is called when a puzzle is to be printed out on paper.
1352 It should use the drawing API functions (see \k{drawing}) to print
1353 itself.
1354
1355 This function is separate from \cw{redraw()} because it is often
1356 very different:
1357
1358 \b The printing function may not depend on pixel accuracy, since
1359 printer resolution is variable. Draw as if your canvas had infinite
1360 resolution.
1361
1362 \b The printing function sometimes needs to display things in a
1363 completely different style. Net, for example, is very different as
1364 an on-screen puzzle and as a printed one.
1365
1366 \b The printing function is often much simpler since it has no need
1367 to deal with repeated partial redraws.
1368
1369 However, there's no reason the printing and redraw functions can't
1370 share some code if they want to.
1371
1372 When this function (or any subfunction) calls the drawing API, the
1373 colour indices it passes should be colours which have been allocated
1374 by the \cw{print_*_colour()} functions within this execution of
1375 \cw{print()}. This is very different from the fixed small number of
1376 colours used in \cw{redraw()}, because printers do not have a
1377 limitation on the total number of colours that may be used. Some
1378 puzzles' printing functions might wish to allocate only one \q{ink}
1379 colour and use it for all drawing; others might wish to allocate
1380 \e{more} colours than are used on screen.
1381
1382 One possible colour policy worth mentioning specifically is that a
1383 puzzle's printing function might want to allocate the \e{same}
1384 colour indices as are used by the redraw function, so that code
1385 shared between drawing and printing does not have to keep switching
1386 its colour indices. In order to do this, the simplest thing is to
1387 make use of the fact that colour indices returned from
1388 \cw{print_*_colour()} are guaranteed to be in increasing order from
1389 zero. So if you have declared an \c{enum} defining three colours
1390 \cw{COL_BACKGROUND}, \cw{COL_THIS} and \cw{COL_THAT}, you might then
1391 write
1392
1393 \c int c;
1394 \c c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
1395 \c c = print_mono_colour(dr, 0); assert(c == COL_THIS);
1396 \c c = print_mono_colour(dr, 0); assert(c == COL_THAT);
1397
1398 If the \c{can_print} flag is \cw{FALSE}, this function will never be
1399 called.
1400
1401 \H{backend-misc} Miscellaneous
1402
1403 \S{backend-can-format-as-text-ever} \c{can_format_as_text_ever}
1404
1405 \c int can_format_as_text_ever;
1406
1407 This boolean field is \cw{TRUE} if the game supports formatting a
1408 game state as ASCII text (typically ASCII art) for copying to the
1409 clipboard and pasting into other applications. If it is \cw{FALSE},
1410 front ends will not offer the \q{Copy} command at all.
1411
1412 If this field is \cw{TRUE}, the game does not necessarily have to
1413 support text formatting for \e{all} games: e.g. a game which can be
1414 played on a square grid or a triangular one might only support copy
1415 and paste for the former, because triangular grids in ASCII art are
1416 just too difficult.
1417
1418 If this field is \cw{FALSE}, the functions
1419 \cw{can_format_as_text_now()} (\k{backend-can-format-as-text-now})
1420 and \cw{text_format()} (\k{backend-text-format}) are never called.
1421
1422 \S{backend-can-format-as-text-now} \c{can_format_as_text_now()}
1423
1424 \c int (*can_format_as_text_now)(game_params *params);
1425
1426 This function is passed a \c{game_params} and returns a boolean,
1427 which is \cw{TRUE} if the game can support ASCII text output for
1428 this particular game type. If it returns \cw{FALSE}, front ends will
1429 grey out or otherwise disable the \q{Copy} command.
1430
1431 Games may enable and disable the copy-and-paste function for
1432 different game \e{parameters}, but are currently constrained to
1433 return the same answer from this function for all game \e{states}
1434 sharing the same parameters. In other words, the \q{Copy} function
1435 may enable or disable itself when the player changes game preset,
1436 but will never change during play of a single game or when another
1437 game of exactly the same type is generated.
1438
1439 This function should not take into account aspects of the game
1440 parameters which are not encoded by \cw{encode_params()}
1441 (\k{backend-encode-params}) when the \c{full} parameter is set to
1442 \cw{FALSE}. Such parameters will not necessarily match up between a
1443 call to this function and a subsequent call to \cw{text_format()}
1444 itself. (For instance, game \e{difficulty} should not affect whether
1445 the game can be copied to the clipboard. Only the actual visible
1446 \e{shape} of the game can affect that.)
1447
1448 \S{backend-text-format} \cw{text_format()}
1449
1450 \c char *(*text_format)(game_state *state);
1451
1452 This function is passed a \c{game_state}, and returns a newly
1453 allocated C string containing an ASCII representation of that game
1454 state. It is used to implement the \q{Copy} operation in many front
1455 ends.
1456
1457 This function will only ever be called if the back end field
1458 \c{can_format_as_text_ever} (\k{backend-can-format-as-text-ever}) is
1459 \cw{TRUE} \e{and} the function \cw{can_format_as_text_now()}
1460 (\k{backend-can-format-as-text-now}) has returned \cw{TRUE} for the
1461 currently selected game parameters.
1462
1463 The returned string may contain line endings (and will probably want
1464 to), using the normal C internal \cq{\\n} convention. For
1465 consistency between puzzles, all multi-line textual puzzle
1466 representations should \e{end} with a newline as well as containing
1467 them internally. (There are currently no puzzles which have a
1468 one-line ASCII representation, so there's no precedent yet for
1469 whether that should come with a newline or not.)
1470
1471 \S{backend-wants-statusbar} \cw{wants_statusbar}
1472
1473 \c int wants_statusbar;
1474
1475 This boolean field is set to \cw{TRUE} if the puzzle has a use for a
1476 textual status line (to display score, completion status, currently
1477 active tiles, etc).
1478
1479 \S{backend-is-timed} \c{is_timed}
1480
1481 \c int is_timed;
1482
1483 This boolean field is \cw{TRUE} if the puzzle is time-critical. If
1484 so, the mid-end will maintain a game timer while the user plays.
1485
1486 If this field is \cw{FALSE}, then \cw{timing_state()} will never be
1487 called and need not do anything.
1488
1489 \S{backend-timing-state} \cw{timing_state()}
1490
1491 \c int (*timing_state)(game_state *state, game_ui *ui);
1492
1493 This function is passed the current \c{game_state} and the local
1494 \c{game_ui}; it returns \cw{TRUE} if the game timer should currently
1495 be running.
1496
1497 A typical use for the \c{game_ui} in this function is to note when
1498 the game was first completed (by setting a flag in
1499 \cw{changed_state()} \dash see \k{backend-changed-state}), and
1500 freeze the timer thereafter so that the user can undo back through
1501 their solution process without altering their time.
1502
1503 \S{backend-flags} \c{flags}
1504
1505 \c int flags;
1506
1507 This field contains miscellaneous per-backend flags. It consists of
1508 the bitwise OR of some combination of the following:
1509
1510 \dt \cw{BUTTON_BEATS(x,y)}
1511
1512 \dd Given any \cw{x} and \cw{y} from the set \{\cw{LEFT_BUTTON},
1513 \cw{MIDDLE_BUTTON}, \cw{RIGHT_BUTTON}\}, this macro evaluates to a
1514 bit flag which indicates that when buttons \cw{x} and \cw{y} are
1515 both pressed simultaneously, the mid-end should consider \cw{x} to
1516 have priority. (In the absence of any such flags, the mid-end will
1517 always consider the most recently pressed button to have priority.)
1518
1519 \dt \cw{SOLVE_ANIMATES}
1520
1521 \dd This flag indicates that moves generated by \cw{solve()}
1522 (\k{backend-solve}) are candidates for animation just like any other
1523 move. For most games, solve moves should not be animated, so the
1524 mid-end doesn't even bother calling \cw{anim_length()}
1525 (\k{backend-anim-length}), thus saving some special-case code in
1526 each game. On the rare occasion that animated solve moves are
1527 actually required, you can set this flag.
1528
1529 \dt \cw{REQUIRE_RBUTTON}
1530
1531 \dd This flag indicates that the puzzle cannot be usefully played
1532 without the use of mouse buttons other than the left one. On some
1533 PDA platforms, this flag is used by the front end to enable
1534 right-button emulation through an appropriate gesture. Note that a
1535 puzzle is not required to set this just because it \e{uses} the
1536 right button, but only if its use of the right button is critical to
1537 playing the game. (Slant, for example, uses the right button to
1538 cycle through the three square states in the opposite order from the
1539 left button, and hence can manage fine without it.)
1540
1541 \dt \cw{REQUIRE_NUMPAD}
1542
1543 \dd This flag indicates that the puzzle cannot be usefully played
1544 without the use of number-key input. On some PDA platforms it causes
1545 an emulated number pad to appear on the screen. Similarly to
1546 \cw{REQUIRE_RBUTTON}, a puzzle need not specify this simply if its
1547 use of the number keys is not critical.
1548
1549 \H{backend-initiative} Things a back end may do on its own initiative
1550
1551 This section describes a couple of things that a back end may choose
1552 to do by calling functions elsewhere in the program, which would not
1553 otherwise be obvious.
1554
1555 \S{backend-newrs} Create a random state
1556
1557 If a back end needs random numbers at some point during normal play,
1558 it can create a fresh \c{random_state} by first calling
1559 \c{get_random_seed} (\k{frontend-get-random-seed}) and then passing
1560 the returned seed data to \cw{random_new()}.
1561
1562 This is likely not to be what you want. If a puzzle needs randomness
1563 in the middle of play, it's likely to be more sensible to store some
1564 sort of random state within the \c{game_state}, so that the random
1565 numbers are tied to the particular game state and hence the player
1566 can't simply keep undoing their move until they get numbers they
1567 like better.
1568
1569 This facility is currently used only in Net, to implement the
1570 \q{jumble} command, which sets every unlocked tile to a new random
1571 orientation. This randomness \e{is} a reasonable use of the feature,
1572 because it's non-adversarial \dash there's no advantage to the user
1573 in getting different random numbers.
1574
1575 \S{backend-supersede} Supersede its own game description
1576
1577 In response to a move, a back end is (reluctantly) permitted to call
1578 \cw{midend_supersede_game_desc()}:
1579
1580 \c void midend_supersede_game_desc(midend *me,
1581 \c                                 char *desc, char *privdesc);
1582
1583 When the user selects \q{New Game}, the mid-end calls
1584 \cw{new_desc()} (\k{backend-new-desc}) to get a new game
1585 description, and (as well as using that to generate an initial game
1586 state) stores it for the save file and for telling to the user. The
1587 function above overwrites that game description, and also splits it
1588 in two. \c{desc} becomes the new game description which is provided
1589 to the user on request, and is also the one used to construct a new
1590 initial game state if the user selects \q{Restart}. \c{privdesc} is
1591 a \q{private} game description, used to reconstruct the game's
1592 initial state when reloading.
1593
1594 The distinction between the two, as well as the need for this
1595 function at all, comes from Mines. Mines begins with a blank grid
1596 and no idea of where the mines actually are; \cw{new_desc()} does
1597 almost no work in interactive mode, and simply returns a string
1598 encoding the \c{random_state}. When the user first clicks to open a
1599 tile, \e{then} Mines generates the mine positions, in such a way
1600 that the game is soluble from that starting point. Then it uses this
1601 function to supersede the random-state game description with a
1602 proper one. But it needs two: one containing the initial click
1603 location (because that's what you want to happen if you restart the
1604 game, and also what you want to send to a friend so that they play
1605 \e{the same game} as you), and one without the initial click
1606 location (because when you save and reload the game, you expect to
1607 see the same blank initial state as you had before saving).
1608
1609 I should stress again that this function is a horrid hack. Nobody
1610 should use it if they're not Mines; if you think you need to use it,
1611 think again repeatedly in the hope of finding a better way to do
1612 whatever it was you needed to do.
1613
1614 \C{drawing} The drawing API
1615
1616 The back end function \cw{redraw()} (\k{backend-redraw}) is required
1617 to draw the puzzle's graphics on the window's drawing area, or on
1618 paper if the puzzle is printable. To do this portably, it is
1619 provided with a drawing API allowing it to talk directly to the
1620 front end. In this chapter I document that API, both for the benefit
1621 of back end authors trying to use it and for front end authors
1622 trying to implement it.
1623
1624 The drawing API as seen by the back end is a collection of global
1625 functions, each of which takes a pointer to a \c{drawing} structure
1626 (a \q{drawing object}). These objects are supplied as parameters to
1627 the back end's \cw{redraw()} and \cw{print()} functions.
1628
1629 In fact these global functions are not implemented directly by the
1630 front end; instead, they are implemented centrally in \c{drawing.c}
1631 and form a small piece of middleware. The drawing API as supplied by
1632 the front end is a structure containing a set of function pointers,
1633 plus a \cq{void *} handle which is passed to each of those
1634 functions. This enables a single front end to switch between
1635 multiple implementations of the drawing API if necessary. For
1636 example, the Windows API supplies a printing mechanism integrated
1637 into the same GDI which deals with drawing in windows, and therefore
1638 the same API implementation can handle both drawing and printing;
1639 but on Unix, the most common way for applications to print is by
1640 producing PostScript output directly, and although it would be
1641 \e{possible} to write a single (say) \cw{draw_rect()} function which
1642 checked a global flag to decide whether to do GTK drawing operations
1643 or output PostScript to a file, it's much nicer to have two separate
1644 functions and switch between them as appropriate.
1645
1646 When drawing, the puzzle window is indexed by pixel coordinates,
1647 with the top left pixel defined as \cw{(0,0)} and the bottom right
1648 pixel \cw{(w-1,h-1)}, where \c{w} and \c{h} are the width and height
1649 values returned by the back end function \cw{compute_size()}
1650 (\k{backend-compute-size}).
1651
1652 When printing, the puzzle's print area is indexed in exactly the
1653 same way (with an arbitrary tile size provided by the printing
1654 module \c{printing.c}), to facilitate sharing of code between the
1655 drawing and printing routines. However, when printing, puzzles may
1656 no longer assume that the coordinate unit has any relationship to a
1657 pixel; the printer's actual resolution might very well not even be
1658 known at print time, so the coordinate unit might be smaller or
1659 larger than a pixel. Puzzles' print functions should restrict
1660 themselves to drawing geometric shapes rather than fiddly pixel
1661 manipulation.
1662
1663 \e{Puzzles' redraw functions may assume that the surface they draw
1664 on is persistent}. It is the responsibility of every front end to
1665 preserve the puzzle's window contents in the face of GUI window
1666 expose issues and similar. It is not permissible to request that the
1667 back end redraw any part of a window that it has already drawn,
1668 unless something has actually changed as a result of making moves in
1669 the puzzle.
1670
1671 Most front ends accomplish this by having the drawing routines draw
1672 on a stored bitmap rather than directly on the window, and copying
1673 the bitmap to the window every time a part of the window needs to be
1674 redrawn. Therefore, it is vitally important that whenever the back
1675 end does any drawing it informs the front end of which parts of the
1676 window it has accessed, and hence which parts need repainting. This
1677 is done by calling \cw{draw_update()} (\k{drawing-draw-update}).
1678
1679 Persistence of old drawing is convenient. However, a puzzle should
1680 be very careful about how it updates its drawing area. The problem
1681 is that some front ends do anti-aliased drawing: rather than simply
1682 choosing between leaving each pixel untouched or painting it a
1683 specified colour, an antialiased drawing function will \e{blend} the
1684 original and new colours in pixels at a figure's boundary according
1685 to the proportion of the pixel occupied by the figure (probably
1686 modified by some heuristic fudge factors). All of this produces a
1687 smoother appearance for curves and diagonal lines.
1688
1689 An unfortunate effect of drawing an anti-aliased figure repeatedly
1690 is that the pixels around the figure's boundary come steadily more
1691 saturated with \q{ink} and the boundary appears to \q{spread out}.
1692 Worse, redrawing a figure in a different colour won't fully paint
1693 over the old boundary pixels, so the end result is a rather ugly
1694 smudge.
1695
1696 A good strategy to avoid unpleasant anti-aliasing artifacts is to
1697 identify a number of rectangular areas which need to be redrawn,
1698 clear them to the background colour, and then redraw their contents
1699 from scratch, being careful all the while not to stray beyond the
1700 boundaries of the original rectangles. The \cw{clip()} function
1701 (\k{drawing-clip}) comes in very handy here. Games based on a square
1702 grid can often do this fairly easily. Other games may need to be
1703 somewhat more careful. For example, Loopy's redraw function first
1704 identifies portions of the display which need to be updated. Then,
1705 if the changes are fairly well localised, it clears and redraws a
1706 rectangle containing each changed area. Otherwise, it gives up and
1707 redraws the entire grid from scratch.
1708
1709 It is possible to avoid clearing to background and redrawing from
1710 scratch if one is very careful about which drawing functions one
1711 uses: if a function is documented as not anti-aliasing under some
1712 circumstances, you can rely on each pixel in a drawing either being
1713 left entirely alone or being set to the requested colour, with no
1714 blending being performed.
1715
1716 In the following sections I first discuss the drawing API as seen by
1717 the back end, and then the \e{almost} identical function-pointer
1718 form seen by the front end.
1719
1720 \H{drawing-backend} Drawing API as seen by the back end
1721
1722 This section documents the back-end drawing API, in the form of
1723 functions which take a \c{drawing} object as an argument.
1724
1725 \S{drawing-draw-rect} \cw{draw_rect()}
1726
1727 \c void draw_rect(drawing *dr, int x, int y, int w, int h,
1728 \c                int colour);
1729
1730 Draws a filled rectangle in the puzzle window.
1731
1732 \c{x} and \c{y} give the coordinates of the top left pixel of the
1733 rectangle. \c{w} and \c{h} give its width and height. Thus, the
1734 horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1735 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1736 inclusive.
1737
1738 \c{colour} is an integer index into the colours array returned by
1739 the back end function \cw{colours()} (\k{backend-colours}).
1740
1741 There is no separate pixel-plotting function. If you want to plot a
1742 single pixel, the approved method is to use \cw{draw_rect()} with
1743 width and height set to 1.
1744
1745 Unlike many of the other drawing functions, this function is
1746 guaranteed to be pixel-perfect: the rectangle will be sharply
1747 defined and not anti-aliased or anything like that.
1748
1749 This function may be used for both drawing and printing.
1750
1751 \S{drawing-draw-rect-outline} \cw{draw_rect_outline()}
1752
1753 \c void draw_rect_outline(drawing *dr, int x, int y, int w, int h,
1754 \c                        int colour);
1755
1756 Draws an outline rectangle in the puzzle window.
1757
1758 \c{x} and \c{y} give the coordinates of the top left pixel of the
1759 rectangle. \c{w} and \c{h} give its width and height. Thus, the
1760 horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
1761 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
1762 inclusive.
1763
1764 \c{colour} is an integer index into the colours array returned by
1765 the back end function \cw{colours()} (\k{backend-colours}).
1766
1767 From a back end perspective, this function may be considered to be
1768 part of the drawing API. However, front ends are not required to
1769 implement it, since it is actually implemented centrally (in
1770 \cw{misc.c}) as a wrapper on \cw{draw_polygon()}.
1771
1772 This function may be used for both drawing and printing.
1773
1774 \S{drawing-draw-line} \cw{draw_line()}
1775
1776 \c void draw_line(drawing *dr, int x1, int y1, int x2, int y2,
1777 \c                int colour);
1778
1779 Draws a straight line in the puzzle window.
1780
1781 \c{x1} and \c{y1} give the coordinates of one end of the line.
1782 \c{x2} and \c{y2} give the coordinates of the other end. The line
1783 drawn includes both those points.
1784
1785 \c{colour} is an integer index into the colours array returned by
1786 the back end function \cw{colours()} (\k{backend-colours}).
1787
1788 Some platforms may perform anti-aliasing on this function.
1789 Therefore, do not assume that you can erase a line by drawing the
1790 same line over it in the background colour; anti-aliasing might lead
1791 to perceptible ghost artefacts around the vanished line. Horizontal
1792 and vertical lines, however, are pixel-perfect and not anti-aliased.
1793
1794 This function may be used for both drawing and printing.
1795
1796 \S{drawing-draw-polygon} \cw{draw_polygon()}
1797
1798 \c void draw_polygon(drawing *dr, int *coords, int npoints,
1799 \c                   int fillcolour, int outlinecolour);
1800
1801 Draws an outlined or filled polygon in the puzzle window.
1802
1803 \c{coords} is an array of \cw{(2*npoints)} integers, containing the
1804 \c{x} and \c{y} coordinates of \c{npoints} vertices.
1805
1806 \c{fillcolour} and \c{outlinecolour} are integer indices into the
1807 colours array returned by the back end function \cw{colours()}
1808 (\k{backend-colours}). \c{fillcolour} may also be \cw{-1} to
1809 indicate that the polygon should be outlined only.
1810
1811 The polygon defined by the specified list of vertices is first
1812 filled in \c{fillcolour}, if specified, and then outlined in
1813 \c{outlinecolour}.
1814
1815 \c{outlinecolour} may \e{not} be \cw{-1}; it must be a valid colour
1816 (and front ends are permitted to enforce this by assertion). This is
1817 because different platforms disagree on whether a filled polygon
1818 should include its boundary line or not, so drawing \e{only} a
1819 filled polygon would have non-portable effects. If you want your
1820 filled polygon not to have a visible outline, you must set
1821 \c{outlinecolour} to the same as \c{fillcolour}.
1822
1823 Some platforms may perform anti-aliasing on this function.
1824 Therefore, do not assume that you can erase a polygon by drawing the
1825 same polygon over it in the background colour. Also, be prepared for
1826 the polygon to extend a pixel beyond its obvious bounding box as a
1827 result of this; if you really need it not to do this to avoid
1828 interfering with other delicate graphics, you should probably use
1829 \cw{clip()} (\k{drawing-clip}). You can rely on horizontal and
1830 vertical lines not being anti-aliased.
1831
1832 This function may be used for both drawing and printing.
1833
1834 \S{drawing-draw-circle} \cw{draw_circle()}
1835
1836 \c void draw_circle(drawing *dr, int cx, int cy, int radius,
1837 \c                  int fillcolour, int outlinecolour);
1838
1839 Draws an outlined or filled circle in the puzzle window.
1840
1841 \c{cx} and \c{cy} give the coordinates of the centre of the circle.
1842 \c{radius} gives its radius. The total horizontal pixel extent of
1843 the circle is from \c{cx-radius+1} to \c{cx+radius-1} inclusive, and
1844 the vertical extent similarly around \c{cy}.
1845
1846 \c{fillcolour} and \c{outlinecolour} are integer indices into the
1847 colours array returned by the back end function \cw{colours()}
1848 (\k{backend-colours}). \c{fillcolour} may also be \cw{-1} to
1849 indicate that the circle should be outlined only.
1850
1851 The circle is first filled in \c{fillcolour}, if specified, and then
1852 outlined in \c{outlinecolour}.
1853
1854 \c{outlinecolour} may \e{not} be \cw{-1}; it must be a valid colour
1855 (and front ends are permitted to enforce this by assertion). This is
1856 because different platforms disagree on whether a filled circle
1857 should include its boundary line or not, so drawing \e{only} a
1858 filled circle would have non-portable effects. If you want your
1859 filled circle not to have a visible outline, you must set
1860 \c{outlinecolour} to the same as \c{fillcolour}.
1861
1862 Some platforms may perform anti-aliasing on this function.
1863 Therefore, do not assume that you can erase a circle by drawing the
1864 same circle over it in the background colour. Also, be prepared for
1865 the circle to extend a pixel beyond its obvious bounding box as a
1866 result of this; if you really need it not to do this to avoid
1867 interfering with other delicate graphics, you should probably use
1868 \cw{clip()} (\k{drawing-clip}).
1869
1870 This function may be used for both drawing and printing.
1871
1872 \S{drawing-draw-thick-line} \cw{draw_thick_line()}
1873
1874 \c void draw_thick_line(drawing *dr, float thickness,
1875 \c                      float x1, float y1, float x2, float y2,
1876 \c                      int colour)
1877
1878 Draws a line in the puzzle window, giving control over the line's
1879 thickness.
1880
1881 \c{x1} and \c{y1} give the coordinates of one end of the line.
1882 \c{x2} and \c{y2} give the coordinates of the other end.
1883 \c{thickness} gives the thickness of the line, in pixels.
1884
1885 Note that the coordinates and thickness are floating-point: the
1886 continuous coordinate system is in effect here. It's important to
1887 be able to address points with better-than-pixel precision in this
1888 case, because one can't otherwise properly express the endpoints of
1889 lines with both odd and even thicknesses.
1890
1891 Some platforms may perform anti-aliasing on this function. The
1892 precise pixels affected by a thick-line drawing operation may vary
1893 between platforms, and no particular guarantees are provided.
1894 Indeed, even horizontal or vertical lines may be anti-aliased.
1895
1896 This function may be used for both drawing and printing.
1897
1898 \S{drawing-draw-text} \cw{draw_text()}
1899
1900 \c void draw_text(drawing *dr, int x, int y, int fonttype,
1901 \c                int fontsize, int align, int colour, char *text);
1902
1903 Draws text in the puzzle window.
1904
1905 \c{x} and \c{y} give the coordinates of a point. The relation of
1906 this point to the location of the text is specified by \c{align},
1907 which is a bitwise OR of horizontal and vertical alignment flags:
1908
1909 \dt \cw{ALIGN_VNORMAL}
1910
1911 \dd Indicates that \c{y} is aligned with the baseline of the text.
1912
1913 \dt \cw{ALIGN_VCENTRE}
1914
1915 \dd Indicates that \c{y} is aligned with the vertical centre of the
1916 text. (In fact, it's aligned with the vertical centre of normal
1917 \e{capitalised} text: displaying two pieces of text with
1918 \cw{ALIGN_VCENTRE} at the same \cw{y}-coordinate will cause their
1919 baselines to be aligned with one another, even if one is an ascender
1920 and the other a descender.)
1921
1922 \dt \cw{ALIGN_HLEFT}
1923
1924 \dd Indicates that \c{x} is aligned with the left-hand end of the
1925 text.
1926
1927 \dt \cw{ALIGN_HCENTRE}
1928
1929 \dd Indicates that \c{x} is aligned with the horizontal centre of
1930 the text.
1931
1932 \dt \cw{ALIGN_HRIGHT}
1933
1934 \dd Indicates that \c{x} is aligned with the right-hand end of the
1935 text.
1936
1937 \c{fonttype} is either \cw{FONT_FIXED} or \cw{FONT_VARIABLE}, for a
1938 monospaced or proportional font respectively. (No more detail than
1939 that may be specified; it would only lead to portability issues
1940 between different platforms.)
1941
1942 \c{fontsize} is the desired size, in pixels, of the text. This size
1943 corresponds to the overall point size of the text, not to any
1944 internal dimension such as the cap-height.
1945
1946 \c{colour} is an integer index into the colours array returned by
1947 the back end function \cw{colours()} (\k{backend-colours}).
1948
1949 This function may be used for both drawing and printing.
1950
1951 The character set used to encode the text passed to this function is
1952 specified \e{by the drawing object}, although it must be a superset
1953 of ASCII. If a puzzle wants to display text that is not contained in
1954 ASCII, it should use the \cw{text_fallback()} function
1955 (\k{drawing-text-fallback}) to query the drawing object for an
1956 appropriate representation of the characters it wants.
1957
1958 \S{drawing-text-fallback} \cw{text_fallback()}
1959
1960 \c char *text_fallback(drawing *dr, const char *const *strings,
1961 \c                     int nstrings);
1962
1963 This function is used to request a translation of UTF-8 text into
1964 whatever character encoding is expected by the drawing object's
1965 implementation of \cw{draw_text()}.
1966
1967 The input is a list of strings encoded in UTF-8: \cw{nstrings} gives
1968 the number of strings in the list, and \cw{strings[0]},
1969 \cw{strings[1]}, ..., \cw{strings[nstrings-1]} are the strings
1970 themselves.
1971
1972 The returned string (which is dynamically allocated and must be
1973 freed when finished with) is derived from the first string in the
1974 list that the drawing object expects to be able to display reliably;
1975 it will consist of that string translated into the character set
1976 expected by \cw{draw_text()}.
1977
1978 Drawing implementations are not required to handle anything outside
1979 ASCII, but are permitted to assume that \e{some} string will be
1980 successfully translated. So every call to this function must include
1981 a string somewhere in the list (presumably the last element) which
1982 consists of nothing but ASCII, to be used by any front end which
1983 cannot handle anything else.
1984
1985 For example, if a puzzle wished to display a string including a
1986 multiplication sign (U+00D7 in Unicode, represented by the bytes C3
1987 97 in UTF-8), it might do something like this:
1988
1989 \c static const char *const times_signs[] = { "\xC3\x97", "x" };
1990 \c char *times_sign = text_fallback(dr, times_signs, 2);
1991 \c sprintf(buffer, "%d%s%d", width, times_sign, height);
1992 \c draw_text(dr, x, y, font, size, align, colour, buffer);
1993 \c sfree(buffer);
1994
1995 which would draw a string with a times sign in the middle on
1996 platforms that support it, and fall back to a simple ASCII \cq{x}
1997 where there was no alternative.
1998
1999 \S{drawing-clip} \cw{clip()}
2000
2001 \c void clip(drawing *dr, int x, int y, int w, int h);
2002
2003 Establishes a clipping rectangle in the puzzle window.
2004
2005 \c{x} and \c{y} give the coordinates of the top left pixel of the
2006 clipping rectangle. \c{w} and \c{h} give its width and height. Thus,
2007 the horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
2008 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
2009 inclusive. (These are exactly the same semantics as
2010 \cw{draw_rect()}.)
2011
2012 After this call, no drawing operation will affect anything outside
2013 the specified rectangle. The effect can be reversed by calling
2014 \cw{unclip()} (\k{drawing-unclip}). The clipping rectangle is
2015 pixel-perfect: pixels within the rectangle are affected as usual by
2016 drawing functions; pixels outside are completely untouched.
2017
2018 Back ends should not assume that a clipping rectangle will be
2019 automatically cleared up by the front end if it's left lying around;
2020 that might work on current front ends, but shouldn't be relied upon.
2021 Always explicitly call \cw{unclip()}.
2022
2023 This function may be used for both drawing and printing.
2024
2025 \S{drawing-unclip} \cw{unclip()}
2026
2027 \c void unclip(drawing *dr);
2028
2029 Reverts the effect of a previous call to \cw{clip()}. After this
2030 call, all drawing operations will be able to affect the entire
2031 puzzle window again.
2032
2033 This function may be used for both drawing and printing.
2034
2035 \S{drawing-draw-update} \cw{draw_update()}
2036
2037 \c void draw_update(drawing *dr, int x, int y, int w, int h);
2038
2039 Informs the front end that a rectangular portion of the puzzle
2040 window has been drawn on and needs to be updated.
2041
2042 \c{x} and \c{y} give the coordinates of the top left pixel of the
2043 update rectangle. \c{w} and \c{h} give its width and height. Thus,
2044 the horizontal extent of the rectangle runs from \c{x} to \c{x+w-1}
2045 inclusive, and the vertical extent from \c{y} to \c{y+h-1}
2046 inclusive. (These are exactly the same semantics as
2047 \cw{draw_rect()}.)
2048
2049 The back end redraw function \e{must} call this function to report
2050 any changes it has made to the window. Otherwise, those changes may
2051 not become immediately visible, and may then appear at an
2052 unpredictable subsequent time such as the next time the window is
2053 covered and re-exposed.
2054
2055 This function is only important when drawing. It may be called when
2056 printing as well, but doing so is not compulsory, and has no effect.
2057 (So if you have a shared piece of code between the drawing and
2058 printing routines, that code may safely call \cw{draw_update()}.)
2059
2060 \S{drawing-status-bar} \cw{status_bar()}
2061
2062 \c void status_bar(drawing *dr, char *text);
2063
2064 Sets the text in the game's status bar to \c{text}. The text is copied
2065 from the supplied buffer, so the caller is free to deallocate or
2066 modify the buffer after use.
2067
2068 (This function is not exactly a \e{drawing} function, but it shares
2069 with the drawing API the property that it may only be called from
2070 within the back end redraw function, so this is as good a place as
2071 any to document it.)
2072
2073 The supplied text is filtered through the mid-end for optional
2074 rewriting before being passed on to the front end; the mid-end will
2075 prepend the current game time if the game is timed (and may in
2076 future perform other rewriting if it seems like a good idea).
2077
2078 This function is for drawing only; it must never be called during
2079 printing.
2080
2081 \S{drawing-blitter} Blitter functions
2082
2083 This section describes a group of related functions which save and
2084 restore a section of the puzzle window. This is most commonly used
2085 to implement user interfaces involving dragging a puzzle element
2086 around the window: at the end of each call to \cw{redraw()}, if an
2087 object is currently being dragged, the back end saves the window
2088 contents under that location and then draws the dragged object, and
2089 at the start of the next \cw{redraw()} the first thing it does is to
2090 restore the background.
2091
2092 The front end defines an opaque type called a \c{blitter}, which is
2093 capable of storing a rectangular area of a specified size.
2094
2095 Blitter functions are for drawing only; they must never be called
2096 during printing.
2097
2098 \S2{drawing-blitter-new} \cw{blitter_new()}
2099
2100 \c blitter *blitter_new(drawing *dr, int w, int h);
2101
2102 Creates a new blitter object which stores a rectangle of size \c{w}
2103 by \c{h} pixels. Returns a pointer to the blitter object.
2104
2105 Blitter objects are best stored in the \c{game_drawstate}. A good
2106 time to create them is in the \cw{set_size()} function
2107 (\k{backend-set-size}), since it is at this point that you first
2108 know how big a rectangle they will need to save.
2109
2110 \S2{drawing-blitter-free} \cw{blitter_free()}
2111
2112 \c void blitter_free(drawing *dr, blitter *bl);
2113
2114 Disposes of a blitter object. Best called in \cw{free_drawstate()}.
2115 (However, check that the blitter object is not \cw{NULL} before
2116 attempting to free it; it is possible that a draw state might be
2117 created and freed without ever having \cw{set_size()} called on it
2118 in between.)
2119
2120 \S2{drawing-blitter-save} \cw{blitter_save()}
2121
2122 \c void blitter_save(drawing *dr, blitter *bl, int x, int y);
2123
2124 This is a true drawing API function, in that it may only be called
2125 from within the game redraw routine. It saves a rectangular portion
2126 of the puzzle window into the specified blitter object.
2127
2128 \c{x} and \c{y} give the coordinates of the top left corner of the
2129 saved rectangle. The rectangle's width and height are the ones
2130 specified when the blitter object was created.
2131
2132 This function is required to cope and do the right thing if \c{x}
2133 and \c{y} are out of range. (The right thing probably means saving
2134 whatever part of the blitter rectangle overlaps with the visible
2135 area of the puzzle window.)
2136
2137 \S2{drawing-blitter-load} \cw{blitter_load()}
2138
2139 \c void blitter_load(drawing *dr, blitter *bl, int x, int y);
2140
2141 This is a true drawing API function, in that it may only be called
2142 from within the game redraw routine. It restores a rectangular
2143 portion of the puzzle window from the specified blitter object.
2144
2145 \c{x} and \c{y} give the coordinates of the top left corner of the
2146 rectangle to be restored. The rectangle's width and height are the
2147 ones specified when the blitter object was created.
2148
2149 Alternatively, you can specify both \c{x} and \c{y} as the special
2150 value \cw{BLITTER_FROMSAVED}, in which case the rectangle will be
2151 restored to exactly where it was saved from. (This is probably what
2152 you want to do almost all the time, if you're using blitters to
2153 implement draggable puzzle elements.)
2154
2155 This function is required to cope and do the right thing if \c{x}
2156 and \c{y} (or the equivalent ones saved in the blitter) are out of
2157 range. (The right thing probably means restoring whatever part of
2158 the blitter rectangle overlaps with the visible area of the puzzle
2159 window.)
2160
2161 If this function is called on a blitter which had previously been
2162 saved from a partially out-of-range rectangle, then the parts of the
2163 saved bitmap which were not visible at save time are undefined. If
2164 the blitter is restored to a different position so as to make those
2165 parts visible, the effect on the drawing area is undefined.
2166
2167 \S{print-mono-colour} \cw{print_mono_colour()}
2168
2169 \c int print_mono_colour(drawing *dr, int grey);
2170
2171 This function allocates a colour index for a simple monochrome
2172 colour during printing.
2173
2174 \c{grey} must be 0 or 1. If \c{grey} is 0, the colour returned is
2175 black; if \c{grey} is 1, the colour is white.
2176
2177 \S{print-grey-colour} \cw{print_grey_colour()}
2178
2179 \c int print_grey_colour(drawing *dr, float grey);
2180
2181 This function allocates a colour index for a grey-scale colour
2182 during printing.
2183
2184 \c{grey} may be any number between 0 (black) and 1 (white); for
2185 example, 0.5 indicates a medium grey.
2186
2187 The chosen colour will be rendered to the limits of the printer's
2188 halftoning capability.
2189
2190 \S{print-hatched-colour} \cw{print_hatched_colour()}
2191
2192 \c int print_hatched_colour(drawing *dr, int hatch);
2193
2194 This function allocates a colour index which does not represent a
2195 literal \e{colour}. Instead, regions shaded in this colour will be
2196 hatched with parallel lines. The \c{hatch} parameter defines what
2197 type of hatching should be used in place of this colour:
2198
2199 \dt \cw{HATCH_SLASH}
2200
2201 \dd This colour will be hatched by lines slanting to the right at 45
2202 degrees. 
2203
2204 \dt \cw{HATCH_BACKSLASH}
2205
2206 \dd This colour will be hatched by lines slanting to the left at 45
2207 degrees.
2208
2209 \dt \cw{HATCH_HORIZ}
2210
2211 \dd This colour will be hatched by horizontal lines.
2212
2213 \dt \cw{HATCH_VERT}
2214
2215 \dd This colour will be hatched by vertical lines.
2216
2217 \dt \cw{HATCH_PLUS}
2218
2219 \dd This colour will be hatched by criss-crossing horizontal and
2220 vertical lines.
2221
2222 \dt \cw{HATCH_X}
2223
2224 \dd This colour will be hatched by criss-crossing diagonal lines.
2225
2226 Colours defined to use hatching may not be used for drawing lines or
2227 text; they may only be used for filling areas. That is, they may be
2228 used as the \c{fillcolour} parameter to \cw{draw_circle()} and
2229 \cw{draw_polygon()}, and as the colour parameter to
2230 \cw{draw_rect()}, but may not be used as the \c{outlinecolour}
2231 parameter to \cw{draw_circle()} or \cw{draw_polygon()}, or with
2232 \cw{draw_line()} or \cw{draw_text()}.
2233
2234 \S{print-rgb-mono-colour} \cw{print_rgb_mono_colour()}
2235
2236 \c int print_rgb_mono_colour(drawing *dr, float r, float g,
2237 \c                           float b, float grey);
2238
2239 This function allocates a colour index for a fully specified RGB
2240 colour during printing.
2241
2242 \c{r}, \c{g} and \c{b} may each be anywhere in the range from 0 to 1.
2243
2244 If printing in black and white only, these values will be ignored,
2245 and either pure black or pure white will be used instead, according
2246 to the \q{grey} parameter. (The fallback colour is the same as the
2247 one which would be allocated by \cw{print_mono_colour(grey)}.)
2248
2249 \S{print-rgb-grey-colour} \cw{print_rgb_grey_colour()}
2250
2251 \c int print_rgb_grey_colour(drawing *dr, float r, float g,
2252 \c                           float b, float grey);
2253
2254 This function allocates a colour index for a fully specified RGB
2255 colour during printing.
2256
2257 \c{r}, \c{g} and \c{b} may each be anywhere in the range from 0 to 1.
2258
2259 If printing in black and white only, these values will be ignored,
2260 and a shade of grey given by the \c{grey} parameter will be used
2261 instead. (The fallback colour is the same as the one which would be
2262 allocated by \cw{print_grey_colour(grey)}.)
2263
2264 \S{print-rgb-hatched-colour} \cw{print_rgb_hatched_colour()}
2265
2266 \c int print_rgb_hatched_colour(drawing *dr, float r, float g,
2267 \c                              float b, float hatched);
2268
2269 This function allocates a colour index for a fully specified RGB
2270 colour during printing.
2271
2272 \c{r}, \c{g} and \c{b} may each be anywhere in the range from 0 to 1.
2273
2274 If printing in black and white only, these values will be ignored,
2275 and a form of cross-hatching given by the \c{hatch} parameter will
2276 be used instead; see \k{print-hatched-colour} for the possible
2277 values of this parameter. (The fallback colour is the same as the
2278 one which would be allocated by \cw{print_hatched_colour(hatch)}.)
2279
2280 \S{print-line-width} \cw{print_line_width()}
2281
2282 \c void print_line_width(drawing *dr, int width);
2283
2284 This function is called to set the thickness of lines drawn during
2285 printing. It is meaningless in drawing: all lines drawn by
2286 \cw{draw_line()}, \cw{draw_circle} and \cw{draw_polygon()} are one
2287 pixel in thickness. However, in printing there is no clear
2288 definition of a pixel and so line widths must be explicitly
2289 specified.
2290
2291 The line width is specified in the usual coordinate system. Note,
2292 however, that it is a hint only: the central printing system may
2293 choose to vary line thicknesses at user request or due to printer
2294 capabilities.
2295
2296 \S{print-line-dotted} \cw{print_line_dotted()}
2297
2298 \c void print_line_dotted(drawing *dr, int dotted);
2299
2300 This function is called to toggle the drawing of dotted lines during
2301 printing. It is not supported during drawing.
2302
2303 The parameter \cq{dotted} is a boolean; \cw{TRUE} means that future
2304 lines drawn by \cw{draw_line()}, \cw{draw_circle} and
2305 \cw{draw_polygon()} will be dotted, and \cw{FALSE} means that they
2306 will be solid.
2307
2308 Some front ends may impose restrictions on the width of dotted
2309 lines. Asking for a dotted line via this front end will override any
2310 line width request if the front end requires it.
2311
2312 \H{drawing-frontend} The drawing API as implemented by the front end
2313
2314 This section describes the drawing API in the function-pointer form
2315 in which it is implemented by a front end.
2316
2317 (It isn't only platform-specific front ends which implement this
2318 API; the platform-independent module \c{ps.c} also provides an
2319 implementation of it which outputs PostScript. Thus, any platform
2320 which wants to do PS printing can do so with minimum fuss.)
2321
2322 The following entries all describe function pointer fields in a
2323 structure called \c{drawing_api}. Each of the functions takes a
2324 \cq{void *} context pointer, which it should internally cast back to
2325 a more useful type. Thus, a drawing \e{object} (\c{drawing *)}
2326 suitable for passing to the back end redraw or printing functions
2327 is constructed by passing a \c{drawing_api} and a \cq{void *} to the
2328 function \cw{drawing_new()} (see \k{drawing-new}).
2329
2330 \S{drawingapi-draw-text} \cw{draw_text()}
2331
2332 \c void (*draw_text)(void *handle, int x, int y, int fonttype,
2333 \c                   int fontsize, int align, int colour, char *text);
2334
2335 This function behaves exactly like the back end \cw{draw_text()}
2336 function; see \k{drawing-draw-text}.
2337
2338 \S{drawingapi-draw-rect} \cw{draw_rect()}
2339
2340 \c void (*draw_rect)(void *handle, int x, int y, int w, int h,
2341 \c                   int colour);
2342
2343 This function behaves exactly like the back end \cw{draw_rect()}
2344 function; see \k{drawing-draw-rect}.
2345
2346 \S{drawingapi-draw-line} \cw{draw_line()}
2347
2348 \c void (*draw_line)(void *handle, int x1, int y1, int x2, int y2,
2349 \c                   int colour);
2350
2351 This function behaves exactly like the back end \cw{draw_line()}
2352 function; see \k{drawing-draw-line}.
2353
2354 \S{drawingapi-draw-polygon} \cw{draw_polygon()}
2355
2356 \c void (*draw_polygon)(void *handle, int *coords, int npoints,
2357 \c                      int fillcolour, int outlinecolour);
2358
2359 This function behaves exactly like the back end \cw{draw_polygon()}
2360 function; see \k{drawing-draw-polygon}.
2361
2362 \S{drawingapi-draw-circle} \cw{draw_circle()}
2363
2364 \c void (*draw_circle)(void *handle, int cx, int cy, int radius,
2365 \c                     int fillcolour, int outlinecolour);
2366
2367 This function behaves exactly like the back end \cw{draw_circle()}
2368 function; see \k{drawing-draw-circle}.
2369
2370 \S{drawingapi-draw-thick-line} \cw{draw_thick_line()}
2371
2372 \c void draw_thick_line(drawing *dr, float thickness,
2373 \c                      float x1, float y1, float x2, float y2,
2374 \c                      int colour)
2375
2376 This function behaves exactly like the back end
2377 \cw{draw_thick_line()} function; see \k{drawing-draw-thick-line}.
2378
2379 An implementation of this API which doesn't provide high-quality
2380 rendering of thick lines is permitted to define this function
2381 pointer to be \cw{NULL}. The middleware in \cw{drawing.c} will notice
2382 and provide a low-quality alternative using \cw{draw_polygon()}.
2383
2384 \S{drawingapi-draw-update} \cw{draw_update()}
2385
2386 \c void (*draw_update)(void *handle, int x, int y, int w, int h);
2387
2388 This function behaves exactly like the back end \cw{draw_update()}
2389 function; see \k{drawing-draw-update}.
2390
2391 An implementation of this API which only supports printing is
2392 permitted to define this function pointer to be \cw{NULL} rather
2393 than bothering to define an empty function. The middleware in
2394 \cw{drawing.c} will notice and avoid calling it.
2395
2396 \S{drawingapi-clip} \cw{clip()}
2397
2398 \c void (*clip)(void *handle, int x, int y, int w, int h);
2399
2400 This function behaves exactly like the back end \cw{clip()}
2401 function; see \k{drawing-clip}.
2402
2403 \S{drawingapi-unclip} \cw{unclip()}
2404
2405 \c void (*unclip)(void *handle);
2406
2407 This function behaves exactly like the back end \cw{unclip()}
2408 function; see \k{drawing-unclip}.
2409
2410 \S{drawingapi-start-draw} \cw{start_draw()}
2411
2412 \c void (*start_draw)(void *handle);
2413
2414 This function is called at the start of drawing. It allows the front
2415 end to initialise any temporary data required to draw with, such as
2416 device contexts.
2417
2418 Implementations of this API which do not provide drawing services
2419 may define this function pointer to be \cw{NULL}; it will never be
2420 called unless drawing is attempted.
2421
2422 \S{drawingapi-end-draw} \cw{end_draw()}
2423
2424 \c void (*end_draw)(void *handle);
2425
2426 This function is called at the end of drawing. It allows the front
2427 end to do cleanup tasks such as deallocating device contexts and
2428 scheduling appropriate GUI redraw events.
2429
2430 Implementations of this API which do not provide drawing services
2431 may define this function pointer to be \cw{NULL}; it will never be
2432 called unless drawing is attempted.
2433
2434 \S{drawingapi-status-bar} \cw{status_bar()}
2435
2436 \c void (*status_bar)(void *handle, char *text);
2437
2438 This function behaves exactly like the back end \cw{status_bar()}
2439 function; see \k{drawing-status-bar}.
2440
2441 Front ends implementing this function need not worry about it being
2442 called repeatedly with the same text; the middleware code in
2443 \cw{status_bar()} will take care of this.
2444
2445 Implementations of this API which do not provide drawing services
2446 may define this function pointer to be \cw{NULL}; it will never be
2447 called unless drawing is attempted.
2448
2449 \S{drawingapi-blitter-new} \cw{blitter_new()}
2450
2451 \c blitter *(*blitter_new)(void *handle, int w, int h);
2452
2453 This function behaves exactly like the back end \cw{blitter_new()}
2454 function; see \k{drawing-blitter-new}.
2455
2456 Implementations of this API which do not provide drawing services
2457 may define this function pointer to be \cw{NULL}; it will never be
2458 called unless drawing is attempted.
2459
2460 \S{drawingapi-blitter-free} \cw{blitter_free()}
2461
2462 \c void (*blitter_free)(void *handle, blitter *bl);
2463
2464 This function behaves exactly like the back end \cw{blitter_free()}
2465 function; see \k{drawing-blitter-free}.
2466
2467 Implementations of this API which do not provide drawing services
2468 may define this function pointer to be \cw{NULL}; it will never be
2469 called unless drawing is attempted.
2470
2471 \S{drawingapi-blitter-save} \cw{blitter_save()}
2472
2473 \c void (*blitter_save)(void *handle, blitter *bl, int x, int y);
2474
2475 This function behaves exactly like the back end \cw{blitter_save()}
2476 function; see \k{drawing-blitter-save}.
2477
2478 Implementations of this API which do not provide drawing services
2479 may define this function pointer to be \cw{NULL}; it will never be
2480 called unless drawing is attempted.
2481
2482 \S{drawingapi-blitter-load} \cw{blitter_load()}
2483
2484 \c void (*blitter_load)(void *handle, blitter *bl, int x, int y);
2485
2486 This function behaves exactly like the back end \cw{blitter_load()}
2487 function; see \k{drawing-blitter-load}.
2488
2489 Implementations of this API which do not provide drawing services
2490 may define this function pointer to be \cw{NULL}; it will never be
2491 called unless drawing is attempted.
2492
2493 \S{drawingapi-begin-doc} \cw{begin_doc()}
2494
2495 \c void (*begin_doc)(void *handle, int pages);
2496
2497 This function is called at the beginning of a printing run. It gives
2498 the front end an opportunity to initialise any required printing
2499 subsystem. It also provides the number of pages in advance.
2500
2501 Implementations of this API which do not provide printing services
2502 may define this function pointer to be \cw{NULL}; it will never be
2503 called unless printing is attempted.
2504
2505 \S{drawingapi-begin-page} \cw{begin_page()}
2506
2507 \c void (*begin_page)(void *handle, int number);
2508
2509 This function is called during printing, at the beginning of each
2510 page. It gives the page number (numbered from 1 rather than 0, so
2511 suitable for use in user-visible contexts).
2512
2513 Implementations of this API which do not provide printing services
2514 may define this function pointer to be \cw{NULL}; it will never be
2515 called unless printing is attempted.
2516
2517 \S{drawingapi-begin-puzzle} \cw{begin_puzzle()}
2518
2519 \c void (*begin_puzzle)(void *handle, float xm, float xc,
2520 \c                      float ym, float yc, int pw, int ph, float wmm);
2521
2522 This function is called during printing, just before printing a
2523 single puzzle on a page. It specifies the size and location of the
2524 puzzle on the page.
2525
2526 \c{xm} and \c{xc} specify the horizontal position of the puzzle on
2527 the page, as a linear function of the page width. The front end is
2528 expected to multiply the page width by \c{xm}, add \c{xc} (measured
2529 in millimetres), and use the resulting x-coordinate as the left edge
2530 of the puzzle.
2531
2532 Similarly, \c{ym} and \c{yc} specify the vertical position of the
2533 puzzle as a function of the page height: the page height times
2534 \c{ym}, plus \c{yc} millimetres, equals the desired distance from
2535 the top of the page to the top of the puzzle.
2536
2537 (This unwieldy mechanism is required because not all printing
2538 systems can communicate the page size back to the software. The
2539 PostScript back end, for example, writes out PS which determines the
2540 page size at print time by means of calling \cq{clippath}, and
2541 centres the puzzles within that. Thus, exactly the same PS file
2542 works on A4 or on US Letter paper without needing local
2543 configuration, which simplifies matters.)
2544
2545 \cw{pw} and \cw{ph} give the size of the puzzle in drawing API
2546 coordinates. The printing system will subsequently call the puzzle's
2547 own print function, which will in turn call drawing API functions in
2548 the expectation that an area \cw{pw} by \cw{ph} units is available
2549 to draw the puzzle on.
2550
2551 Finally, \cw{wmm} gives the desired width of the puzzle in
2552 millimetres. (The aspect ratio is expected to be preserved, so if
2553 the desired puzzle height is also needed then it can be computed as
2554 \cw{wmm*ph/pw}.)
2555
2556 Implementations of this API which do not provide printing services
2557 may define this function pointer to be \cw{NULL}; it will never be
2558 called unless printing is attempted.
2559
2560 \S{drawingapi-end-puzzle} \cw{end_puzzle()}
2561
2562 \c void (*end_puzzle)(void *handle);
2563
2564 This function is called after the printing of a specific puzzle is
2565 complete.
2566
2567 Implementations of this API which do not provide printing services
2568 may define this function pointer to be \cw{NULL}; it will never be
2569 called unless printing is attempted.
2570
2571 \S{drawingapi-end-page} \cw{end_page()}
2572
2573 \c void (*end_page)(void *handle, int number);
2574
2575 This function is called after the printing of a page is finished.
2576
2577 Implementations of this API which do not provide printing services
2578 may define this function pointer to be \cw{NULL}; it will never be
2579 called unless printing is attempted.
2580
2581 \S{drawingapi-end-doc} \cw{end_doc()}
2582
2583 \c void (*end_doc)(void *handle);
2584
2585 This function is called after the printing of the entire document is
2586 finished. This is the moment to close files, send things to the
2587 print spooler, or whatever the local convention is.
2588
2589 Implementations of this API which do not provide printing services
2590 may define this function pointer to be \cw{NULL}; it will never be
2591 called unless printing is attempted.
2592
2593 \S{drawingapi-line-width} \cw{line_width()}
2594
2595 \c void (*line_width)(void *handle, float width);
2596
2597 This function is called to set the line thickness, during printing
2598 only. Note that the width is a \cw{float} here, where it was an
2599 \cw{int} as seen by the back end. This is because \cw{drawing.c} may
2600 have scaled it on the way past.
2601
2602 However, the width is still specified in the same coordinate system
2603 as the rest of the drawing.
2604
2605 Implementations of this API which do not provide printing services
2606 may define this function pointer to be \cw{NULL}; it will never be
2607 called unless printing is attempted.
2608
2609 \S{drawingapi-text-fallback} \cw{text_fallback()}
2610
2611 \c char *(*text_fallback)(void *handle, const char *const *strings,
2612 \c                        int nstrings);
2613
2614 This function behaves exactly like the back end \cw{text_fallback()}
2615 function; see \k{drawing-text-fallback}.
2616
2617 Implementations of this API which do not support any characters
2618 outside ASCII may define this function pointer to be \cw{NULL}, in
2619 which case the central code in \cw{drawing.c} will provide a default
2620 implementation.
2621
2622 \H{drawingapi-frontend} The drawing API as called by the front end
2623
2624 There are a small number of functions provided in \cw{drawing.c}
2625 which the front end needs to \e{call}, rather than helping to
2626 implement. They are described in this section.
2627
2628 \S{drawing-new} \cw{drawing_new()}
2629
2630 \c drawing *drawing_new(const drawing_api *api, midend *me,
2631 \c                      void *handle);
2632
2633 This function creates a drawing object. It is passed a
2634 \c{drawing_api}, which is a structure containing nothing but
2635 function pointers; and also a \cq{void *} handle. The handle is
2636 passed back to each function pointer when it is called.
2637
2638 The \c{midend} parameter is used for rewriting the status bar
2639 contents: \cw{status_bar()} (see \k{drawing-status-bar}) has to call
2640 a function in the mid-end which might rewrite the status bar text.
2641 If the drawing object is to be used only for printing, or if the
2642 game is known not to call \cw{status_bar()}, this parameter may be
2643 \cw{NULL}.
2644
2645 \S{drawing-free} \cw{drawing_free()}
2646
2647 \c void drawing_free(drawing *dr);
2648
2649 This function frees a drawing object. Note that the \cq{void *}
2650 handle is not freed; if that needs cleaning up it must be done by
2651 the front end.
2652
2653 \S{drawing-print-get-colour} \cw{print_get_colour()}
2654
2655 \c void print_get_colour(drawing *dr, int colour, int printincolour,
2656 \c                       int *hatch, float *r, float *g, float *b)
2657
2658 This function is called by the implementations of the drawing API
2659 functions when they are called in a printing context. It takes a
2660 colour index as input, and returns the description of the colour as
2661 requested by the back end.
2662
2663 \c{printincolour} is \cw{TRUE} iff the implementation is printing in
2664 colour. This will alter the results returned if the colour in
2665 question was specified with a black-and-white fallback value.
2666
2667 If the colour should be rendered by hatching, \c{*hatch} is filled
2668 with the type of hatching desired. See \k{print-grey-colour} for
2669 details of the values this integer can take.
2670
2671 If the colour should be rendered as solid colour, \c{*hatch} is
2672 given a negative value, and \c{*r}, \c{*g} and \c{*b} are filled
2673 with the RGB values of the desired colour (if printing in colour),
2674 or all filled with the grey-scale value (if printing in black and
2675 white).
2676
2677 \C{midend} The API provided by the mid-end
2678
2679 This chapter documents the API provided by the mid-end to be called
2680 by the front end. You probably only need to read this if you are a
2681 front end implementor, i.e. you are porting Puzzles to a new
2682 platform. If you're only interested in writing new puzzles, you can
2683 safely skip this chapter.
2684
2685 All the persistent state in the mid-end is encapsulated within a
2686 \c{midend} structure, to facilitate having multiple mid-ends in any
2687 port which supports multiple puzzle windows open simultaneously.
2688 Each \c{midend} is intended to handle the contents of a single
2689 puzzle window.
2690
2691 \H{midend-new} \cw{midend_new()}
2692
2693 \c midend *midend_new(frontend *fe, const game *ourgame,
2694 \c                    const drawing_api *drapi, void *drhandle)
2695
2696 Allocates and returns a new mid-end structure.
2697
2698 The \c{fe} argument is stored in the mid-end. It will be used when
2699 calling back to functions such as \cw{activate_timer()}
2700 (\k{frontend-activate-timer}), and will be passed on to the back end
2701 function \cw{colours()} (\k{backend-colours}).
2702
2703 The parameters \c{drapi} and \c{drhandle} are passed to
2704 \cw{drawing_new()} (\k{drawing-new}) to construct a drawing object
2705 which will be passed to the back end function \cw{redraw()}
2706 (\k{backend-redraw}). Hence, all drawing-related function pointers
2707 defined in \c{drapi} can expect to be called with \c{drhandle} as
2708 their first argument.
2709
2710 The \c{ourgame} argument points to a container structure describing
2711 a game back end. The mid-end thus created will only be capable of
2712 handling that one game. (So even in a monolithic front end
2713 containing all the games, this imposes the constraint that any
2714 individual puzzle window is tied to a single game. Unless, of
2715 course, you feel brave enough to change the mid-end for the window
2716 without closing the window...)
2717
2718 \H{midend-free} \cw{midend_free()}
2719
2720 \c void midend_free(midend *me);
2721
2722 Frees a mid-end structure and all its associated data.
2723
2724 \H{midend-tilesize} \cw{midend_tilesize()}
2725
2726 \c int midend_tilesize(midend *me);
2727
2728 Returns the \cq{tilesize} parameter being used to display the
2729 current puzzle (\k{backend-preferred-tilesize}).
2730
2731 \H{midend-set-params} \cw{midend_set_params()}
2732
2733 \c void midend_set_params(midend *me, game_params *params);
2734
2735 Sets the current game parameters for a mid-end. Subsequent games
2736 generated by \cw{midend_new_game()} (\k{midend-new-game}) will use
2737 these parameters until further notice.
2738
2739 The usual way in which the front end will have an actual
2740 \c{game_params} structure to pass to this function is if it had
2741 previously got it from \cw{midend_fetch_preset()}
2742 (\k{midend-fetch-preset}). Thus, this function is usually called in
2743 response to the user making a selection from the presets menu.
2744
2745 \H{midend-get-params} \cw{midend_get_params()}
2746
2747 \c game_params *midend_get_params(midend *me);
2748
2749 Returns the current game parameters stored in this mid-end.
2750
2751 The returned value is dynamically allocated, and should be freed
2752 when finished with by passing it to the game's own
2753 \cw{free_params()} function (see \k{backend-free-params}).
2754
2755 \H{midend-size} \cw{midend_size()}
2756
2757 \c void midend_size(midend *me, int *x, int *y, int user_size);
2758
2759 Tells the mid-end to figure out its window size.
2760
2761 On input, \c{*x} and \c{*y} should contain the maximum or requested
2762 size for the window. (Typically this will be the size of the screen
2763 that the window has to fit on, or similar.) The mid-end will
2764 repeatedly call the back end function \cw{compute_size()}
2765 (\k{backend-compute-size}), searching for a tile size that best
2766 satisfies the requirements. On exit, \c{*x} and \c{*y} will contain
2767 the size needed for the puzzle window's drawing area. (It is of
2768 course up to the front end to adjust this for any additional window
2769 furniture such as menu bars and window borders, if necessary. The
2770 status bar is also not included in this size.)
2771
2772 Use \c{user_size} to indicate whether \c{*x} and \c{*y} are a
2773 requested size, or just a maximum size.
2774
2775 If \c{user_size} is set to \cw{TRUE}, the mid-end will treat the
2776 input size as a request, and will pick a tile size which
2777 approximates it \e{as closely as possible}, going over the game's
2778 preferred tile size if necessary to achieve this. The mid-end will
2779 also use the resulting tile size as its preferred one until further
2780 notice, on the assumption that this size was explicitly requested
2781 by the user. Use this option if you want your front end to support
2782 dynamic resizing of the puzzle window with automatic scaling of the
2783 puzzle to fit.
2784
2785 If \c{user_size} is set to \cw{FALSE}, then the game's tile size
2786 will never go over its preferred one, although it may go under in
2787 order to fit within the maximum bounds specified by \c{*x} and
2788 \c{*y}. This is the recommended approach when opening a new window
2789 at default size: the game will use its preferred size unless it has
2790 to use a smaller one to fit on the screen. If the tile size is
2791 shrunk for this reason, the change will not persist; if a smaller
2792 grid is subsequently chosen, the tile size will recover.
2793
2794 The mid-end will try as hard as it can to return a size which is
2795 less than or equal to the input size, in both dimensions. In extreme
2796 circumstances it may fail (if even the lowest possible tile size
2797 gives window dimensions greater than the input), in which case it
2798 will return a size greater than the input size. Front ends should be
2799 prepared for this to happen (i.e. don't crash or fail an assertion),
2800 but may handle it in any way they see fit: by rejecting the game
2801 parameters which caused the problem, by opening a window larger than
2802 the screen regardless of inconvenience, by introducing scroll bars
2803 on the window, by drawing on a large bitmap and scaling it into a
2804 smaller window, or by any other means you can think of. It is likely
2805 that when the tile size is that small the game will be unplayable
2806 anyway, so don't put \e{too} much effort into handling it
2807 creatively.
2808
2809 If your platform has no limit on window size (or if you're planning
2810 to use scroll bars for large puzzles), you can pass dimensions of
2811 \cw{INT_MAX} as input to this function. You should probably not do
2812 that \e{and} set the \c{user_size} flag, though!
2813
2814 The midend relies on the frontend calling \cw{midend_new_game()}
2815 (\k{midend-new-game}) before calling \cw{midend_size()}.
2816
2817 \H{midend-reset-tilesize} \cw{midend_reset_tilesize()}
2818
2819 \c void midend_reset_tilesize(midend *me);
2820
2821 This function resets the midend's preferred tile size to that of the
2822 standard puzzle.
2823
2824 As discussed in \k{midend-size}, puzzle resizes are typically
2825 'sticky', in that once the user has dragged the puzzle to a different
2826 window size, the resulting tile size will be remembered and used when
2827 the puzzle configuration changes. If you \e{don't} want that, e.g. if
2828 you want to provide a command to explicitly reset the puzzle size back
2829 to its default, then you can call this just before calling
2830 \cw{midend_size()} (which, in turn, you would probably call with
2831 \c{user_size} set to \cw{FALSE}).
2832
2833 \H{midend-new-game} \cw{midend_new_game()}
2834
2835 \c void midend_new_game(midend *me);
2836
2837 Causes the mid-end to begin a new game. Normally the game will be a
2838 new randomly generated puzzle. However, if you have previously
2839 called \cw{midend_game_id()} or \cw{midend_set_config()}, the game
2840 generated might be dictated by the results of those functions. (In
2841 particular, you \e{must} call \cw{midend_new_game()} after calling
2842 either of those functions, or else no immediate effect will be
2843 visible.)
2844
2845 You will probably need to call \cw{midend_size()} after calling this
2846 function, because if the game parameters have been changed since the
2847 last new game then the window size might need to change. (If you
2848 know the parameters \e{haven't} changed, you don't need to do this.)
2849
2850 This function will create a new \c{game_drawstate}, but does not
2851 actually perform a redraw (since you often need to call
2852 \cw{midend_size()} before the redraw can be done). So after calling
2853 this function and after calling \cw{midend_size()}, you should then
2854 call \cw{midend_redraw()}. (It is not necessary to call
2855 \cw{midend_force_redraw()}; that will discard the draw state and
2856 create a fresh one, which is unnecessary in this case since there's
2857 a fresh one already. It would work, but it's usually excessive.)
2858
2859 \H{midend-restart-game} \cw{midend_restart_game()}
2860
2861 \c void midend_restart_game(midend *me);
2862
2863 This function causes the current game to be restarted. This is done
2864 by placing a new copy of the original game state on the end of the
2865 undo list (so that an accidental restart can be undone).
2866
2867 This function automatically causes a redraw, i.e. the front end can
2868 expect its drawing API to be called from \e{within} a call to this
2869 function. Some back ends require that \cw{midend_size()}
2870 (\k{midend-size}) is called before \cw{midend_restart_game()}.
2871
2872 \H{midend-force-redraw} \cw{midend_force_redraw()}
2873
2874 \c void midend_force_redraw(midend *me);
2875
2876 Forces a complete redraw of the puzzle window, by means of
2877 discarding the current \c{game_drawstate} and creating a new one
2878 from scratch before calling the game's \cw{redraw()} function.
2879
2880 The front end can expect its drawing API to be called from within a
2881 call to this function. Some back ends require that \cw{midend_size()}
2882 (\k{midend-size}) is called before \cw{midend_force_redraw()}.
2883
2884 \H{midend-redraw} \cw{midend_redraw()}
2885
2886 \c void midend_redraw(midend *me);
2887
2888 Causes a partial redraw of the puzzle window, by means of simply
2889 calling the game's \cw{redraw()} function. (That is, the only things
2890 redrawn will be things that have changed since the last redraw.)
2891
2892 The front end can expect its drawing API to be called from within a
2893 call to this function. Some back ends require that \cw{midend_size()}
2894 (\k{midend-size}) is called before \cw{midend_redraw()}.
2895
2896 \H{midend-process-key} \cw{midend_process_key()}
2897
2898 \c int midend_process_key(midend *me, int x, int y, int button);
2899
2900 The front end calls this function to report a mouse or keyboard
2901 event. The parameters \c{x}, \c{y} and \c{button} are almost
2902 identical to the ones passed to the back end function
2903 \cw{interpret_move()} (\k{backend-interpret-move}), except that the
2904 front end is \e{not} required to provide the guarantees about mouse
2905 event ordering. The mid-end will sort out multiple simultaneous
2906 button presses and changes of button; the front end's responsibility
2907 is simply to pass on the mouse events it receives as accurately as
2908 possible.
2909
2910 (Some platforms may need to emulate absent mouse buttons by means of
2911 using a modifier key such as Shift with another mouse button. This
2912 tends to mean that if Shift is pressed or released in the middle of
2913 a mouse drag, the mid-end will suddenly stop receiving, say,
2914 \cw{LEFT_DRAG} events and start receiving \cw{RIGHT_DRAG}s, with no
2915 intervening button release or press events. This too is something
2916 which the mid-end will sort out for you; the front end has no
2917 obligation to maintain sanity in this area.)
2918
2919 The front end \e{should}, however, always eventually send some kind
2920 of button release. On some platforms this requires special effort:
2921 Windows, for example, requires a call to the system API function
2922 \cw{SetCapture()} in order to ensure that your window receives a
2923 mouse-up event even if the pointer has left the window by the time
2924 the mouse button is released. On any platform that requires this
2925 sort of thing, the front end \e{is} responsible for doing it.
2926
2927 Calling this function is very likely to result in calls back to the
2928 front end's drawing API and/or \cw{activate_timer()}
2929 (\k{frontend-activate-timer}).
2930
2931 The return value from \cw{midend_process_key()} is non-zero, unless
2932 the effect of the keypress was to request termination of the
2933 program. A front end should shut down the puzzle in response to a
2934 zero return.
2935
2936 \H{midend-colours} \cw{midend_colours()}
2937
2938 \c float *midend_colours(midend *me, int *ncolours);
2939
2940 Returns an array of the colours required by the game, in exactly the
2941 same format as that returned by the back end function \cw{colours()}
2942 (\k{backend-colours}). Front ends should call this function rather
2943 than calling the back end's version directly, since the mid-end adds
2944 standard customisation facilities. (At the time of writing, those
2945 customisation facilities are implemented hackily by means of
2946 environment variables, but it's not impossible that they may become
2947 more full and formal in future.)
2948
2949 \H{midend-timer} \cw{midend_timer()}
2950
2951 \c void midend_timer(midend *me, float tplus);
2952
2953 If the mid-end has called \cw{activate_timer()}
2954 (\k{frontend-activate-timer}) to request regular callbacks for
2955 purposes of animation or timing, this is the function the front end
2956 should call on a regular basis. The argument \c{tplus} gives the
2957 time, in seconds, since the last time either this function was
2958 called or \cw{activate_timer()} was invoked.
2959
2960 One of the major purposes of timing in the mid-end is to perform
2961 move animation. Therefore, calling this function is very likely to
2962 result in calls back to the front end's drawing API.
2963
2964 \H{midend-num-presets} \cw{midend_num_presets()}
2965
2966 \c int midend_num_presets(midend *me);
2967
2968 Returns the number of game parameter presets supplied by this game.
2969 Front ends should use this function and \cw{midend_fetch_preset()}
2970 to configure their presets menu rather than calling the back end
2971 directly, since the mid-end adds standard customisation facilities.
2972 (At the time of writing, those customisation facilities are
2973 implemented hackily by means of environment variables, but it's not
2974 impossible that they may become more full and formal in future.)
2975
2976 \H{midend-fetch-preset} \cw{midend_fetch_preset()}
2977
2978 \c void midend_fetch_preset(midend *me, int n,
2979 \c                          char **name, game_params **params);
2980
2981 Returns one of the preset game parameter structures for the game. On
2982 input \c{n} must be a non-negative integer and less than the value
2983 returned from \cw{midend_num_presets()}. On output, \c{*name} is set
2984 to an ASCII string suitable for entering in the game's presets menu,
2985 and \c{*params} is set to the corresponding \c{game_params}
2986 structure.
2987
2988 Both of the two output values are dynamically allocated, but they
2989 are owned by the mid-end structure: the front end should not ever
2990 free them directly, because they will be freed automatically during
2991 \cw{midend_free()}.
2992
2993 \H{midend-which-preset} \cw{midend_which_preset()}
2994
2995 \c int midend_which_preset(midend *me);
2996
2997 Returns the numeric index of the preset game parameter structure
2998 which matches the current game parameters, or a negative number if
2999 no preset matches. Front ends could use this to maintain a tick
3000 beside one of the items in the menu (or tick the \q{Custom} option
3001 if the return value is less than zero).
3002
3003 \H{midend-wants-statusbar} \cw{midend_wants_statusbar()}
3004
3005 \c int midend_wants_statusbar(midend *me);
3006
3007 This function returns \cw{TRUE} if the puzzle has a use for a
3008 textual status line (to display score, completion status, currently
3009 active tiles, time, or anything else).
3010
3011 Front ends should call this function rather than talking directly to
3012 the back end.
3013
3014 \H{midend-get-config} \cw{midend_get_config()}
3015
3016 \c config_item *midend_get_config(midend *me, int which,
3017 \c                                char **wintitle);
3018
3019 Returns a dialog box description for user configuration.
3020
3021 On input, \cw{which} should be set to one of three values, which
3022 select which of the various dialog box descriptions is returned:
3023
3024 \dt \cw{CFG_SETTINGS}
3025
3026 \dd Requests the GUI parameter configuration box generated by the
3027 puzzle itself. This should be used when the user selects \q{Custom}
3028 from the game types menu (or equivalent). The mid-end passes this
3029 request on to the back end function \cw{configure()}
3030 (\k{backend-configure}).
3031
3032 \dt \cw{CFG_DESC}
3033
3034 \dd Requests a box suitable for entering a descriptive game ID (and
3035 viewing the existing one). The mid-end generates this dialog box
3036 description itself. This should be used when the user selects
3037 \q{Specific} from the game menu (or equivalent).
3038
3039 \dt \cw{CFG_SEED}
3040
3041 \dd Requests a box suitable for entering a random-seed game ID (and
3042 viewing the existing one). The mid-end generates this dialog box
3043 description itself. This should be used when the user selects
3044 \q{Random Seed} from the game menu (or equivalent).
3045
3046 The returned value is an array of \cw{config_item}s, exactly as
3047 described in \k{backend-configure}. Another returned value is an
3048 ASCII string giving a suitable title for the configuration window,
3049 in \c{*wintitle}.
3050
3051 Both returned values are dynamically allocated and will need to be
3052 freed. The window title can be freed in the obvious way; the
3053 \cw{config_item} array is a slightly complex structure, so a utility
3054 function \cw{free_cfg()} is provided to free it for you. See
3055 \k{utils-free-cfg}.
3056
3057 (Of course, you will probably not want to free the \cw{config_item}
3058 array until the dialog box is dismissed, because before then you
3059 will probably need to pass it to \cw{midend_set_config}.)
3060
3061 \H{midend-set-config} \cw{midend_set_config()}
3062
3063 \c char *midend_set_config(midend *me, int which,
3064 \c                         config_item *cfg);
3065
3066 Passes the mid-end the results of a configuration dialog box.
3067 \c{which} should have the same value which it had when
3068 \cw{midend_get_config()} was called; \c{cfg} should be the array of
3069 \c{config_item}s returned from \cw{midend_get_config()}, modified to
3070 contain the results of the user's editing operations.
3071
3072 This function returns \cw{NULL} on success, or otherwise (if the
3073 configuration data was in some way invalid) an ASCII string
3074 containing an error message suitable for showing to the user.
3075
3076 If the function succeeds, it is likely that the game parameters will
3077 have been changed and it is certain that a new game will be
3078 requested. The front end should therefore call
3079 \cw{midend_new_game()}, and probably also re-think the window size
3080 using \cw{midend_size()} and eventually perform a refresh using
3081 \cw{midend_redraw()}.
3082
3083 \H{midend-game-id} \cw{midend_game_id()}
3084
3085 \c char *midend_game_id(midend *me, char *id);
3086
3087 Passes the mid-end a string game ID (of any of the valid forms
3088 \cq{params}, \cq{params:description} or \cq{params#seed}) which the
3089 mid-end will process and use for the next generated game.
3090
3091 This function returns \cw{NULL} on success, or otherwise (if the
3092 configuration data was in some way invalid) an ASCII string
3093 containing an error message (not dynamically allocated) suitable for
3094 showing to the user. In the event of an error, the mid-end's
3095 internal state will be left exactly as it was before the call.
3096
3097 If the function succeeds, it is likely that the game parameters will
3098 have been changed and it is certain that a new game will be
3099 requested. The front end should therefore call
3100 \cw{midend_new_game()}, and probably also re-think the window size
3101 using \cw{midend_size()} and eventually case a refresh using
3102 \cw{midend_redraw()}.
3103
3104 \H{midend-get-game-id} \cw{midend_get_game_id()}
3105
3106 \c char *midend_get_game_id(midend *me)
3107
3108 Returns a descriptive game ID (i.e. one in the form
3109 \cq{params:description}) describing the game currently active in the
3110 mid-end. The returned string is dynamically allocated.
3111
3112 \H{midend-get-random-seed} \cw{midend_get_random_seed()}
3113
3114 \c char *midend_get_random_seed(midend *me)
3115
3116 Returns a random game ID (i.e. one in the form \cq{params#seedstring})
3117 describing the game currently active in the mid-end, if there is one.
3118 If the game was created by entering a description, no random seed will
3119 currently exist and this function will return \cw{NULL}.
3120
3121 The returned string, if it is non-\cw{NULL}, is dynamically allocated.
3122
3123 \H{midend-can-format-as-text-now} \cw{midend_can_format_as_text_now()}
3124
3125 \c int midend_can_format_as_text_now(midend *me);
3126
3127 Returns \cw{TRUE} if the game code is capable of formatting puzzles
3128 of the currently selected game type as ASCII.
3129
3130 If this returns \cw{FALSE}, then \cw{midend_text_format()}
3131 (\k{midend-text-format}) will return \cw{NULL}.
3132
3133 \H{midend-text-format} \cw{midend_text_format()}
3134
3135 \c char *midend_text_format(midend *me);
3136
3137 Formats the current game's current state as ASCII text suitable for
3138 copying to the clipboard. The returned string is dynamically
3139 allocated.
3140
3141 If the game's \c{can_format_as_text_ever} flag is \cw{FALSE}, or if
3142 its \cw{can_format_as_text_now()} function returns \cw{FALSE}, then
3143 this function will return \cw{NULL}.
3144
3145 If the returned string contains multiple lines (which is likely), it
3146 will use the normal C line ending convention (\cw{\\n} only). On
3147 platforms which use a different line ending convention for data in
3148 the clipboard, it is the front end's responsibility to perform the
3149 conversion.
3150
3151 \H{midend-solve} \cw{midend_solve()}
3152
3153 \c char *midend_solve(midend *me);
3154
3155 Requests the mid-end to perform a Solve operation.
3156
3157 On success, \cw{NULL} is returned. On failure, an error message (not
3158 dynamically allocated) is returned, suitable for showing to the
3159 user.
3160
3161 The front end can expect its drawing API and/or
3162 \cw{activate_timer()} to be called from within a call to this
3163 function.  Some back ends require that \cw{midend_size()}
3164 (\k{midend-size}) is called before \cw{midend_solve()}.
3165
3166 \H{midend-status} \cw{midend_status()}
3167
3168 \c int midend_status(midend *me);
3169
3170 This function returns +1 if the midend is currently displaying a game
3171 in a solved state, -1 if the game is in a permanently lost state, or 0
3172 otherwise. This function just calls the back end's \cw{status()}
3173 function. Front ends may wish to use this as a cue to proactively
3174 offer the option of starting a new game.
3175
3176 (See \k{backend-status} for more detail about the back end's
3177 \cw{status()} function and discussion of what should count as which
3178 status code.)
3179
3180 \H{midend-can-undo} \cw{midend_can_undo()}
3181
3182 \c int midend_can_undo(midend *me);
3183
3184 Returns \cw{TRUE} if the midend is currently in a state where the undo
3185 operation is meaningful (i.e. at least one position exists on the undo
3186 chain before the present one). Front ends may wish to use this to
3187 visually activate and deactivate an undo button.
3188
3189 \H{midend-can-redo} \cw{midend_can_redo()}
3190
3191 \c int midend_can_redo(midend *me);
3192
3193 Returns \cw{TRUE} if the midend is currently in a state where the redo
3194 operation is meaningful (i.e. at least one position exists on the redo
3195 chain after the present one). Front ends may wish to use this to
3196 visually activate and deactivate a redo button.
3197
3198 \H{midend-serialise} \cw{midend_serialise()}
3199
3200 \c void midend_serialise(midend *me,
3201 \c                       void (*write)(void *ctx, void *buf, int len),
3202 \c                       void *wctx);
3203
3204 Calling this function causes the mid-end to convert its entire
3205 internal state into a long ASCII text string, and to pass that
3206 string (piece by piece) to the supplied \c{write} function.
3207
3208 Desktop implementations can use this function to save a game in any
3209 state (including half-finished) to a disk file, by supplying a
3210 \c{write} function which is a wrapper on \cw{fwrite()} (or local
3211 equivalent). Other implementations may find other uses for it, such
3212 as compressing the large and sprawling mid-end state into a
3213 manageable amount of memory when a palmtop application is suspended
3214 so that another one can run; in this case \cw{write} might want to
3215 write to a memory buffer rather than a file. There may be other uses
3216 for it as well.
3217
3218 This function will call back to the supplied \c{write} function a
3219 number of times, with the first parameter (\c{ctx}) equal to
3220 \c{wctx}, and the other two parameters pointing at a piece of the
3221 output string.
3222
3223 \H{midend-deserialise} \cw{midend_deserialise()}
3224
3225 \c char *midend_deserialise(midend *me,
3226 \c                          int (*read)(void *ctx, void *buf, int len),
3227 \c                          void *rctx);
3228
3229 This function is the counterpart to \cw{midend_serialise()}. It
3230 calls the supplied \cw{read} function repeatedly to read a quantity
3231 of data, and attempts to interpret that data as a serialised mid-end
3232 as output by \cw{midend_serialise()}.
3233
3234 The \cw{read} function is called with the first parameter (\c{ctx})
3235 equal to \c{rctx}, and should attempt to read \c{len} bytes of data
3236 into the buffer pointed to by \c{buf}. It should return \cw{FALSE}
3237 on failure or \cw{TRUE} on success. It should not report success
3238 unless it has filled the entire buffer; on platforms which might be
3239 reading from a pipe or other blocking data source, \c{read} is
3240 responsible for looping until the whole buffer has been filled.
3241
3242 If the de-serialisation operation is successful, the mid-end's
3243 internal data structures will be replaced by the results of the
3244 load, and \cw{NULL} will be returned. Otherwise, the mid-end's state
3245 will be completely unchanged and an error message (typically some
3246 variation on \q{save file is corrupt}) will be returned. As usual,
3247 the error message string is not dynamically allocated.
3248
3249 If this function succeeds, it is likely that the game parameters
3250 will have been changed. The front end should therefore probably
3251 re-think the window size using \cw{midend_size()}, and probably
3252 cause a refresh using \cw{midend_redraw()}.
3253
3254 Because each mid-end is tied to a specific game back end, this
3255 function will fail if you attempt to read in a save file generated by
3256 a different game from the one configured in this mid-end, even if your
3257 application is a monolithic one containing all the puzzles. See
3258 \k{identify-game} for a helper function which will allow you to
3259 identify a save file before you instantiate your mid-end in the first
3260 place.
3261
3262 \H{identify-game} \cw{identify_game()}
3263
3264 \c char *identify_game(char **name,
3265 \c                     int (*read)(void *ctx, void *buf, int len),
3266 \c                     void *rctx);
3267
3268 This function examines a serialised midend stream, of the same kind
3269 used by \cw{midend_serialise()} and \cw{midend_deserialise()}, and
3270 returns the \cw{name} field of the game back end from which it was
3271 saved.
3272
3273 You might want this if your front end was a monolithic one containing
3274 all the puzzles, and you wanted to be able to load an arbitrary save
3275 file and automatically switch to the right game. Probably your next
3276 step would be to iterate through \cw{gamelist} (\k{frontend-backend})
3277 looking for a game structure whose \cw{name} field matched the
3278 returned string, and give an error if you didn't find one.
3279
3280 On success, the return value of this function is \cw{NULL}, and the
3281 game name string is written into \cw{*name}. The caller should free
3282 that string after using it.
3283
3284 On failure, \cw{*name} is \cw{NULL}, and the return value is an error
3285 message (which does not need freeing at all).
3286
3287 (This isn't strictly speaking a midend function, since it doesn't
3288 accept or return a pointer to a midend. You'd probably call it just
3289 \e{before} deciding what kind of midend you wanted to instantiate.)
3290
3291 \H{midend-request-id-changes} \cw{midend_request_id_changes()}
3292
3293 \c void midend_request_id_changes(midend *me,
3294 \c                                void (*notify)(void *), void *ctx);
3295
3296 This function is called by the front end to request notification by
3297 the mid-end when the current game IDs (either descriptive or
3298 random-seed) change. This can occur as a result of keypresses ('n' for
3299 New Game, for example) or when a puzzle supersedes its game
3300 description (see \k{backend-supersede}). After this function is
3301 called, any change of the game ids will cause the mid-end to call
3302 \cw{notify(ctx)} after the change.
3303
3304 This is for use by puzzles which want to present the game description
3305 to the user constantly (e.g. as an HTML hyperlink) instead of only
3306 showing it when the user explicitly requests it.
3307
3308 This is a function I anticipate few front ends needing to implement,
3309 so I make it a callback rather than a static function in order to
3310 relieve most front ends of the need to provide an empty
3311 implementation.
3312
3313 \H{frontend-backend} Direct reference to the back end structure by
3314 the front end
3315
3316 Although \e{most} things the front end needs done should be done by
3317 calling the mid-end, there are a few situations in which the front
3318 end needs to refer directly to the game back end structure.
3319
3320 The most obvious of these is
3321
3322 \b passing the game back end as a parameter to \cw{midend_new()}.
3323
3324 There are a few other back end features which are not wrapped by the
3325 mid-end because there didn't seem much point in doing so:
3326
3327 \b fetching the \c{name} field to use in window titles and similar
3328
3329 \b reading the \c{can_configure}, \c{can_solve} and
3330 \c{can_format_as_text_ever} fields to decide whether to add those
3331 items to the menu bar or equivalent
3332
3333 \b reading the \c{winhelp_topic} field (Windows only)
3334
3335 \b the GTK front end provides a \cq{--generate} command-line option
3336 which directly calls the back end to do most of its work. This is
3337 not really part of the main front end code, though, and I'm not sure
3338 it counts.
3339
3340 In order to find the game back end structure, the front end does one
3341 of two things:
3342
3343 \b If the particular front end is compiling a separate binary per
3344 game, then the back end structure is a global variable with the
3345 standard name \cq{thegame}:
3346
3347 \lcont{
3348
3349 \c extern const game thegame;
3350
3351 }
3352
3353 \b If the front end is compiled as a monolithic application
3354 containing all the puzzles together (in which case the preprocessor
3355 symbol \cw{COMBINED} must be defined when compiling most of the code
3356 base), then there will be two global variables defined:
3357
3358 \lcont{
3359
3360 \c extern const game *gamelist[];
3361 \c extern const int gamecount;
3362
3363 \c{gamelist} will be an array of \c{gamecount} game structures,
3364 declared in the automatically constructed source module \c{list.c}.
3365 The application should search that array for the game it wants,
3366 probably by reaching into each game structure and looking at its
3367 \c{name} field.
3368
3369 }
3370
3371 \H{frontend-api} Mid-end to front-end calls
3372
3373 This section describes the small number of functions which a front
3374 end must provide to be called by the mid-end or other standard
3375 utility modules.
3376
3377 \H{frontend-get-random-seed} \cw{get_random_seed()}
3378
3379 \c void get_random_seed(void **randseed, int *randseedsize);
3380
3381 This function is called by a new mid-end, and also occasionally by
3382 game back ends. Its job is to return a piece of data suitable for
3383 using as a seed for initialisation of a new \c{random_state}.
3384
3385 On exit, \c{*randseed} should be set to point at a newly allocated
3386 piece of memory containing some seed data, and \c{*randseedsize}
3387 should be set to the length of that data.
3388
3389 A simple and entirely adequate implementation is to return a piece
3390 of data containing the current system time at the highest
3391 conveniently available resolution.
3392
3393 \H{frontend-activate-timer} \cw{activate_timer()}
3394
3395 \c void activate_timer(frontend *fe);
3396
3397 This is called by the mid-end to request that the front end begin
3398 calling it back at regular intervals.
3399
3400 The timeout interval is left up to the front end; the finer it is,
3401 the smoother move animations will be, but the more CPU time will be
3402 used. Current front ends use values around 20ms (i.e. 50Hz).
3403
3404 After this function is called, the mid-end will expect to receive
3405 calls to \cw{midend_timer()} on a regular basis.
3406
3407 \H{frontend-deactivate-timer} \cw{deactivate_timer()}
3408
3409 \c void deactivate_timer(frontend *fe);
3410
3411 This is called by the mid-end to request that the front end stop
3412 calling \cw{midend_timer()}.
3413
3414 \H{frontend-fatal} \cw{fatal()}
3415
3416 \c void fatal(char *fmt, ...);
3417
3418 This is called by some utility functions if they encounter a
3419 genuinely fatal error such as running out of memory. It is a
3420 variadic function in the style of \cw{printf()}, and is expected to
3421 show the formatted error message to the user any way it can and then
3422 terminate the application. It must not return.
3423
3424 \H{frontend-default-colour} \cw{frontend_default_colour()}
3425
3426 \c void frontend_default_colour(frontend *fe, float *output);
3427
3428 This function expects to be passed a pointer to an array of three
3429 \cw{float}s. It returns the platform's local preferred background
3430 colour in those three floats, as red, green and blue values (in that
3431 order) ranging from \cw{0.0} to \cw{1.0}.
3432
3433 This function should only ever be called by the back end function
3434 \cw{colours()} (\k{backend-colours}). (Thus, it isn't a
3435 \e{midend}-to-frontend function as such, but there didn't seem to be
3436 anywhere else particularly good to put it. Sorry.)
3437
3438 \C{utils} Utility APIs
3439
3440 This chapter documents a variety of utility APIs provided for the
3441 general use of the rest of the Puzzles code.
3442
3443 \H{utils-random} Random number generation
3444
3445 Platforms' local random number generators vary widely in quality and
3446 seed size. Puzzles therefore supplies its own high-quality random
3447 number generator, with the additional advantage of giving the same
3448 results if fed the same seed data on different platforms. This
3449 allows game random seeds to be exchanged between different ports of
3450 Puzzles and still generate the same games.
3451
3452 Unlike the ANSI C \cw{rand()} function, the Puzzles random number
3453 generator has an \e{explicit} state object called a
3454 \c{random_state}. One of these is managed by each mid-end, for
3455 example, and passed to the back end to generate a game with.
3456
3457 \S{utils-random-init} \cw{random_new()}
3458
3459 \c random_state *random_new(char *seed, int len);
3460
3461 Allocates, initialises and returns a new \c{random_state}. The input
3462 data is used as the seed for the random number stream (i.e. using
3463 the same seed at a later time will generate the same stream).
3464
3465 The seed data can be any data at all; there is no requirement to use
3466 printable ASCII, or NUL-terminated strings, or anything like that.
3467
3468 \S{utils-random-copy} \cw{random_copy()}
3469
3470 \c random_state *random_copy(random_state *tocopy);
3471
3472 Allocates a new \c{random_state}, copies the contents of another
3473 \c{random_state} into it, and returns the new state.  If exactly the
3474 same sequence of functions is subseqently called on both the copy and
3475 the original, the results will be identical.  This may be useful for
3476 speculatively performing some operation using a given random state,
3477 and later replaying that operation precisely.
3478
3479 \S{utils-random-free} \cw{random_free()}
3480
3481 \c void random_free(random_state *state);
3482
3483 Frees a \c{random_state}.
3484
3485 \S{utils-random-bits} \cw{random_bits()}
3486
3487 \c unsigned long random_bits(random_state *state, int bits);
3488
3489 Returns a random number from 0 to \cw{2^bits-1} inclusive. \c{bits}
3490 should be between 1 and 32 inclusive.
3491
3492 \S{utils-random-upto} \cw{random_upto()}
3493
3494 \c unsigned long random_upto(random_state *state, unsigned long limit);
3495
3496 Returns a random number from 0 to \cw{limit-1} inclusive.
3497
3498 \S{utils-random-state-encode} \cw{random_state_encode()}
3499
3500 \c char *random_state_encode(random_state *state);
3501
3502 Encodes the entire contents of a \c{random_state} in printable
3503 ASCII. Returns a dynamically allocated string containing that
3504 encoding. This can subsequently be passed to
3505 \cw{random_state_decode()} to reconstruct the same \c{random_state}.
3506
3507 \S{utils-random-state-decode} \cw{random_state_decode()}
3508
3509 \c random_state *random_state_decode(char *input);
3510
3511 Decodes a string generated by \cw{random_state_encode()} and
3512 reconstructs an equivalent \c{random_state} to the one encoded, i.e.
3513 it should produce the same stream of random numbers.
3514
3515 This function has no error reporting; if you pass it an invalid
3516 string it will simply generate an arbitrary random state, which may
3517 turn out to be noticeably non-random.
3518
3519 \S{utils-shuffle} \cw{shuffle()}
3520
3521 \c void shuffle(void *array, int nelts, int eltsize, random_state *rs);
3522
3523 Shuffles an array into a random order. The interface is much like
3524 ANSI C \cw{qsort()}, except that there's no need for a compare
3525 function.
3526
3527 \c{array} is a pointer to the first element of the array. \c{nelts}
3528 is the number of elements in the array; \c{eltsize} is the size of a
3529 single element (typically measured using \c{sizeof}). \c{rs} is a
3530 \c{random_state} used to generate all the random numbers for the
3531 shuffling process.
3532
3533 \H{utils-alloc} Memory allocation
3534
3535 Puzzles has some central wrappers on the standard memory allocation
3536 functions, which provide compile-time type checking, and run-time
3537 error checking by means of quitting the application if it runs out
3538 of memory. This doesn't provide the best possible recovery from
3539 memory shortage, but on the other hand it greatly simplifies the
3540 rest of the code, because nothing else anywhere needs to worry about
3541 \cw{NULL} returns from allocation.
3542
3543 \S{utils-snew} \cw{snew()}
3544
3545 \c var = snew(type);
3546 \e iii        iiii
3547
3548 This macro takes a single argument which is a \e{type name}. It
3549 allocates space for one object of that type. If allocation fails it
3550 will call \cw{fatal()} and not return; so if it does return, you can
3551 be confident that its return value is non-\cw{NULL}.
3552
3553 The return value is cast to the specified type, so that the compiler
3554 will type-check it against the variable you assign it into. Thus,
3555 this ensures you don't accidentally allocate memory the size of the
3556 wrong type and assign it into a variable of the right one (or vice
3557 versa!).
3558
3559 \S{utils-snewn} \cw{snewn()}
3560
3561 \c var = snewn(n, type);
3562 \e iii         i  iiii
3563
3564 This macro is the array form of \cw{snew()}. It takes two arguments;
3565 the first is a number, and the second is a type name. It allocates
3566 space for that many objects of that type, and returns a type-checked
3567 non-\cw{NULL} pointer just as \cw{snew()} does.
3568
3569 \S{utils-sresize} \cw{sresize()}
3570
3571 \c var = sresize(var, n, type);
3572 \e iii           iii  i  iiii
3573
3574 This macro is a type-checked form of \cw{realloc()}. It takes three
3575 arguments: an input memory block, a new size in elements, and a
3576 type. It re-sizes the input memory block to a size sufficient to
3577 contain that many elements of that type. It returns a type-checked
3578 non-\cw{NULL} pointer, like \cw{snew()} and \cw{snewn()}.
3579
3580 The input memory block can be \cw{NULL}, in which case this function
3581 will behave exactly like \cw{snewn()}. (In principle any
3582 ANSI-compliant \cw{realloc()} implementation ought to cope with
3583 this, but I've never quite trusted it to work everywhere.)
3584
3585 \S{utils-sfree} \cw{sfree()}
3586
3587 \c void sfree(void *p);
3588
3589 This function is pretty much equivalent to \cw{free()}. It is
3590 provided with a dynamically allocated block, and frees it.
3591
3592 The input memory block can be \cw{NULL}, in which case this function
3593 will do nothing. (In principle any ANSI-compliant \cw{free()}
3594 implementation ought to cope with this, but I've never quite trusted
3595 it to work everywhere.)
3596
3597 \S{utils-dupstr} \cw{dupstr()}
3598
3599 \c char *dupstr(const char *s);
3600
3601 This function dynamically allocates a duplicate of a C string. Like
3602 the \cw{snew()} functions, it guarantees to return non-\cw{NULL} or
3603 not return at all.
3604
3605 (Many platforms provide the function \cw{strdup()}. As well as
3606 guaranteeing never to return \cw{NULL}, my version has the advantage
3607 of being defined \e{everywhere}, rather than inconveniently not
3608 quite everywhere.)
3609
3610 \S{utils-free-cfg} \cw{free_cfg()}
3611
3612 \c void free_cfg(config_item *cfg);
3613
3614 This function correctly frees an array of \c{config_item}s,
3615 including walking the array until it gets to the end and freeing
3616 precisely those \c{sval} fields which are expected to be dynamically
3617 allocated.
3618
3619 (See \k{backend-configure} for details of the \c{config_item}
3620 structure.)
3621
3622 \H{utils-tree234} Sorted and counted tree functions
3623
3624 Many games require complex algorithms for generating random puzzles,
3625 and some require moderately complex algorithms even during play. A
3626 common requirement during these algorithms is for a means of
3627 maintaining sorted or unsorted lists of items, such that items can
3628 be removed and added conveniently.
3629
3630 For general use, Puzzles provides the following set of functions
3631 which maintain 2-3-4 trees in memory. (A 2-3-4 tree is a balanced
3632 tree structure, with the property that all lookups, insertions,
3633 deletions, splits and joins can be done in \cw{O(log N)} time.)
3634
3635 All these functions expect you to be storing a tree of \c{void *}
3636 pointers. You can put anything you like in those pointers.
3637
3638 By the use of per-node element counts, these tree structures have
3639 the slightly unusual ability to look elements up by their numeric
3640 index within the list represented by the tree. This means that they
3641 can be used to store an unsorted list (in which case, every time you
3642 insert a new element, you must explicitly specify the position where
3643 you wish to insert it). They can also do numeric lookups in a sorted
3644 tree, which might be useful for (for example) tracking the median of
3645 a changing data set.
3646
3647 As well as storing sorted lists, these functions can be used for
3648 storing \q{maps} (associative arrays), by defining each element of a
3649 tree to be a (key, value) pair.
3650
3651 \S{utils-newtree234} \cw{newtree234()}
3652
3653 \c tree234 *newtree234(cmpfn234 cmp);
3654
3655 Creates a new empty tree, and returns a pointer to it.
3656
3657 The parameter \c{cmp} determines the sorting criterion on the tree.
3658 Its prototype is
3659
3660 \c typedef int (*cmpfn234)(void *, void *);
3661
3662 If you want a sorted tree, you should provide a function matching
3663 this prototype, which returns like \cw{strcmp()} does (negative if
3664 the first argument is smaller than the second, positive if it is
3665 bigger, zero if they compare equal). In this case, the function
3666 \cw{addpos234()} will not be usable on your tree (because all
3667 insertions must respect the sorting order).
3668
3669 If you want an unsorted tree, pass \cw{NULL}. In this case you will
3670 not be able to use either \cw{add234()} or \cw{del234()}, or any
3671 other function such as \cw{find234()} which depends on a sorting
3672 order. Your tree will become something more like an array, except
3673 that it will efficiently support insertion and deletion as well as
3674 lookups by numeric index.
3675
3676 \S{utils-freetree234} \cw{freetree234()}
3677
3678 \c void freetree234(tree234 *t);
3679
3680 Frees a tree. This function will not free the \e{elements} of the
3681 tree (because they might not be dynamically allocated, or you might
3682 be storing the same set of elements in more than one tree); it will
3683 just free the tree structure itself. If you want to free all the
3684 elements of a tree, you should empty it before passing it to
3685 \cw{freetree234()}, by means of code along the lines of
3686
3687 \c while ((element = delpos234(tree, 0)) != NULL)
3688 \c     sfree(element); /* or some more complicated free function */
3689 \e                     iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3690
3691 \S{utils-add234} \cw{add234()}
3692
3693 \c void *add234(tree234 *t, void *e);
3694
3695 Inserts a new element \c{e} into the tree \c{t}. This function
3696 expects the tree to be sorted; the new element is inserted according
3697 to the sort order.
3698
3699 If an element comparing equal to \c{e} is already in the tree, then
3700 the insertion will fail, and the return value will be the existing
3701 element. Otherwise, the insertion succeeds, and \c{e} is returned.
3702
3703 \S{utils-addpos234} \cw{addpos234()}
3704
3705 \c void *addpos234(tree234 *t, void *e, int index);
3706
3707 Inserts a new element into an unsorted tree. Since there is no
3708 sorting order to dictate where the new element goes, you must
3709 specify where you want it to go. Setting \c{index} to zero puts the
3710 new element right at the start of the list; setting \c{index} to the
3711 current number of elements in the tree puts the new element at the
3712 end.
3713
3714 Return value is \c{e}, in line with \cw{add234()} (although this
3715 function cannot fail except by running out of memory, in which case
3716 it will bomb out and die rather than returning an error indication).
3717
3718 \S{utils-index234} \cw{index234()}
3719
3720 \c void *index234(tree234 *t, int index);
3721
3722 Returns a pointer to the \c{index}th element of the tree, or
3723 \cw{NULL} if \c{index} is out of range. Elements of the tree are
3724 numbered from zero.
3725
3726 \S{utils-find234} \cw{find234()}
3727
3728 \c void *find234(tree234 *t, void *e, cmpfn234 cmp);
3729
3730 Searches for an element comparing equal to \c{e} in a sorted tree.
3731
3732 If \c{cmp} is \cw{NULL}, the tree's ordinary comparison function
3733 will be used to perform the search. However, sometimes you don't
3734 want that; suppose, for example, each of your elements is a big
3735 structure containing a \c{char *} name field, and you want to find
3736 the element with a given name. You \e{could} achieve this by
3737 constructing a fake element structure, setting its name field
3738 appropriately, and passing it to \cw{find234()}, but you might find
3739 it more convenient to pass \e{just} a name string to \cw{find234()},
3740 supplying an alternative comparison function which expects one of
3741 its arguments to be a bare name and the other to be a large
3742 structure containing a name field.
3743
3744 Therefore, if \c{cmp} is not \cw{NULL}, then it will be used to
3745 compare \c{e} to elements of the tree. The first argument passed to
3746 \c{cmp} will always be \c{e}; the second will be an element of the
3747 tree.
3748
3749 (See \k{utils-newtree234} for the definition of the \c{cmpfn234}
3750 function pointer type.)
3751
3752 The returned value is the element found, or \cw{NULL} if the search
3753 is unsuccessful.
3754
3755 \S{utils-findrel234} \cw{findrel234()}
3756
3757 \c void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation);
3758
3759 This function is like \cw{find234()}, but has the additional ability
3760 to do a \e{relative} search. The additional parameter \c{relation}
3761 can be one of the following values:
3762
3763 \dt \cw{REL234_EQ}
3764
3765 \dd Find only an element that compares equal to \c{e}. This is
3766 exactly the behaviour of \cw{find234()}.
3767
3768 \dt \cw{REL234_LT}
3769
3770 \dd Find the greatest element that compares strictly less than
3771 \c{e}. \c{e} may be \cw{NULL}, in which case it finds the greatest
3772 element in the whole tree (which could also be done by
3773 \cw{index234(t, count234(t)-1)}).
3774
3775 \dt \cw{REL234_LE}
3776
3777 \dd Find the greatest element that compares less than or equal to
3778 \c{e}. (That is, find an element that compares equal to \c{e} if
3779 possible, but failing that settle for something just less than it.)
3780
3781 \dt \cw{REL234_GT}
3782
3783 \dd Find the smallest element that compares strictly greater than
3784 \c{e}. \c{e} may be \cw{NULL}, in which case it finds the smallest
3785 element in the whole tree (which could also be done by
3786 \cw{index234(t, 0)}).
3787
3788 \dt \cw{REL234_GE}
3789
3790 \dd Find the smallest element that compares greater than or equal to
3791 \c{e}. (That is, find an element that compares equal to \c{e} if
3792 possible, but failing that settle for something just bigger than
3793 it.)
3794
3795 Return value, as before, is the element found or \cw{NULL} if no
3796 element satisfied the search criterion.
3797
3798 \S{utils-findpos234} \cw{findpos234()}
3799
3800 \c void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index);
3801
3802 This function is like \cw{find234()}, but has the additional feature
3803 of returning the index of the element found in the tree; that index
3804 is written to \c{*index} in the event of a successful search (a
3805 non-\cw{NULL} return value).
3806
3807 \c{index} may be \cw{NULL}, in which case this function behaves
3808 exactly like \cw{find234()}.
3809
3810 \S{utils-findrelpos234} \cw{findrelpos234()}
3811
3812 \c void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp, int relation,
3813 \c                     int *index);
3814
3815 This function combines all the features of \cw{findrel234()} and
3816 \cw{findpos234()}.
3817
3818 \S{utils-del234} \cw{del234()}
3819
3820 \c void *del234(tree234 *t, void *e);
3821
3822 Finds an element comparing equal to \c{e} in the tree, deletes it,
3823 and returns it.
3824
3825 The input tree must be sorted.
3826
3827 The element found might be \c{e} itself, or might merely compare
3828 equal to it.
3829
3830 Return value is \cw{NULL} if no such element is found.
3831
3832 \S{utils-delpos234} \cw{delpos234()}
3833
3834 \c void *delpos234(tree234 *t, int index);
3835
3836 Deletes the element at position \c{index} in the tree, and returns
3837 it.
3838
3839 Return value is \cw{NULL} if the index is out of range.
3840
3841 \S{utils-count234} \cw{count234()}
3842
3843 \c int count234(tree234 *t);
3844
3845 Returns the number of elements currently in the tree.
3846
3847 \S{utils-splitpos234} \cw{splitpos234()}
3848
3849 \c tree234 *splitpos234(tree234 *t, int index, int before);
3850
3851 Splits the input tree into two pieces at a given position, and
3852 creates a new tree containing all the elements on one side of that
3853 position.
3854
3855 If \c{before} is \cw{TRUE}, then all the items at or after position
3856 \c{index} are left in the input tree, and the items before that
3857 point are returned in the new tree. Otherwise, the reverse happens:
3858 all the items at or after \c{index} are moved into the new tree, and
3859 those before that point are left in the old one.
3860
3861 If \c{index} is equal to 0 or to the number of elements in the input
3862 tree, then one of the two trees will end up empty (and this is not
3863 an error condition). If \c{index} is further out of range in either
3864 direction, the operation will fail completely and return \cw{NULL}.
3865
3866 This operation completes in \cw{O(log N)} time, no matter how large
3867 the tree or how balanced or unbalanced the split.
3868
3869 \S{utils-split234} \cw{split234()}
3870
3871 \c tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel);
3872
3873 Splits a sorted tree according to its sort order.
3874
3875 \c{rel} can be any of the relation constants described in
3876 \k{utils-findrel234}, \e{except} for \cw{REL234_EQ}. All the
3877 elements having that relation to \c{e} will be transferred into the
3878 new tree; the rest will be left in the old one.
3879
3880 The parameter \c{cmp} has the same semantics as it does in
3881 \cw{find234()}: if it is not \cw{NULL}, it will be used in place of
3882 the tree's own comparison function when comparing elements to \c{e},
3883 in such a way that \c{e} itself is always the first of its two
3884 operands.
3885
3886 Again, this operation completes in \cw{O(log N)} time, no matter how
3887 large the tree or how balanced or unbalanced the split.
3888
3889 \S{utils-join234} \cw{join234()}
3890
3891 \c tree234 *join234(tree234 *t1, tree234 *t2);
3892
3893 Joins two trees together by concatenating the lists they represent.
3894 All the elements of \c{t2} are moved into \c{t1}, in such a way that
3895 they appear \e{after} the elements of \c{t1}. The tree \c{t2} is
3896 freed; the return value is \c{t1}.
3897
3898 If you apply this function to a sorted tree and it violates the sort
3899 order (i.e. the smallest element in \c{t2} is smaller than or equal
3900 to the largest element in \c{t1}), the operation will fail and
3901 return \cw{NULL}.
3902
3903 This operation completes in \cw{O(log N)} time, no matter how large
3904 the trees being joined together.
3905
3906 \S{utils-join234r} \cw{join234r()}
3907
3908 \c tree234 *join234r(tree234 *t1, tree234 *t2);
3909
3910 Joins two trees together in exactly the same way as \cw{join234()},
3911 but this time the combined tree is returned in \c{t2}, and \c{t1} is
3912 destroyed. The elements in \c{t1} still appear before those in
3913 \c{t2}.
3914
3915 Again, this operation completes in \cw{O(log N)} time, no matter how
3916 large the trees being joined together.
3917
3918 \S{utils-copytree234} \cw{copytree234()}
3919
3920 \c tree234 *copytree234(tree234 *t, copyfn234 copyfn,
3921 \c                      void *copyfnstate);
3922
3923 Makes a copy of an entire tree.
3924
3925 If \c{copyfn} is \cw{NULL}, the tree will be copied but the elements
3926 will not be; i.e. the new tree will contain pointers to exactly the
3927 same physical elements as the old one.
3928
3929 If you want to copy each actual element during the operation, you
3930 can instead pass a function in \c{copyfn} which makes a copy of each
3931 element. That function has the prototype
3932
3933 \c typedef void *(*copyfn234)(void *state, void *element);
3934
3935 and every time it is called, the \c{state} parameter will be set to
3936 the value you passed in as \c{copyfnstate}.
3937
3938 \H{utils-misc} Miscellaneous utility functions and macros
3939
3940 This section contains all the utility functions which didn't
3941 sensibly fit anywhere else.
3942
3943 \S{utils-truefalse} \cw{TRUE} and \cw{FALSE}
3944
3945 The main Puzzles header file defines the macros \cw{TRUE} and
3946 \cw{FALSE}, which are used throughout the code in place of 1 and 0
3947 (respectively) to indicate that the values are in a boolean context.
3948 For code base consistency, I'd prefer it if submissions of new code
3949 followed this convention as well.
3950
3951 \S{utils-maxmin} \cw{max()} and \cw{min()}
3952
3953 The main Puzzles header file defines the pretty standard macros
3954 \cw{max()} and \cw{min()}, each of which is given two arguments and
3955 returns the one which compares greater or less respectively.
3956
3957 These macros may evaluate their arguments multiple times. Avoid side
3958 effects.
3959
3960 \S{utils-pi} \cw{PI}
3961
3962 The main Puzzles header file defines a macro \cw{PI} which expands
3963 to a floating-point constant representing pi.
3964
3965 (I've never understood why ANSI's \cw{<math.h>} doesn't define this.
3966 It'd be so useful!)
3967
3968 \S{utils-obfuscate-bitmap} \cw{obfuscate_bitmap()}
3969
3970 \c void obfuscate_bitmap(unsigned char *bmp, int bits, int decode);
3971
3972 This function obscures the contents of a piece of data, by
3973 cryptographic methods. It is useful for games of hidden information
3974 (such as Mines, Guess or Black Box), in which the game ID
3975 theoretically reveals all the information the player is supposed to
3976 be trying to guess. So in order that players should be able to send
3977 game IDs to one another without accidentally spoiling the resulting
3978 game by looking at them, these games obfuscate their game IDs using
3979 this function.
3980
3981 Although the obfuscation function is cryptographic, it cannot
3982 properly be called encryption because it has no key. Therefore,
3983 anybody motivated enough can re-implement it, or hack it out of the
3984 Puzzles source, and strip the obfuscation off one of these game IDs
3985 to see what lies beneath. (Indeed, they could usually do it much
3986 more easily than that, by entering the game ID into their own copy
3987 of the puzzle and hitting Solve.) The aim is not to protect against
3988 a determined attacker; the aim is simply to protect people who
3989 wanted to play the game honestly from \e{accidentally} spoiling
3990 their own fun.
3991
3992 The input argument \c{bmp} points at a piece of memory to be
3993 obfuscated. \c{bits} gives the length of the data. Note that that
3994 length is in \e{bits} rather than bytes: if you ask for obfuscation
3995 of a partial number of bytes, then you will get it. Bytes are
3996 considered to be used from the top down: thus, for example, setting
3997 \c{bits} to 10 will cover the whole of \cw{bmp[0]} and the \e{top
3998 two} bits of \cw{bmp[1]}. The remainder of a partially used byte is
3999 undefined (i.e. it may be corrupted by the function).
4000
4001 The parameter \c{decode} is \cw{FALSE} for an encoding operation,
4002 and \cw{TRUE} for a decoding operation. Each is the inverse of the
4003 other. (There's no particular reason you shouldn't obfuscate by
4004 decoding and restore cleartext by encoding, if you really wanted to;
4005 it should still work.)
4006
4007 The input bitmap is processed in place.
4008
4009 \S{utils-bin2hex} \cw{bin2hex()}
4010
4011 \c char *bin2hex(const unsigned char *in, int inlen);
4012
4013 This function takes an input byte array and converts it into an
4014 ASCII string encoding those bytes in (lower-case) hex. It returns a
4015 dynamically allocated string containing that encoding.
4016
4017 This function is useful for encoding the result of
4018 \cw{obfuscate_bitmap()} in printable ASCII for use in game IDs.
4019
4020 \S{utils-hex2bin} \cw{hex2bin()}
4021
4022 \c unsigned char *hex2bin(const char *in, int outlen);
4023
4024 This function takes an ASCII string containing hex digits, and
4025 converts it back into a byte array of length \c{outlen}. If there
4026 aren't enough hex digits in the string, the contents of the
4027 resulting array will be undefined.
4028
4029 This function is the inverse of \cw{bin2hex()}.
4030
4031 \S{utils-game-mkhighlight} \cw{game_mkhighlight()}
4032
4033 \c void game_mkhighlight(frontend *fe, float *ret,
4034 \c                       int background, int highlight, int lowlight);
4035
4036 It's reasonably common for a puzzle game's graphics to use
4037 highlights and lowlights to indicate \q{raised} or \q{lowered}
4038 sections. Fifteen, Sixteen and Twiddle are good examples of this.
4039
4040 Puzzles using this graphical style are running a risk if they just
4041 use whatever background colour is supplied to them by the front end,
4042 because that background colour might be too light to see any
4043 highlights on at all. (In particular, it's not unheard of for the
4044 front end to specify a default background colour of white.)
4045
4046 Therefore, such puzzles can call this utility function from their
4047 \cw{colours()} routine (\k{backend-colours}). You pass it your front
4048 end handle, a pointer to the start of your return array, and three
4049 colour indices. It will:
4050
4051 \b call \cw{frontend_default_colour()} (\k{frontend-default-colour})
4052 to fetch the front end's default background colour
4053
4054 \b alter the brightness of that colour if it's unsuitable
4055
4056 \b define brighter and darker variants of the colour to be used as
4057 highlights and lowlights
4058
4059 \b write those results into the relevant positions in the \c{ret}
4060 array.
4061
4062 Thus, \cw{ret[background*3]} to \cw{ret[background*3+2]} will be set
4063 to RGB values defining a sensible background colour, and similary
4064 \c{highlight} and \c{lowlight} will be set to sensible colours.
4065
4066 \C{writing} How to write a new puzzle
4067
4068 This chapter gives a guide to how to actually write a new puzzle:
4069 where to start, what to do first, how to solve common problems.
4070
4071 The previous chapters have been largely composed of facts. This one
4072 is mostly advice.
4073
4074 \H{writing-editorial} Choosing a puzzle
4075
4076 Before you start writing a puzzle, you have to choose one. Your
4077 taste in puzzle games is up to you, of course; and, in fact, you're
4078 probably reading this guide because you've \e{already} thought of a
4079 game you want to write. But if you want to get it accepted into the
4080 official Puzzles distribution, then there's a criterion it has to
4081 meet.
4082
4083 The current Puzzles editorial policy is that all games should be
4084 \e{fair}. A fair game is one which a player can only fail to
4085 complete through demonstrable lack of skill \dash that is, such that
4086 a better player in the same situation would have \e{known} to do
4087 something different.
4088
4089 For a start, that means every game presented to the user must have
4090 \e{at least one solution}. Giving the unsuspecting user a puzzle
4091 which is actually impossible is not acceptable. (There is an
4092 exception: if the user has selected some non-default option which is
4093 clearly labelled as potentially unfair, \e{then} you're allowed to
4094 generate possibly insoluble puzzles, because the user isn't
4095 unsuspecting any more. Same Game and Mines both have options of this
4096 type.)
4097
4098 Also, this actually \e{rules out} games such as Klondike, or the
4099 normal form of Mahjong Solitaire. Those games have the property that
4100 even if there is a solution (i.e. some sequence of moves which will
4101 get from the start state to the solved state), the player doesn't
4102 necessarily have enough information to \e{find} that solution. In
4103 both games, it is possible to reach a dead end because you had an
4104 arbitrary choice to make and made it the wrong way. This violates
4105 the fairness criterion, because a better player couldn't have known
4106 they needed to make the other choice.
4107
4108 (GNOME has a variant on Mahjong Solitaire which makes it fair: there
4109 is a Shuffle operation which randomly permutes all the remaining
4110 tiles without changing their positions, which allows you to get out
4111 of a sticky situation. Using this operation adds a 60-second penalty
4112 to your solution time, so it's to the player's advantage to try to
4113 minimise the chance of having to use it. It's still possible to
4114 render the game uncompletable if you end up with only two tiles
4115 vertically stacked, but that's easy to foresee and avoid using a
4116 shuffle operation. This form of the game \e{is} fair. Implementing
4117 it in Puzzles would require an infrastructure change so that the
4118 back end could communicate time penalties to the mid-end, but that
4119 would be easy enough.)
4120
4121 Providing a \e{unique} solution is a little more negotiable; it
4122 depends on the puzzle. Solo would have been of unacceptably low
4123 quality if it didn't always have a unique solution, whereas Twiddle
4124 inherently has multiple solutions by its very nature and it would
4125 have been meaningless to even \e{suggest} making it uniquely
4126 soluble. Somewhere in between, Flip could reasonably be made to have
4127 unique solutions (by enforcing a zero-dimension kernel in every
4128 generated matrix) but it doesn't seem like a serious quality problem
4129 that it doesn't.
4130
4131 Of course, you don't \e{have} to care about all this. There's
4132 nothing stopping you implementing any puzzle you want to if you're
4133 happy to maintain your puzzle yourself, distribute it from your own
4134 web site, fork the Puzzles code completely, or anything like that.
4135 It's free software; you can do what you like with it. But any game
4136 that you want to be accepted into \e{my} Puzzles code base has to
4137 satisfy the fairness criterion, which means all randomly generated
4138 puzzles must have a solution (unless the user has deliberately
4139 chosen otherwise) and it must be possible \e{in theory} to find that
4140 solution without having to guess.
4141
4142 \H{writing-gs} Getting started
4143
4144 The simplest way to start writing a new puzzle is to copy
4145 \c{nullgame.c}. This is a template puzzle source file which does
4146 almost nothing, but which contains all the back end function
4147 prototypes and declares the back end data structure correctly. It is
4148 built every time the rest of Puzzles is built, to ensure that it
4149 doesn't get out of sync with the code and remains buildable.
4150
4151 So start by copying \c{nullgame.c} into your new source file. Then
4152 you'll gradually add functionality until the very boring Null Game
4153 turns into your real game.
4154
4155 Next you'll need to add your puzzle to the Makefiles, in order to
4156 compile it conveniently. \e{Do not edit the Makefiles}: they are
4157 created automatically by the script \c{mkfiles.pl}, from the file
4158 called \c{Recipe}. Edit \c{Recipe}, and then re-run \c{mkfiles.pl}.
4159
4160 Also, don't forget to add your puzzle to \c{list.c}: if you don't,
4161 then it will still run fine on platforms which build each puzzle
4162 separately, but Mac OS X and other monolithic platforms will not
4163 include your new puzzle in their single binary.
4164
4165 Once your source file is building, you can move on to the fun bit.
4166
4167 \S{writing-generation} Puzzle generation
4168
4169 Randomly generating instances of your puzzle is almost certain to be
4170 the most difficult part of the code, and also the task with the
4171 highest chance of turning out to be completely infeasible. Therefore
4172 I strongly recommend doing it \e{first}, so that if it all goes
4173 horribly wrong you haven't wasted any more time than you absolutely
4174 had to. What I usually do is to take an unmodified \c{nullgame.c},
4175 and start adding code to \cw{new_game_desc()} which tries to
4176 generate a puzzle instance and print it out using \cw{printf()}.
4177 Once that's working, \e{then} I start connecting it up to the return
4178 value of \cw{new_game_desc()}, populating other structures like
4179 \c{game_params}, and generally writing the rest of the source file.
4180
4181 There are many ways to generate a puzzle which is known to be
4182 soluble. In this section I list all the methods I currently know of,
4183 in case any of them can be applied to your puzzle. (Not all of these
4184 methods will work, or in some cases even make sense, for all
4185 puzzles.)
4186
4187 Some puzzles are mathematically tractable, meaning you can work out
4188 in advance which instances are soluble. Sixteen, for example, has a
4189 parity constraint in some settings which renders exactly half the
4190 game space unreachable, but it can be mathematically proved that any
4191 position not in that half \e{is} reachable. Therefore, Sixteen's
4192 grid generation simply consists of selecting at random from a well
4193 defined subset of the game space. Cube in its default state is even
4194 easier: \e{every} possible arrangement of the blue squares and the
4195 cube's starting position is soluble!
4196
4197 Another option is to redefine what you mean by \q{soluble}. Black
4198 Box takes this approach. There are layouts of balls in the box which
4199 are completely indistinguishable from one another no matter how many
4200 beams you fire into the box from which angles, which would normally
4201 be grounds for declaring those layouts unfair; but fortunately,
4202 detecting that indistinguishability is computationally easy. So
4203 Black Box doesn't demand that your ball placements match its own; it
4204 merely demands that your ball placements be \e{indistinguishable}
4205 from the ones it was thinking of. If you have an ambiguous puzzle,
4206 then any of the possible answers is considered to be a solution.
4207 Having redefined the rules in that way, any puzzle is soluble again.
4208
4209 Those are the simple techniques. If they don't work, you have to get
4210 cleverer.
4211
4212 One way to generate a soluble puzzle is to start from the solved
4213 state and make inverse moves until you reach a starting state. Then
4214 you know there's a solution, because you can just list the inverse
4215 moves you made and make them in the opposite order to return to the
4216 solved state.
4217
4218 This method can be simple and effective for puzzles where you get to
4219 decide what's a starting state and what's not. In Pegs, for example,
4220 the generator begins with one peg in the centre of the board and
4221 makes inverse moves until it gets bored; in this puzzle, valid
4222 inverse moves are easy to detect, and \e{any} state that's reachable
4223 from the solved state by inverse moves is a reasonable starting
4224 position. So Pegs just continues making inverse moves until the
4225 board satisfies some criteria about extent and density, and then
4226 stops and declares itself done.
4227
4228 For other puzzles, it can be a lot more difficult. Same Game uses
4229 this strategy too, and it's lucky to get away with it at all: valid
4230 inverse moves aren't easy to find (because although it's easy to
4231 insert additional squares in a Same Game position, it's difficult to
4232 arrange that \e{after} the insertion they aren't adjacent to any
4233 other squares of the same colour), so you're constantly at risk of
4234 running out of options and having to backtrack or start again. Also,
4235 Same Game grids never start off half-empty, which means you can't
4236 just stop when you run out of moves \dash you have to find a way to
4237 fill the grid up \e{completely}.
4238
4239 The other way to generate a puzzle that's soluble is to start from
4240 the other end, and actually write a \e{solver}. This tends to ensure
4241 that a puzzle has a \e{unique} solution over and above having a
4242 solution at all, so it's a good technique to apply to puzzles for
4243 which that's important.
4244
4245 One theoretical drawback of generating soluble puzzles by using a
4246 solver is that your puzzles are restricted in difficulty to those
4247 which the solver can handle. (Most solvers are not fully general:
4248 many sets of puzzle rules are NP-complete or otherwise nasty, so
4249 most solvers can only handle a subset of the theoretically soluble
4250 puzzles.) It's been my experience in practice, however, that this
4251 usually isn't a problem; computers are good at very different things
4252 from humans, and what the computer thinks is nice and easy might
4253 still be pleasantly challenging for a human. For example, when
4254 solving Dominosa puzzles I frequently find myself using a variety of
4255 reasoning techniques that my solver doesn't know about; in
4256 principle, therefore, I should be able to solve the puzzle using
4257 only those techniques it \e{does} know about, but this would involve
4258 repeatedly searching the entire grid for the one simple deduction I
4259 can make. Computers are good at this sort of exhaustive search, but
4260 it's been my experience that human solvers prefer to do more complex
4261 deductions than to spend ages searching for simple ones. So in many
4262 cases I don't find my own playing experience to be limited by the
4263 restrictions on the solver.
4264
4265 (This isn't \e{always} the case. Solo is a counter-example;
4266 generating Solo puzzles using a simple solver does lead to
4267 qualitatively easier puzzles. Therefore I had to make the Solo
4268 solver rather more advanced than most of them.)
4269
4270 There are several different ways to apply a solver to the problem of
4271 generating a soluble puzzle. I list a few of them below.
4272
4273 The simplest approach is brute force: randomly generate a puzzle,
4274 use the solver to see if it's soluble, and if not, throw it away and
4275 try again until you get lucky. This is often a viable technique if
4276 all else fails, but it tends not to scale well: for many puzzle
4277 types, the probability of finding a uniquely soluble instance
4278 decreases sharply as puzzle size goes up, so this technique might
4279 work reasonably fast for small puzzles but take (almost) forever at
4280 larger sizes. Still, if there's no other alternative it can be
4281 usable: Pattern and Dominosa both use this technique. (However,
4282 Dominosa has a means of tweaking the randomly generated grids to
4283 increase the \e{probability} of them being soluble, by ruling out
4284 one of the most common ambiguous cases. This improved generation
4285 speed by over a factor of 10 on the highest preset!)
4286
4287 An approach which can be more scalable involves generating a grid
4288 and then tweaking it to make it soluble. This is the technique used
4289 by Mines and also by Net: first a random puzzle is generated, and
4290 then the solver is run to see how far it gets. Sometimes the solver
4291 will get stuck; when that happens, examine the area it's having
4292 trouble with, and make a small random change in that area to allow
4293 it to make more progress. Continue solving (possibly even without
4294 restarting the solver), tweaking as necessary, until the solver
4295 finishes. Then restart the solver from the beginning to ensure that
4296 the tweaks haven't caused new problems in the process of solving old
4297 ones (which can sometimes happen).
4298
4299 This strategy works well in situations where the usual solver
4300 failure mode is to get stuck in an easily localised spot. Thus it
4301 works well for Net and Mines, whose most common failure mode tends
4302 to be that most of the grid is fine but there are a few widely
4303 separated ambiguous sections; but it would work less well for
4304 Dominosa, in which the way you get stuck is to have scoured the
4305 whole grid and not found anything you can deduce \e{anywhere}. Also,
4306 it relies on there being a low probability that tweaking the grid
4307 introduces a new problem at the same time as solving the old one;
4308 Mines and Net also have the property that most of their deductions
4309 are local, so that it's very unlikely for a tweak to affect
4310 something half way across the grid from the location where it was
4311 applied. In Dominosa, by contrast, a lot of deductions use
4312 information about half the grid (\q{out of all the sixes, only one
4313 is next to a three}, which can depend on the values of up to 32 of
4314 the 56 squares in the default setting!), so this tweaking strategy
4315 would be rather less likely to work well.
4316
4317 A more specialised strategy is that used in Solo and Slant. These
4318 puzzles have the property that they derive their difficulty from not
4319 presenting all the available clues. (In Solo's case, if all the
4320 possible clues were provided then the puzzle would already be
4321 solved; in Slant it would still require user action to fill in the
4322 lines, but it would present no challenge at all). Therefore, a
4323 simple generation technique is to leave the decision of which clues
4324 to provide until the last minute. In other words, first generate a
4325 random \e{filled} grid with all possible clues present, and then
4326 gradually remove clues for as long as the solver reports that it's
4327 still soluble. Unlike the methods described above, this technique
4328 \e{cannot} fail \dash once you've got a filled grid, nothing can
4329 stop you from being able to convert it into a viable puzzle.
4330 However, it wouldn't even be meaningful to apply this technique to
4331 (say) Pattern, in which clues can never be left out, so the only way
4332 to affect the set of clues is by altering the solution.
4333
4334 (Unfortunately, Solo is complicated by the need to provide puzzles
4335 at varying difficulty levels. It's easy enough to generate a puzzle
4336 of \e{at most} a given level of difficulty; you just have a solver
4337 with configurable intelligence, and you set it to a given level and
4338 apply the above technique, thus guaranteeing that the resulting grid
4339 is solvable by someone with at most that much intelligence. However,
4340 generating a puzzle of \e{at least} a given level of difficulty is
4341 rather harder; if you go for \e{at most} Intermediate level, you're
4342 likely to find that you've accidentally generated a Trivial grid a
4343 lot of the time, because removing just one number is sufficient to
4344 take the puzzle from Trivial straight to Ambiguous. In that
4345 situation Solo has no remaining options but to throw the puzzle away
4346 and start again.)
4347
4348 A final strategy is to use the solver \e{during} puzzle
4349 construction: lay out a bit of the grid, run the solver to see what
4350 it allows you to deduce, and then lay out a bit more to allow the
4351 solver to make more progress. There are articles on the web that
4352 recommend constructing Sudoku puzzles by this method (which is
4353 completely the opposite way round to how Solo does it); for Sudoku
4354 it has the advantage that you get to specify your clue squares in
4355 advance (so you can have them make pretty patterns).
4356
4357 Rectangles uses a strategy along these lines. First it generates a
4358 grid by placing the actual rectangles; then it has to decide where
4359 in each rectangle to place a number. It uses a solver to help it
4360 place the numbers in such a way as to ensure a unique solution. It
4361 does this by means of running a test solver, but it runs the solver
4362 \e{before} it's placed any of the numbers \dash which means the
4363 solver must be capable of coping with uncertainty about exactly
4364 where the numbers are! It runs the solver as far as it can until it
4365 gets stuck; then it narrows down the possible positions of a number
4366 in order to allow the solver to make more progress, and so on. Most
4367 of the time this process terminates with the grid fully solved, at
4368 which point any remaining number-placement decisions can be made at
4369 random from the options not so far ruled out. Note that unlike the
4370 Net/Mines tweaking strategy described above, this algorithm does not
4371 require a checking run after it completes: if it finishes
4372 successfully at all, then it has definitely produced a uniquely
4373 soluble puzzle.
4374
4375 Most of the strategies described above are not 100% reliable. Each
4376 one has a failure rate: every so often it has to throw out the whole
4377 grid and generate a fresh one from scratch. (Solo's strategy would
4378 be the exception, if it weren't for the need to provide configurable
4379 difficulty levels.) Occasional failures are not a fundamental
4380 problem in this sort of work, however: it's just a question of
4381 dividing the grid generation time by the success rate (if it takes
4382 10ms to generate a candidate grid and 1/5 of them work, then it will
4383 take 50ms on average to generate a viable one), and seeing whether
4384 the expected time taken to \e{successfully} generate a puzzle is
4385 unacceptably slow. Dominosa's generator has a very low success rate
4386 (about 1 out of 20 candidate grids turn out to be usable, and if you
4387 think \e{that's} bad then go and look at the source code and find
4388 the comment showing what the figures were before the generation-time
4389 tweaks!), but the generator itself is very fast so this doesn't
4390 matter. Rectangles has a slower generator, but fails well under 50%
4391 of the time.
4392
4393 So don't be discouraged if you have an algorithm that doesn't always
4394 work: if it \e{nearly} always works, that's probably good enough.
4395 The one place where reliability is important is that your algorithm
4396 must never produce false positives: it must not claim a puzzle is
4397 soluble when it isn't. It can produce false negatives (failing to
4398 notice that a puzzle is soluble), and it can fail to generate a
4399 puzzle at all, provided it doesn't do either so often as to become
4400 slow.
4401
4402 One last piece of advice: for grid-based puzzles, when writing and
4403 testing your generation algorithm, it's almost always a good idea
4404 \e{not} to test it initially on a grid that's square (i.e.
4405 \cw{w==h}), because if the grid is square then you won't notice if
4406 you mistakenly write \c{h} instead of \c{w} (or vice versa)
4407 somewhere in the code. Use a rectangular grid for testing, and any
4408 size of grid will be likely to work after that.
4409
4410 \S{writing-textformats} Designing textual description formats
4411
4412 Another aspect of writing a puzzle which is worth putting some
4413 thought into is the design of the various text description formats:
4414 the format of the game parameter encoding, the game description
4415 encoding, and the move encoding.
4416
4417 The first two of these should be reasonably intuitive for a user to
4418 type in; so provide some flexibility where possible. Suppose, for
4419 example, your parameter format consists of two numbers separated by
4420 an \c{x} to specify the grid dimensions (\c{10x10} or \c{20x15}),
4421 and then has some suffixes to specify other aspects of the game
4422 type. It's almost always a good idea in this situation to arrange
4423 that \cw{decode_params()} can handle the suffixes appearing in any
4424 order, even if \cw{encode_params()} only ever generates them in one
4425 order.
4426
4427 These formats will also be expected to be reasonably stable: users
4428 will expect to be able to exchange game IDs with other users who
4429 aren't running exactly the same version of your game. So make them
4430 robust and stable: don't build too many assumptions into the game ID
4431 format which will have to be changed every time something subtle
4432 changes in the puzzle code.
4433
4434 \H{writing-howto} Common how-to questions
4435
4436 This section lists some common things people want to do when writing
4437 a puzzle, and describes how to achieve them within the Puzzles
4438 framework.
4439
4440 \S{writing-howto-cursor} Drawing objects at only one position
4441
4442 A common phenomenon is to have an object described in the
4443 \c{game_state} or the \c{game_ui} which can only be at one position.
4444 A cursor \dash probably specified in the \c{game_ui} \dash is a good
4445 example.
4446
4447 In the \c{game_ui}, it would \e{obviously} be silly to have an array
4448 covering the whole game grid with a boolean flag stating whether the
4449 cursor was at each position. Doing that would waste space, would
4450 make it difficult to find the cursor in order to do anything with
4451 it, and would introduce the potential for synchronisation bugs in
4452 which you ended up with two cursors or none. The obviously sensible
4453 way to store a cursor in the \c{game_ui} is to have fields directly
4454 encoding the cursor's coordinates.
4455
4456 However, it is a mistake to assume that the same logic applies to
4457 the \c{game_drawstate}. If you replicate the cursor position fields
4458 in the draw state, the redraw code will get very complicated. In the
4459 draw state, in fact, it \e{is} probably the right thing to have a
4460 cursor flag for every position in the grid. You probably have an
4461 array for the whole grid in the drawstate already (stating what is
4462 currently displayed in the window at each position); the sensible
4463 approach is to add a \q{cursor} flag to each element of that array.
4464 Then the main redraw loop will look something like this
4465 (pseudo-code):
4466
4467 \c for (y = 0; y < h; y++) {
4468 \c     for (x = 0; x < w; x++) {
4469 \c         int value = state->symbol_at_position[y][x];
4470 \c         if (x == ui->cursor_x && y == ui->cursor_y)
4471 \c             value |= CURSOR;
4472 \c         if (ds->symbol_at_position[y][x] != value) {
4473 \c             symbol_drawing_subroutine(dr, ds, x, y, value);
4474 \c             ds->symbol_at_position[y][x] = value;
4475 \c         }
4476 \c     }
4477 \c }
4478
4479 This loop is very simple, pretty hard to get wrong, and
4480 \e{automatically} deals both with erasing the previous cursor and
4481 drawing the new one, with no special case code required.
4482
4483 This type of loop is generally a sensible way to write a redraw
4484 function, in fact. The best thing is to ensure that the information
4485 stored in the draw state for each position tells you \e{everything}
4486 about what was drawn there. A good way to ensure that is to pass
4487 precisely the same information, and \e{only} that information, to a
4488 subroutine that does the actual drawing; then you know there's no
4489 additional information which affects the drawing but which you don't
4490 notice changes in.
4491
4492 \S{writing-keyboard-cursor} Implementing a keyboard-controlled cursor
4493
4494 It is often useful to provide a keyboard control method in a
4495 basically mouse-controlled game. A keyboard-controlled cursor is
4496 best implemented by storing its location in the \c{game_ui} (since
4497 if it were in the \c{game_state} then the user would have to
4498 separately undo every cursor move operation). So the procedure would
4499 be:
4500
4501 \b Put cursor position fields in the \c{game_ui}.
4502
4503 \b \cw{interpret_move()} responds to arrow keys by modifying the
4504 cursor position fields and returning \cw{""}.
4505
4506 \b \cw{interpret_move()} responds to some sort of fire button by
4507 actually performing a move based on the current cursor location.
4508
4509 \b You might want an additional \c{game_ui} field stating whether
4510 the cursor is currently visible, and having it disappear when a
4511 mouse action occurs (so that it doesn't clutter the display when not
4512 actually in use).
4513
4514 \b You might also want to automatically hide the cursor in
4515 \cw{changed_state()} when the current game state changes to one in
4516 which there is no move to make (which is the case in some types of
4517 completed game).
4518
4519 \b \cw{redraw()} draws the cursor using the technique described in
4520 \k{writing-howto-cursor}.
4521
4522 \S{writing-howto-dragging} Implementing draggable sprites
4523
4524 Some games have a user interface which involves dragging some sort
4525 of game element around using the mouse. If you need to show a
4526 graphic moving smoothly over the top of other graphics, use a
4527 blitter (see \k{drawing-blitter} for the blitter API) to save the
4528 background underneath it. The typical scenario goes:
4529
4530 \b Have a blitter field in the \c{game_drawstate}.
4531
4532 \b Set the blitter field to \cw{NULL} in the game's
4533 \cw{new_drawstate()} function, since you don't yet know how big the
4534 piece of saved background needs to be.
4535
4536 \b In the game's \cw{set_size()} function, once you know the size of
4537 the object you'll be dragging around the display and hence the
4538 required size of the blitter, actually allocate the blitter.
4539
4540 \b In \cw{free_drawstate()}, free the blitter if it's not \cw{NULL}.
4541
4542 \b In \cw{interpret_move()}, respond to mouse-down and mouse-drag
4543 events by updating some fields in the \cw{game_ui} which indicate
4544 that a drag is in progress.
4545
4546 \b At the \e{very end} of \cw{redraw()}, after all other drawing has
4547 been done, draw the moving object if there is one. First save the
4548 background under the object in the blitter; then set a clip
4549 rectangle covering precisely the area you just saved (just in case
4550 anti-aliasing or some other error causes your drawing to go beyond
4551 the area you saved). Then draw the object, and call \cw{unclip()}.
4552 Finally, set a flag in the \cw{game_drawstate} that indicates that
4553 the blitter needs restoring.
4554
4555 \b At the very start of \cw{redraw()}, before doing anything else at
4556 all, check the flag in the \cw{game_drawstate}, and if it says the
4557 blitter needs restoring then restore it. (Then clear the flag, so
4558 that this won't happen again in the next redraw if no moving object
4559 is drawn this time.)
4560
4561 This way, you will be able to write the rest of the redraw function
4562 completely ignoring the dragged object, as if it were floating above
4563 your bitmap and being completely separate.
4564
4565 \S{writing-ref-counting} Sharing large invariant data between all
4566 game states
4567
4568 In some puzzles, there is a large amount of data which never changes
4569 between game states. The array of numbers in Dominosa is a good
4570 example.
4571
4572 You \e{could} dynamically allocate a copy of that array in every
4573 \c{game_state}, and have \cw{dup_game()} make a fresh copy of it for
4574 every new \c{game_state}; but it would waste memory and time. A
4575 more efficient way is to use a reference-counted structure.
4576
4577 \b Define a structure type containing the data in question, and also
4578 containing an integer reference count.
4579
4580 \b Have a field in \c{game_state} which is a pointer to this
4581 structure.
4582
4583 \b In \cw{new_game()}, when creating a fresh game state at the start
4584 of a new game, create an instance of this structure, initialise it
4585 with the invariant data, and set its reference count to 1.
4586
4587 \b In \cw{dup_game()}, rather than making a copy of the structure
4588 for the new game state, simply set the new game state to point at
4589 the same copy of the structure, and increment its reference count.
4590
4591 \b In \cw{free_game()}, decrement the reference count in the
4592 structure pointed to by the game state; if the count reaches zero,
4593 free the structure.
4594
4595 This way, the invariant data will persist for only as long as it's
4596 genuinely needed; \e{as soon} as the last game state for a
4597 particular puzzle instance is freed, the invariant data for that
4598 puzzle will vanish as well. Reference counting is a very efficient
4599 form of garbage collection, when it works at all. (Which it does in
4600 this instance, of course, because there's no possibility of circular
4601 references.)
4602
4603 \S{writing-flash-types} Implementing multiple types of flash
4604
4605 In some games you need to flash in more than one different way.
4606 Mines, for example, flashes white when you win, and flashes red when
4607 you tread on a mine and die.
4608
4609 The simple way to do this is:
4610
4611 \b Have a field in the \c{game_ui} which describes the type of flash.
4612
4613 \b In \cw{flash_length()}, examine the old and new game states to
4614 decide whether a flash is required and what type. Write the type of
4615 flash to the \c{game_ui} field whenever you return non-zero.
4616
4617 \b In \cw{redraw()}, when you detect that \c{flash_time} is
4618 non-zero, examine the field in \c{game_ui} to decide which type of
4619 flash to draw.
4620
4621 \cw{redraw()} will never be called with \c{flash_time} non-zero
4622 unless \cw{flash_length()} was first called to tell the mid-end that
4623 a flash was required; so whenever \cw{redraw()} notices that
4624 \c{flash_time} is non-zero, you can be sure that the field in
4625 \c{game_ui} is correctly set.
4626
4627 \S{writing-move-anim} Animating game moves
4628
4629 A number of puzzle types benefit from a quick animation of each move
4630 you make.
4631
4632 For some games, such as Fifteen, this is particularly easy. Whenever
4633 \cw{redraw()} is called with \c{oldstate} non-\cw{NULL}, Fifteen
4634 simply compares the position of each tile in the two game states,
4635 and if the tile is not in the same place then it draws it some
4636 fraction of the way from its old position to its new position. This
4637 method copes automatically with undo.
4638
4639 Other games are less obvious. In Sixteen, for example, you can't
4640 just draw each tile a fraction of the way from its old to its new
4641 position: if you did that, the end tile would zip very rapidly past
4642 all the others to get to the other end and that would look silly.
4643 (Worse, it would look inconsistent if the end tile was drawn on top
4644 going one way and on the bottom going the other way.)
4645
4646 A useful trick here is to define a field or two in the game state
4647 that indicates what the last move was.
4648
4649 \b Add a \q{last move} field to the \c{game_state} (or two or more
4650 fields if the move is complex enough to need them).
4651
4652 \b \cw{new_game()} initialises this field to a null value for a new
4653 game state.
4654
4655 \b \cw{execute_move()} sets up the field to reflect the move it just
4656 performed.
4657
4658 \b \cw{redraw()} now needs to examine its \c{dir} parameter. If
4659 \c{dir} is positive, it determines the move being animated by
4660 looking at the last-move field in \c{newstate}; but if \c{dir} is
4661 negative, it has to look at the last-move field in \c{oldstate}, and
4662 invert whatever move it finds there.
4663
4664 Note also that Sixteen needs to store the \e{direction} of the move,
4665 because you can't quite determine it by examining the row or column
4666 in question. You can in almost all cases, but when the row is
4667 precisely two squares long it doesn't work since a move in either
4668 direction looks the same. (You could argue that since moving a
4669 2-element row left and right has the same effect, it doesn't matter
4670 which one you animate; but in fact it's very disorienting to click
4671 the arrow left and find the row moving right, and almost as bad to
4672 undo a move to the right and find the game animating \e{another}
4673 move to the right.)
4674
4675 \S{writing-conditional-anim} Animating drag operations
4676
4677 In Untangle, moves are made by dragging a node from an old position
4678 to a new position. Therefore, at the time when the move is initially
4679 made, it should not be animated, because the node has already been
4680 dragged to the right place and doesn't need moving there. However,
4681 it's nice to animate the same move if it's later undone or redone.
4682 This requires a bit of fiddling.
4683
4684 The obvious approach is to have a flag in the \c{game_ui} which
4685 inhibits move animation, and to set that flag in
4686 \cw{interpret_move()}. The question is, when would the flag be reset
4687 again? The obvious place to do so is \cw{changed_state()}, which
4688 will be called once per move. But it will be called \e{before}
4689 \cw{anim_length()}, so if it resets the flag then \cw{anim_length()}
4690 will never see the flag set at all.
4691
4692 The solution is to have \e{two} flags in a queue.
4693
4694 \b Define two flags in \c{game_ui}; let's call them \q{current} and
4695 \q{next}.
4696
4697 \b Set both to \cw{FALSE} in \c{new_ui()}.
4698
4699 \b When a drag operation completes in \cw{interpret_move()}, set the
4700 \q{next} flag to \cw{TRUE}.
4701
4702 \b Every time \cw{changed_state()} is called, set the value of
4703 \q{current} to the value in \q{next}, and then set the value of
4704 \q{next} to \cw{FALSE}.
4705
4706 \b That way, \q{current} will be \cw{TRUE} \e{after} a call to
4707 \cw{changed_state()} if and only if that call to
4708 \cw{changed_state()} was the result of a drag operation processed by
4709 \cw{interpret_move()}. Any other call to \cw{changed_state()}, due
4710 to an Undo or a Redo or a Restart or a Solve, will leave \q{current}
4711 \cw{FALSE}.
4712
4713 \b So now \cw{anim_length()} can request a move animation if and
4714 only if the \q{current} flag is \e{not} set.
4715
4716 \S{writing-cheating} Inhibiting the victory flash when Solve is used
4717
4718 Many games flash when you complete them, as a visual congratulation
4719 for having got to the end of the puzzle. It often seems like a good
4720 idea to disable that flash when the puzzle is brought to a solved
4721 state by means of the Solve operation.
4722
4723 This is easily done:
4724
4725 \b Add a \q{cheated} flag to the \c{game_state}.
4726
4727 \b Set this flag to \cw{FALSE} in \cw{new_game()}.
4728
4729 \b Have \cw{solve()} return a move description string which clearly
4730 identifies the move as a solve operation.
4731
4732 \b Have \cw{execute_move()} respond to that clear identification by
4733 setting the \q{cheated} flag in the returned \c{game_state}. The
4734 flag will then be propagated to all subsequent game states, even if
4735 the user continues fiddling with the game after it is solved.
4736
4737 \b \cw{flash_length()} now returns non-zero if \c{oldstate} is not
4738 completed and \c{newstate} is, \e{and} neither state has the
4739 \q{cheated} flag set.
4740
4741 \H{writing-testing} Things to test once your puzzle is written
4742
4743 Puzzle implementations written in this framework are self-testing as
4744 far as I could make them.
4745
4746 Textual game and move descriptions, for example, are generated and
4747 parsed as part of the normal process of play. Therefore, if you can
4748 make moves in the game \e{at all} you can be reasonably confident
4749 that the mid-end serialisation interface will function correctly and
4750 you will be able to save your game. (By contrast, if I'd stuck with
4751 a single \cw{make_move()} function performing the jobs of both
4752 \cw{interpret_move()} and \cw{execute_move()}, and had separate
4753 functions to encode and decode a game state in string form, then
4754 those functions would not be used during normal play; so they could
4755 have been completely broken, and you'd never know it until you tried
4756 to save the game \dash which would have meant you'd have to test
4757 game saving \e{extensively} and make sure to test every possible
4758 type of game state. As an added bonus, doing it the way I did leads
4759 to smaller save files.)
4760
4761 There is one exception to this, which is the string encoding of the
4762 \c{game_ui}. Most games do not store anything permanent in the
4763 \c{game_ui}, and hence do not need to put anything in its encode and
4764 decode functions; but if there is anything in there, you do need to
4765 test game loading and saving to ensure those functions work
4766 properly.
4767
4768 It's also worth testing undo and redo of all operations, to ensure
4769 that the redraw and the animations (if any) work properly. Failing
4770 to animate undo properly seems to be a common error.
4771
4772 Other than that, just use your common sense.