This file documents the internals of the GNU compilers.

Copyright © 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”.

(a) The FSF's Front-Cover Text is:

A GNU Manual

(b) The FSF's Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.


Short Contents

Table of Contents


Next: , Up: (DIR)

Introduction

This manual documents the internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages. It corresponds to the compilers version 4.4.7. The use of the GNU compilers is documented in a separate manual. See Introduction.

This manual is mainly a reference manual rather than a tutorial. It discusses how to contribute to GCC (see Contributing), the characteristics of the machines supported by GCC as hosts and targets (see Portability), how GCC relates to the ABIs on such systems (see Interface), and the characteristics of the languages for which GCC front ends are written (see Languages). It then describes the GCC source tree structure and build system, some of the interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.


Next: , Previous: Top, Up: Top

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see http://gcc.gnu.org/svn.html). Source and binary snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

     http://gcc.gnu.org/contribute.html
     http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at http://gcc.gnu.org/projects/.


Next: , Previous: Contributing, Up: Top

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims to target machines with a flat (non-segmented) byte addressed data address space (the code address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to express in this fashion, ad-hoc parameters have been defined for machine descriptions. The purpose of portability is to reduce the total work needed on the compiler; it was not of interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most significant byte has the highest or lowest address of the bytes in a word) and the availability of autoincrement addressing. In the RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often, not all possible cases have been addressed, but only the common ones or only the ones that have been encountered. As a result, a new target may require additional strategies. You will know if this happens because the compiler will call abort. Fortunately, the new strategies can be added in a machine-independent fashion, and will affect only the target machines that need them.


Next: , Previous: Portability, Up: Top

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use on the target system. This is done with the machine-description macros described (see Target Macros).

However, returning of structure and union values is done differently on some target machines. As a result, functions compiled with PCC returning such types cannot be called from code compiled with GCC, and vice versa. This does not cause trouble often because few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same registers used for int or double return values. (GCC typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The target hook TARGET_STRUCT_VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then returning the address of that storage as if it were a pointer value. The caller must copy the data from that memory area to the place where the value is wanted. This is slower than the method used by GCC, and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system convention is to pass to the subroutine the address of where to return the value. On these machines, GCC has been configured to be compatible with the standard compiler, when this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system's standard convention for passing arguments. On some machines, the first few arguments are passed in registers; in others, all are passed on the stack. It would be possible to use registers for argument passing on any machine, and this would probably result in a significant speedup. But the result would be complete incompatibility with code that follows the standard convention. So this change is practical only if you are switching to GCC as the sole C compiler for the system. We may implement register argument passing on certain machines once we have a complete GNU system so that we can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by invisible reference”. This means that the value is stored in memory, and the address of the memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables that are not declared volatile have undefined values after a longjmp. And this is all GCC promises to do, because it is very difficult to restore register variables correctly, and one of GCC's features is that it can put variables in registers without your asking it to.


Next: , Previous: Interface, Up: Top

4 The GCC low-level runtime library

GCC provides a low-level runtime library, libgcc.a or libgcc_s.so.1 on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point and fixed-point operations on other machines. libgcc also includes routines for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some cases. The set of routines that GCC may possibly use is documented in Other Builtins.

These routines take arguments and return values of a specific machine mode, not a specific C type. See Machine Modes, for an explanation of this concept. For illustrative purposes, in this chapter the floating point type float is assumed to correspond to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly, the integer types int and unsigned int correspond to SImode; long and unsigned long to DImode; and long long and unsigned long long to TImode.


Next: , Up: Libgcc

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don't provide hardware support for arithmetic operations on some modes.

4.1.1 Arithmetic functions

— Runtime Function: int __ashlsi3 (int a, int b)
— Runtime Function: long __ashldi3 (long a, int b)
— Runtime Function: long long __ashlti3 (long long a, int b)

These functions return the result of shifting a left by b bits.

— Runtime Function: int __ashrsi3 (int a, int b)
— Runtime Function: long __ashrdi3 (long a, int b)
— Runtime Function: long long __ashrti3 (long long a, int b)

These functions return the result of arithmetically shifting a right by b bits.

— Runtime Function: int __divsi3 (int a, int b)
— Runtime Function: long __divdi3 (long a, long b)
— Runtime Function: long long __divti3 (long long a, long long b)

These functions return the quotient of the signed division of a and b.

— Runtime Function: int __lshrsi3 (int a, int b)
— Runtime Function: long __lshrdi3 (long a, int b)
— Runtime Function: long long __lshrti3 (long long a, int b)

These functions return the result of logically shifting a right by b bits.

— Runtime Function: int __modsi3 (int a, int b)
— Runtime Function: long __moddi3 (long a, long b)
— Runtime Function: long long __modti3 (long long a, long long b)

These functions return the remainder of the signed division of a and b.

— Runtime Function: int __mulsi3 (int a, int b)
— Runtime Function: long __muldi3 (long a, long b)
— Runtime Function: long long __multi3 (long long a, long long b)

These functions return the product of a and b.

— Runtime Function: long __negdi2 (long a)
— Runtime Function: long long __negti2 (long long a)

These functions return the negation of a.

— Runtime Function: unsigned int __udivsi3 (unsigned int a, unsigned int b)
— Runtime Function: unsigned long __udivdi3 (unsigned long a, unsigned long b)
— Runtime Function: unsigned long long __udivti3 (unsigned long long a, unsigned long long b)

These functions return the quotient of the unsigned division of a and b.

— Runtime Function: unsigned long __udivmoddi3 (unsigned long a, unsigned long b, unsigned long *c)
— Runtime Function: unsigned long long __udivti3 (unsigned long long a, unsigned long long b, unsigned long long *c)

These functions calculate both the quotient and remainder of the unsigned division of a and b. The return value is the quotient, and the remainder is placed in variable pointed to by c.

— Runtime Function: unsigned int __umodsi3 (unsigned int a, unsigned int b)
— Runtime Function: unsigned long __umoddi3 (unsigned long a, unsigned long b)
— Runtime Function: unsigned long long __umodti3 (unsigned long long a, unsigned long long b)

These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-level compare, upon which the higher level comparison operators (such as less than and greater than or equal to) can be constructed. The returned values lie in the range zero to two, to allow the high-level operators to be implemented by testing the returned result using either signed or unsigned comparison.

— Runtime Function: int __cmpdi2 (long a, long b)
— Runtime Function: int __cmpti2 (long long a, long long b)

These functions perform a signed comparison of a and b. If a is less than b, they return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

— Runtime Function: int __ucmpdi2 (unsigned long a, unsigned long b)
— Runtime Function: int __ucmpti2 (unsigned long long a, unsigned long long b)

These functions perform an unsigned comparison of a and b. If a is less than b, they return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc function abort upon signed arithmetic overflow.

— Runtime Function: int __absvsi2 (int a)
— Runtime Function: long __absvdi2 (long a)

These functions return the absolute value of a.

— Runtime Function: int __addvsi3 (int a, int b)
— Runtime Function: long __addvdi3 (long a, long b)

These functions return the sum of a and b; that is a + b.

— Runtime Function: int __mulvsi3 (int a, int b)
— Runtime Function: long __mulvdi3 (long a, long b)

The functions return the product of a and b; that is a * b.

— Runtime Function: int __negvsi2 (int a)
— Runtime Function: long __negvdi2 (long a)

These functions return the negation of a; that is -a.

— Runtime Function: int __subvsi3 (int a, int b)
— Runtime Function: long __subvdi3 (long a, long b)

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

— Runtime Function: int __clzsi2 (int a)
— Runtime Function: int __clzdi2 (long a)
— Runtime Function: int __clzti2 (long long a)

These functions return the number of leading 0-bits in a, starting at the most significant bit position. If a is zero, the result is undefined.

— Runtime Function: int __ctzsi2 (int a)
— Runtime Function: int __ctzdi2 (long a)
— Runtime Function: int __ctzti2 (long long a)

These functions return the number of trailing 0-bits in a, starting at the least significant bit position. If a is zero, the result is undefined.

— Runtime Function: int __ffsdi2 (long a)
— Runtime Function: int __ffsti2 (long long a)

These functions return the index of the least significant 1-bit in a, or the value zero if a is zero. The least significant bit is index one.

— Runtime Function: int __paritysi2 (int a)
— Runtime Function: int __paritydi2 (long a)
— Runtime Function: int __parityti2 (long long a)

These functions return the value zero if the number of bits set in a is even, and the value one otherwise.

— Runtime Function: int __popcountsi2 (int a)
— Runtime Function: int __popcountdi2 (long a)
— Runtime Function: int __popcountti2 (long long a)

These functions return the number of bits set in a.

— Runtime Function: int32_t __bswapsi2 (int32_t a)
— Runtime Function: int64_t __bswapdi2 (int64_t a)

These functions return the a byteswapped.


Next: , Previous: Integer library routines, Up: Libgcc

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever -msoft-float is used to disable generation of floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be renamed with the DECLARE_LIBRARY_RENAMES macro (see Library Calls). In this section, the default names are used.

Presently the library does not support XFmode, which is used for long double on some architectures.

4.2.1 Arithmetic functions

— Runtime Function: float __addsf3 (float a, float b)
— Runtime Function: double __adddf3 (double a, double b)
— Runtime Function: long double __addtf3 (long double a, long double b)
— Runtime Function: long double __addxf3 (long double a, long double b)

These functions return the sum of a and b.

— Runtime Function: float __subsf3 (float a, float b)
— Runtime Function: double __subdf3 (double a, double b)
— Runtime Function: long double __subtf3 (long double a, long double b)
— Runtime Function: long double __subxf3 (long double a, long double b)

These functions return the difference between b and a; that is, a - b.

— Runtime Function: float __mulsf3 (float a, float b)
— Runtime Function: double __muldf3 (double a, double b)
— Runtime Function: long double __multf3 (long double a, long double b)
— Runtime Function: long double __mulxf3 (long double a, long double b)

These functions return the product of a and b.

— Runtime Function: float __divsf3 (float a, float b)
— Runtime Function: double __divdf3 (double a, double b)
— Runtime Function: long double __divtf3 (long double a, long double b)
— Runtime Function: long double __divxf3 (long double a, long double b)

These functions return the quotient of a and b; that is, a / b.

— Runtime Function: float __negsf2 (float a)
— Runtime Function: double __negdf2 (double a)
— Runtime Function: long double __negtf2 (long double a)
— Runtime Function: long double __negxf2 (long double a)

These functions return the negation of a. They simply flip the sign bit, so they can produce negative zero and negative NaN.

4.2.2 Conversion functions

— Runtime Function: double __extendsfdf2 (float a)
— Runtime Function: long double __extendsftf2 (float a)
— Runtime Function: long double __extendsfxf2 (float a)
— Runtime Function: long double __extenddftf2 (double a)
— Runtime Function: long double __extenddfxf2 (double a)

These functions extend a to the wider mode of their return type.

— Runtime Function: double __truncxfdf2 (long double a)
— Runtime Function: double __trunctfdf2 (long double a)
— Runtime Function: float __truncxfsf2 (long double a)
— Runtime Function: float __trunctfsf2 (long double a)
— Runtime Function: float __truncdfsf2 (double a)

These functions truncate a to the narrower mode of their return type, rounding toward zero.

— Runtime Function: int __fixsfsi (float a)
— Runtime Function: int __fixdfsi (double a)
— Runtime Function: int __fixtfsi (long double a)
— Runtime Function: int __fixxfsi (long double a)

These functions convert a to a signed integer, rounding toward zero.

— Runtime Function: long __fixsfdi (float a)
— Runtime Function: long __fixdfdi (double a)
— Runtime Function: long __fixtfdi (long double a)
— Runtime Function: long __fixxfdi (long double a)

These functions convert a to a signed long, rounding toward zero.

— Runtime Function: long long __fixsfti (float a)
— Runtime Function: long long __fixdfti (double a)
— Runtime Function: long long __fixtfti (long double a)
— Runtime Function: long long __fixxfti (long double a)

These functions convert a to a signed long long, rounding toward zero.

— Runtime Function: unsigned int __fixunssfsi (float a)
— Runtime Function: unsigned int __fixunsdfsi (double a)
— Runtime Function: unsigned int __fixunstfsi (long double a)
— Runtime Function: unsigned int __fixunsxfsi (long double a)

These functions convert a to an unsigned integer, rounding toward zero. Negative values all become zero.

— Runtime Function: unsigned long __fixunssfdi (float a)
— Runtime Function: unsigned long __fixunsdfdi (double a)
— Runtime Function: unsigned long __fixunstfdi (long double a)
— Runtime Function: unsigned long __fixunsxfdi (long double a)

These functions convert a to an unsigned long, rounding toward zero. Negative values all become zero.

— Runtime Function: unsigned long long __fixunssfti (float a)
— Runtime Function: unsigned long long __fixunsdfti (double a)
— Runtime Function: unsigned long long __fixunstfti (long double a)
— Runtime Function: unsigned long long __fixunsxfti (long double a)

These functions convert a to an unsigned long long, rounding toward zero. Negative values all become zero.

— Runtime Function: float __floatsisf (int i)
— Runtime Function: double __floatsidf (int i)
— Runtime Function: long double __floatsitf (int i)
— Runtime Function: long double __floatsixf (int i)

These functions convert i, a signed integer, to floating point.

— Runtime Function: float __floatdisf (long i)
— Runtime Function: double __floatdidf (long i)
— Runtime Function: long double __floatditf (long i)
— Runtime Function: long double __floatdixf (long i)

These functions convert i, a signed long, to floating point.

— Runtime Function: float __floattisf (long long i)
— Runtime Function: double __floattidf (long long i)
— Runtime Function: long double __floattitf (long long i)
— Runtime Function: long double __floattixf (long long i)

These functions convert i, a signed long long, to floating point.

— Runtime Function: float __floatunsisf (unsigned int i)
— Runtime Function: double __floatunsidf (unsigned int i)
— Runtime Function: long double __floatunsitf (unsigned int i)
— Runtime Function: long double __floatunsixf (unsigned int i)

These functions convert i, an unsigned integer, to floating point.

— Runtime Function: float __floatundisf (unsigned long i)
— Runtime Function: double __floatundidf (unsigned long i)
— Runtime Function: long double __floatunditf (unsigned long i)
— Runtime Function: long double __floatundixf (unsigned long i)

These functions convert i, an unsigned long, to floating point.

— Runtime Function: float __floatuntisf (unsigned long long i)
— Runtime Function: double __floatuntidf (unsigned long long i)
— Runtime Function: long double __floatuntitf (unsigned long long i)
— Runtime Function: long double __floatuntixf (unsigned long long i)

These functions convert i, an unsigned long long, to floating point.

4.2.3 Comparison functions

There are two sets of basic comparison functions.

— Runtime Function: int __cmpsf2 (float a, float b)
— Runtime Function: int __cmpdf2 (double a, double b)
— Runtime Function: int __cmptf2 (long double a, long double b)

These functions calculate a <=> b. That is, if a is less than b, they return −1; if a is greater than b, they return 1; and if a and b are equal they return 0. If either argument is NaN they return 1, but you should not rely on this; if NaN is a possibility, use one of the higher-level comparison functions.

— Runtime Function: int __unordsf2 (float a, float b)
— Runtime Function: int __unorddf2 (double a, double b)
— Runtime Function: int __unordtf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to comparison operators. They implement the ISO C semantics for floating-point comparisons, taking NaN into account. Pay careful attention to the return values defined for each set. Under the hood, all of these routines are implemented as

       if (__unordXf2 (a, b))
         return E;
       return __cmpXf2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning of the return value is different for each set. Do not rely on this implementation; only the semantics documented below are guaranteed.

— Runtime Function: int __eqsf2 (float a, float b)
— Runtime Function: int __eqdf2 (double a, double b)
— Runtime Function: int __eqtf2 (long double a, long double b)

These functions return zero if neither argument is NaN, and a and b are equal.

— Runtime Function: int __nesf2 (float a, float b)
— Runtime Function: int __nedf2 (double a, double b)
— Runtime Function: int __netf2 (long double a, long double b)

These functions return a nonzero value if either argument is NaN, or if a and b are unequal.

— Runtime Function: int __gesf2 (float a, float b)
— Runtime Function: int __gedf2 (double a, double b)
— Runtime Function: int __getf2 (long double a, long double b)

These functions return a value greater than or equal to zero if neither argument is NaN, and a is greater than or equal to b.

— Runtime Function: int __ltsf2 (float a, float b)
— Runtime Function: int __ltdf2 (double a, double b)
— Runtime Function: int __lttf2 (long double a, long double b)

These functions return a value less than zero if neither argument is NaN, and a is strictly less than b.

— Runtime Function: int __lesf2 (float a, float b)
— Runtime Function: int __ledf2 (double a, double b)
— Runtime Function: int __letf2 (long double a, long double b)

These functions return a value less than or equal to zero if neither argument is NaN, and a is less than or equal to b.

— Runtime Function: int __gtsf2 (float a, float b)
— Runtime Function: int __gtdf2 (double a, double b)
— Runtime Function: int __gttf2 (long double a, long double b)

These functions return a value greater than zero if neither argument is NaN, and a is strictly greater than b.

4.2.4 Other floating-point functions

— Runtime Function: float __powisf2 (float a, int b)
— Runtime Function: double __powidf2 (double a, int b)
— Runtime Function: long double __powitf2 (long double a, int b)
— Runtime Function: long double __powixf2 (long double a, int b)

These functions convert raise a to the power b.

— Runtime Function: complex float __mulsc3 (float a, float b, float c, float d)
— Runtime Function: complex double __muldc3 (double a, double b, double c, double d)
— Runtime Function: complex long double __multc3 (long double a, long double b, long double c, long double d)
— Runtime Function: complex long double __mulxc3 (long double a, long double b, long double c, long double d)

These functions return the product of a + ib and c + id, following the rules of C99 Annex G.

— Runtime Function: complex float __divsc3 (float a, float b, float c, float d)
— Runtime Function: complex double __divdc3 (double a, double b, double c, double d)
— Runtime Function: complex long double __divtc3 (long double a, long double b, long double c, long double d)
— Runtime Function: complex long double __divxc3 (long double a, long double b, long double c, long double d)

These functions return the quotient of a + ib and c + id (i.e., (a + ib) / (c + id)), following the rules of C99 Annex G.


Next: , Previous: Soft float library routines, Up: Libgcc

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Decimal) or BID (Binary Integer Decimal) encoding as selected at configure time.

4.3.1 Arithmetic functions

— Runtime Function: _Decimal32 __dpd_addsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal32 __bid_addsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal64 __dpd_adddd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal64 __bid_adddd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal128 __dpd_addtd3 (_Decimal128 a, _Decimal128 b)
— Runtime Function: _Decimal128 __bid_addtd3 (_Decimal128 a, _Decimal128 b)

These functions return the sum of a and b.

— Runtime Function: _Decimal32 __dpd_subsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal32 __bid_subsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal64 __dpd_subdd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal64 __bid_subdd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal128 __dpd_subtd3 (_Decimal128 a, _Decimal128 b)
— Runtime Function: _Decimal128 __bid_subtd3 (_Decimal128 a, _Decimal128 b)

These functions return the difference between b and a; that is, a - b.

— Runtime Function: _Decimal32 __dpd_mulsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal32 __bid_mulsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal64 __dpd_muldd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal64 __bid_muldd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal128 __dpd_multd3 (_Decimal128 a, _Decimal128 b)
— Runtime Function: _Decimal128 __bid_multd3 (_Decimal128 a, _Decimal128 b)

These functions return the product of a and b.

— Runtime Function: _Decimal32 __dpd_divsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32 b)
— Runtime Function: _Decimal64 __dpd_divdd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal64 __bid_divdd3 (_Decimal64 a, _Decimal64 b)
— Runtime Function: _Decimal128 __dpd_divtd3 (_Decimal128 a, _Decimal128 b)
— Runtime Function: _Decimal128 __bid_divtd3 (_Decimal128 a, _Decimal128 b)

These functions return the quotient of a and b; that is, a / b.

— Runtime Function: _Decimal32 __dpd_negsd2 (_Decimal32 a)
— Runtime Function: _Decimal32 __bid_negsd2 (_Decimal32 a)
— Runtime Function: _Decimal64 __dpd_negdd2 (_Decimal64 a)
— Runtime Function: _Decimal64 __bid_negdd2 (_Decimal64 a)
— Runtime Function: _Decimal128 __dpd_negtd2 (_Decimal128 a)
— Runtime Function: _Decimal128 __bid_negtd2 (_Decimal128 a)

These functions return the negation of a. They simply flip the sign bit, so they can produce negative zero and negative NaN.

4.3.2 Conversion functions

— Runtime Function: _Decimal64 __dpd_extendsddd2 (_Decimal32 a)
— Runtime Function: _Decimal64 __bid_extendsddd2 (_Decimal32 a)
— Runtime Function: _Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
— Runtime Function: _Decimal128 __bid_extendsdtd2 (_Decimal32 a)
— Runtime Function: _Decimal128 __dpd_extendddtd2 (_Decimal64 a)
— Runtime Function: _Decimal128 __bid_extendddtd2 (_Decimal64 a)
— Runtime Function: _Decimal32 __dpd_truncddsd2 (_Decimal64 a)
— Runtime Function: _Decimal32 __bid_truncddsd2 (_Decimal64 a)
— Runtime Function: _Decimal32 __dpd_trunctdsd2 (_Decimal128 a)
— Runtime Function: _Decimal32 __bid_trunctdsd2 (_Decimal128 a)
— Runtime Function: _Decimal64 __dpd_trunctddd2 (_Decimal128 a)
— Runtime Function: _Decimal64 __bid_trunctddd2 (_Decimal128 a)

These functions convert the value a from one decimal floating type to another.

— Runtime Function: _Decimal64 __dpd_extendsfdd (float a)
— Runtime Function: _Decimal64 __bid_extendsfdd (float a)
— Runtime Function: _Decimal128 __dpd_extendsftd (float a)
— Runtime Function: _Decimal128 __bid_extendsftd (float a)
— Runtime Function: _Decimal128 __dpd_extenddftd (double a)
— Runtime Function: _Decimal128 __bid_extenddftd (double a)
— Runtime Function: _Decimal128 __dpd_extendxftd (long double a)
— Runtime Function: _Decimal128 __bid_extendxftd (long double a)
— Runtime Function: _Decimal32 __dpd_truncdfsd (double a)
— Runtime Function: _Decimal32 __bid_truncdfsd (double a)
— Runtime Function: _Decimal32 __dpd_truncxfsd (long double a)
— Runtime Function: _Decimal32 __bid_truncxfsd (long double a)
— Runtime Function: _Decimal32 __dpd_trunctfsd (long double a)
— Runtime Function: _Decimal32 __bid_trunctfsd (long double a)
— Runtime Function: _Decimal64 __dpd_truncxfdd (long double a)
— Runtime Function: _Decimal64 __bid_truncxfdd (long double a)
— Runtime Function: _Decimal64 __dpd_trunctfdd (long double a)
— Runtime Function: _Decimal64 __bid_trunctfdd (long double a)

These functions convert the value of a from a binary floating type to a decimal floating type of a different size.

— Runtime Function: float __dpd_truncddsf (_Decimal64 a)
— Runtime Function: float __bid_truncddsf (_Decimal64 a)
— Runtime Function: float __dpd_trunctdsf (_Decimal128 a)
— Runtime Function: float __bid_trunctdsf (_Decimal128 a)
— Runtime Function: double __dpd_extendsddf (_Decimal32 a)
— Runtime Function: double __bid_extendsddf (_Decimal32 a)
— Runtime Function: double __dpd_trunctddf (_Decimal128 a)
— Runtime Function: double __bid_trunctddf (_Decimal128 a)
— Runtime Function: long double __dpd_extendsdxf (_Decimal32 a)
— Runtime Function: long double __bid_extendsdxf (_Decimal32 a)
— Runtime Function: long double __dpd_extendddxf (_Decimal64 a)
— Runtime Function: long double __bid_extendddxf (_Decimal64 a)
— Runtime Function: long double __dpd_trunctdxf (_Decimal128 a)
— Runtime Function: long double __bid_trunctdxf (_Decimal128 a)
— Runtime Function: long double __dpd_extendsdtf (_Decimal32 a)
— Runtime Function: long double __bid_extendsdtf (_Decimal32 a)
— Runtime Function: long double __dpd_extendddtf (_Decimal64 a)
— Runtime Function: long double __bid_extendddtf (_Decimal64 a)

These functions convert the value of a from a decimal floating type to a binary floating type of a different size.

— Runtime Function: _Decimal32 __dpd_extendsfsd (float a)
— Runtime Function: _Decimal32 __bid_extendsfsd (float a)
— Runtime Function: _Decimal64 __dpd_extenddfdd (double a)
— Runtime Function: _Decimal64 __bid_extenddfdd (double a)
— Runtime Function: _Decimal128 __dpd_extendtftd (long double a)
— Runtime Function: _Decimal128 __bid_extendtftd (long double a)
— Runtime Function: float __dpd_truncsdsf (_Decimal32 a)
— Runtime Function: float __bid_truncsdsf (_Decimal32 a)
— Runtime Function: double __dpd_truncdddf (_Decimal64 a)
— Runtime Function: double __bid_truncdddf (_Decimal64 a)
— Runtime Function: long double __dpd_trunctdtf (_Decimal128 a)
— Runtime Function: long double __bid_trunctdtf (_Decimal128 a)

These functions convert the value of a between decimal and binary floating types of the same size.

— Runtime Function: int __dpd_fixsdsi (_Decimal32 a)
— Runtime Function: int __bid_fixsdsi (_Decimal32 a)
— Runtime Function: int __dpd_fixddsi (_Decimal64 a)
— Runtime Function: int __bid_fixddsi (_Decimal64 a)
— Runtime Function: int __dpd_fixtdsi (_Decimal128 a)
— Runtime Function: int __bid_fixtdsi (_Decimal128 a)

These functions convert a to a signed integer.

— Runtime Function: long __dpd_fixsddi (_Decimal32 a)
— Runtime Function: long __bid_fixsddi (_Decimal32 a)
— Runtime Function: long __dpd_fixdddi (_Decimal64 a)
— Runtime Function: long __bid_fixdddi (_Decimal64 a)
— Runtime Function: long __dpd_fixtddi (_Decimal128 a)
— Runtime Function: long __bid_fixtddi (_Decimal128 a)

These functions convert a to a signed long.

— Runtime Function: unsigned int __dpd_fixunssdsi (_Decimal32 a)
— Runtime Function: unsigned int __bid_fixunssdsi (_Decimal32 a)
— Runtime Function: unsigned int __dpd_fixunsddsi (_Decimal64 a)
— Runtime Function: unsigned int __bid_fixunsddsi (_Decimal64 a)
— Runtime Function: unsigned int __dpd_fixunstdsi (_Decimal128 a)
— Runtime Function: unsigned int __bid_fixunstdsi (_Decimal128 a)

These functions convert a to an unsigned integer. Negative values all become zero.

— Runtime Function: unsigned long __dpd_fixunssddi (_Decimal32 a)
— Runtime Function: unsigned long __bid_fixunssddi (_Decimal32 a)
— Runtime Function: unsigned long __dpd_fixunsdddi (_Decimal64 a)
— Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 a)
— Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 a)
— Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 a)

These functions convert a to an unsigned long. Negative values all become zero.

— Runtime Function: _Decimal32 __dpd_floatsisd (int i)
— Runtime Function: _Decimal32 __bid_floatsisd (int i)
— Runtime Function: _Decimal64 __dpd_floatsidd (int i)
— Runtime Function: _Decimal64 __bid_floatsidd (int i)
— Runtime Function: _Decimal128 __dpd_floatsitd (int i)
— Runtime Function: _Decimal128 __bid_floatsitd (int i)

These functions convert i, a signed integer, to decimal floating point.

— Runtime Function: _Decimal32 __dpd_floatdisd (long i)
— Runtime Function: _Decimal32 __bid_floatdisd (long i)
— Runtime Function: _Decimal64 __dpd_floatdidd (long i)
— Runtime Function: _Decimal64 __bid_floatdidd (long i)
— Runtime Function: _Decimal128 __dpd_floatditd (long i)
— Runtime Function: _Decimal128 __bid_floatditd (long i)

These functions convert i, a signed long, to decimal floating point.

— Runtime Function: _Decimal32 __dpd_floatunssisd (unsigned int i)
— Runtime Function: _Decimal32 __bid_floatunssisd (unsigned int i)
— Runtime Function: _Decimal64 __dpd_floatunssidd (unsigned int i)
— Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int i)
— Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int i)
— Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int i)

These functions convert i, an unsigned integer, to decimal floating point.

— Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long i)
— Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long i)
— Runtime Function: _Decimal64 __dpd_floatunsdidd (unsigned long i)
— Runtime Function: _Decimal64 __bid_floatunsdidd (unsigned long i)
— Runtime Function: _Decimal128 __dpd_floatunsditd (unsigned long i)
— Runtime Function: _Decimal128 __bid_floatunsditd (unsigned long i)

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

— Runtime Function: int __dpd_unordsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_unordsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_unorddd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_unorddd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_unordtd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_unordtd2 (_Decimal128 a, _Decimal128 b)

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to comparison operators. They implement the ISO C semantics for floating-point comparisons, taking NaN into account. Pay careful attention to the return values defined for each set. Under the hood, all of these routines are implemented as

       if (__bid_unordXd2 (a, b))
         return E;
       return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning of the return value is different for each set. Do not rely on this implementation; only the semantics documented below are guaranteed.

— Runtime Function: int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_eqsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_eqdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_eqtd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_eqtd2 (_Decimal128 a, _Decimal128 b)

These functions return zero if neither argument is NaN, and a and b are equal.

— Runtime Function: int __dpd_nesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_netd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_netd2 (_Decimal128 a, _Decimal128 b)

These functions return a nonzero value if either argument is NaN, or if a and b are unequal.

— Runtime Function: int __dpd_gesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_gesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_gedd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_gedd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_getd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_getd2 (_Decimal128 a, _Decimal128 b)

These functions return a value greater than or equal to zero if neither argument is NaN, and a is greater than or equal to b.

— Runtime Function: int __dpd_ltsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_ltsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_ltdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_ltdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_lttd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_lttd2 (_Decimal128 a, _Decimal128 b)

These functions return a value less than zero if neither argument is NaN, and a is strictly less than b.

— Runtime Function: int __dpd_lesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_lesd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_ledd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_ledd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_letd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_letd2 (_Decimal128 a, _Decimal128 b)

These functions return a value less than or equal to zero if neither argument is NaN, and a is less than or equal to b.

— Runtime Function: int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __bid_gtsd2 (_Decimal32 a, _Decimal32 b)
— Runtime Function: int __dpd_gtdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __bid_gtdd2 (_Decimal64 a, _Decimal64 b)
— Runtime Function: int __dpd_gttd2 (_Decimal128 a, _Decimal128 b)
— Runtime Function: int __bid_gttd2 (_Decimal128 a, _Decimal128 b)

These functions return a value greater than zero if neither argument is NaN, and a is strictly greater than b.


Next: , Previous: Decimal float library routines, Up: Libgcc

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for _Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is assumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode. Similarly the fixed-point accumulator type short accum corresponds to HAmode; unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode; long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode; and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

— Runtime Function: short fract __addqq3 (short fract a, short fract b)
— Runtime Function: fract __addhq3 (fract a, fract b)
— Runtime Function: long fract __addsq3 (long fract a, long fract b)
— Runtime Function: long long fract __adddq3 (long long fract a, long long fract b)
— Runtime Function: unsigned short fract __adduqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __adduhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __addusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __addudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: short accum __addha3 (short accum a, short accum b)
— Runtime Function: accum __addsa3 (accum a, accum b)
— Runtime Function: long accum __addda3 (long accum a, long accum b)
— Runtime Function: long long accum __addta3 (long long accum a, long long accum b)
— Runtime Function: unsigned short accum __adduha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __addusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __adduda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __adduta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the sum of a and b.

— Runtime Function: short fract __ssaddqq3 (short fract a, short fract b)
— Runtime Function: fract __ssaddhq3 (fract a, fract b)
— Runtime Function: long fract __ssaddsq3 (long fract a, long fract b)
— Runtime Function: long long fract __ssadddq3 (long long fract a, long long fract b)
— Runtime Function: short accum __ssaddha3 (short accum a, short accum b)
— Runtime Function: accum __ssaddsa3 (accum a, accum b)
— Runtime Function: long accum __ssaddda3 (long accum a, long accum b)
— Runtime Function: long long accum __ssaddta3 (long long accum a, long long accum b)

These functions return the sum of a and b with signed saturation.

— Runtime Function: unsigned short fract __usadduqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __usadduhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __usaddusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __usaddudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: unsigned short accum __usadduha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __usaddusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __usadduda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __usadduta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the sum of a and b with unsigned saturation.

— Runtime Function: short fract __subqq3 (short fract a, short fract b)
— Runtime Function: fract __subhq3 (fract a, fract b)
— Runtime Function: long fract __subsq3 (long fract a, long fract b)
— Runtime Function: long long fract __subdq3 (long long fract a, long long fract b)
— Runtime Function: unsigned short fract __subuqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __subuhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __subusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __subudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: short accum __subha3 (short accum a, short accum b)
— Runtime Function: accum __subsa3 (accum a, accum b)
— Runtime Function: long accum __subda3 (long accum a, long accum b)
— Runtime Function: long long accum __subta3 (long long accum a, long long accum b)
— Runtime Function: unsigned short accum __subuha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __subusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __subuda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __subuta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the difference of a and b; that is, a - b.

— Runtime Function: short fract __sssubqq3 (short fract a, short fract b)
— Runtime Function: fract __sssubhq3 (fract a, fract b)
— Runtime Function: long fract __sssubsq3 (long fract a, long fract b)
— Runtime Function: long long fract __sssubdq3 (long long fract a, long long fract b)
— Runtime Function: short accum __sssubha3 (short accum a, short accum b)
— Runtime Function: accum __sssubsa3 (accum a, accum b)
— Runtime Function: long accum __sssubda3 (long accum a, long accum b)
— Runtime Function: long long accum __sssubta3 (long long accum a, long long accum b)

These functions return the difference of a and b with signed saturation; that is, a - b.

— Runtime Function: unsigned short fract __ussubuqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __ussubuhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __ussubusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __ussubudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: unsigned short accum __ussubuha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __ussubusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __ussubuda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __ussubuta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the difference of a and b with unsigned saturation; that is, a - b.

— Runtime Function: short fract __mulqq3 (short fract a, short fract b)
— Runtime Function: fract __mulhq3 (fract a, fract b)
— Runtime Function: long fract __mulsq3 (long fract a, long fract b)
— Runtime Function: long long fract __muldq3 (long long fract a, long long fract b)
— Runtime Function: unsigned short fract __muluqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __muluhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __mulusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __muludq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: short accum __mulha3 (short accum a, short accum b)
— Runtime Function: accum __mulsa3 (accum a, accum b)
— Runtime Function: long accum __mulda3 (long accum a, long accum b)
— Runtime Function: long long accum __multa3 (long long accum a, long long accum b)
— Runtime Function: unsigned short accum __muluha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __mulusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __muluda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __muluta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the product of a and b.

— Runtime Function: short fract __ssmulqq3 (short fract a, short fract b)
— Runtime Function: fract __ssmulhq3 (fract a, fract b)
— Runtime Function: long fract __ssmulsq3 (long fract a, long fract b)
— Runtime Function: long long fract __ssmuldq3 (long long fract a, long long fract b)
— Runtime Function: short accum __ssmulha3 (short accum a, short accum b)
— Runtime Function: accum __ssmulsa3 (accum a, accum b)
— Runtime Function: long accum __ssmulda3 (long accum a, long accum b)
— Runtime Function: long long accum __ssmulta3 (long long accum a, long long accum b)

These functions return the product of a and b with signed saturation.

— Runtime Function: unsigned short fract __usmuluqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __usmuluhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __usmulusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __usmuludq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: unsigned short accum __usmuluha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __usmulusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __usmuluda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __usmuluta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the product of a and b with unsigned saturation.

— Runtime Function: short fract __divqq3 (short fract a, short fract b)
— Runtime Function: fract __divhq3 (fract a, fract b)
— Runtime Function: long fract __divsq3 (long fract a, long fract b)
— Runtime Function: long long fract __divdq3 (long long fract a, long long fract b)
— Runtime Function: short accum __divha3 (short accum a, short accum b)
— Runtime Function: accum __divsa3 (accum a, accum b)
— Runtime Function: long accum __divda3 (long accum a, long accum b)
— Runtime Function: long long accum __divta3 (long long accum a, long long accum b)

These functions return the quotient of the signed division of a and b.

— Runtime Function: unsigned short fract __udivuqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __udivuhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __udivusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __udivudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: unsigned short accum __udivuha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __udivusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __udivuda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __udivuta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b.

— Runtime Function: short fract __ssdivqq3 (short fract a, short fract b)
— Runtime Function: fract __ssdivhq3 (fract a, fract b)
— Runtime Function: long fract __ssdivsq3 (long fract a, long fract b)
— Runtime Function: long long fract __ssdivdq3 (long long fract a, long long fract b)
— Runtime Function: short accum __ssdivha3 (short accum a, short accum b)
— Runtime Function: accum __ssdivsa3 (accum a, accum b)
— Runtime Function: long accum __ssdivda3 (long accum a, long accum b)
— Runtime Function: long long accum __ssdivta3 (long long accum a, long long accum b)

These functions return the quotient of the signed division of a and b with signed saturation.

— Runtime Function: unsigned short fract __usdivuqq3 (unsigned short fract a, unsigned short fract b)
— Runtime Function: unsigned fract __usdivuhq3 (unsigned fract a, unsigned fract b)
— Runtime Function: unsigned long fract __usdivusq3 (unsigned long fract a, unsigned long fract b)
— Runtime Function: unsigned long long fract __usdivudq3 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: unsigned short accum __usdivuha3 (unsigned short accum a, unsigned short accum b)
— Runtime Function: unsigned accum __usdivusa3 (unsigned accum a, unsigned accum b)
— Runtime Function: unsigned long accum __usdivuda3 (unsigned long accum a, unsigned long accum b)
— Runtime Function: unsigned long long accum __usdivuta3 (unsigned long long accum a, unsigned long long accum b)

These functions return the quotient of the unsigned division of a and b with unsigned saturation.

— Runtime Function: short fract __negqq2 (short fract a)
— Runtime Function: fract __neghq2 (fract a)
— Runtime Function: long fract __negsq2 (long fract a)
— Runtime Function: long long fract __negdq2 (long long fract a)
— Runtime Function: unsigned short fract __neguqq2 (unsigned short fract a)
— Runtime Function: unsigned fract __neguhq2 (unsigned fract a)
— Runtime Function: unsigned long fract __negusq2 (unsigned long fract a)
— Runtime Function: unsigned long long fract __negudq2 (unsigned long long fract a)
— Runtime Function: short accum __negha2 (short accum a)
— Runtime Function: accum __negsa2 (accum a)
— Runtime Function: long accum __negda2 (long accum a)
— Runtime Function: long long accum __negta2 (long long accum a)
— Runtime Function: unsigned short accum __neguha2 (unsigned short accum a)
— Runtime Function: unsigned accum __negusa2 (unsigned accum a)
— Runtime Function: unsigned long accum __neguda2 (unsigned long accum a)
— Runtime Function: unsigned long long accum __neguta2 (unsigned long long accum a)

These functions return the negation of a.

— Runtime Function: short fract __ssnegqq2 (short fract a)
— Runtime Function: fract __ssneghq2 (fract a)
— Runtime Function: long fract __ssnegsq2 (long fract a)
— Runtime Function: long long fract __ssnegdq2 (long long fract a)
— Runtime Function: short accum __ssnegha2 (short accum a)
— Runtime Function: accum __ssnegsa2 (accum a)
— Runtime Function: long accum __ssnegda2 (long accum a)
— Runtime Function: long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

— Runtime Function: unsigned short fract __usneguqq2 (unsigned short fract a)
— Runtime Function: unsigned fract __usneguhq2 (unsigned fract a)
— Runtime Function: unsigned long fract __usnegusq2 (unsigned long fract a)
— Runtime Function: unsigned long long fract __usnegudq2 (unsigned long long fract a)
— Runtime Function: unsigned short accum __usneguha2 (unsigned short accum a)
— Runtime Function: unsigned accum __usnegusa2 (unsigned accum a)
— Runtime Function: unsigned long accum __usneguda2 (unsigned long accum a)
— Runtime Function: unsigned long long accum __usneguta2 (unsigned long long accum a)

These functions return the negation of a with unsigned saturation.

— Runtime Function: short fract __ashlqq3 (short fract a, int b)
— Runtime Function: fract __ashlhq3 (fract a, int b)
— Runtime Function: long fract __ashlsq3 (long fract a, int b)
— Runtime Function: long long fract __ashldq3 (long long fract a, int b)
— Runtime Function: unsigned short fract __ashluqq3 (unsigned short fract a, int b)
— Runtime Function: unsigned fract __ashluhq3 (unsigned fract a, int b)
— Runtime Function: unsigned long fract __ashlusq3 (unsigned long fract a, int b)
— Runtime Function: unsigned long long fract __ashludq3 (unsigned long long fract a, int b)
— Runtime Function: short accum __ashlha3 (short accum a, int b)
— Runtime Function: accum __ashlsa3 (accum a, int b)
— Runtime Function: long accum __ashlda3 (long accum a, int b)
— Runtime Function: long long accum __ashlta3 (long long accum a, int b)
— Runtime Function: unsigned short accum __ashluha3 (unsigned short accum a, int b)
— Runtime Function: unsigned accum __ashlusa3 (unsigned accum a, int b)
— Runtime Function: unsigned long accum __ashluda3 (unsigned long accum a, int b)
— Runtime Function: unsigned long long accum __ashluta3 (unsigned long long accum a, int b)

These functions return the result of shifting a left by b bits.

— Runtime Function: short fract __ashrqq3 (short fract a, int b)
— Runtime Function: fract __ashrhq3 (fract a, int b)
— Runtime Function: long fract __ashrsq3 (long fract a, int b)
— Runtime Function: long long fract __ashrdq3 (long long fract a, int b)
— Runtime Function: short accum __ashrha3 (short accum a, int b)
— Runtime Function: accum __ashrsa3 (accum a, int b)
— Runtime Function: long accum __ashrda3 (long accum a, int b)
— Runtime Function: long long accum __ashrta3 (long long accum a, int b)

These functions return the result of arithmetically shifting a right by b bits.

— Runtime Function: unsigned short fract __lshruqq3 (unsigned short fract a, int b)
— Runtime Function: unsigned fract __lshruhq3 (unsigned fract a, int b)
— Runtime Function: unsigned long fract __lshrusq3 (unsigned long fract a, int b)
— Runtime Function: unsigned long long fract __lshrudq3 (unsigned long long fract a, int b)
— Runtime Function: unsigned short accum __lshruha3 (unsigned short accum a, int b)
— Runtime Function: unsigned accum __lshrusa3 (unsigned accum a, int b)
— Runtime Function: unsigned long accum __lshruda3 (unsigned long accum a, int b)
— Runtime Function: unsigned long long accum __lshruta3 (unsigned long long accum a, int b)

These functions return the result of logically shifting a right by b bits.

— Runtime Function: fract __ssashlhq3 (fract a, int b)
— Runtime Function: long fract __ssashlsq3 (long fract a, int b)
— Runtime Function: long long fract __ssashldq3 (long long fract a, int b)
— Runtime Function: short accum __ssashlha3 (short accum a, int b)
— Runtime Function: accum __ssashlsa3 (accum a, int b)
— Runtime Function: long accum __ssashlda3 (long accum a, int b)
— Runtime Function: long long accum __ssashlta3 (long long accum a, int b)

These functions return the result of shifting a left by b bits with signed saturation.

— Runtime Function: unsigned short fract __usashluqq3 (unsigned short fract a, int b)
— Runtime Function: unsigned fract __usashluhq3 (unsigned fract a, int b)
— Runtime Function: unsigned long fract __usashlusq3 (unsigned long fract a, int b)
— Runtime Function: unsigned long long fract __usashludq3 (unsigned long long fract a, int b)
— Runtime Function: unsigned short accum __usashluha3 (unsigned short accum a, int b)
— Runtime Function: unsigned accum __usashlusa3 (unsigned accum a, int b)
— Runtime Function: unsigned long accum __usashluda3 (unsigned long accum a, int b)
— Runtime Function: unsigned long long accum __usashluta3 (unsigned long long accum a, int b)

These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a low-level compare, upon which the higher level comparison operators (such as less than and greater than or equal to) can be constructed. The returned values lie in the range zero to two, to allow the high-level operators to be implemented by testing the returned result using either signed or unsigned comparison.

— Runtime Function: int __cmpqq2 (short fract a, short fract b)
— Runtime Function: int __cmphq2 (fract a, fract b)
— Runtime Function: int __cmpsq2 (long fract a, long fract b)
— Runtime Function: int __cmpdq2 (long long fract a, long long fract b)
— Runtime Function: int __cmpuqq2 (unsigned short fract a, unsigned short fract b)
— Runtime Function: int __cmpuhq2 (unsigned fract a, unsigned fract b)
— Runtime Function: int __cmpusq2 (unsigned long fract a, unsigned long fract b)
— Runtime Function: int __cmpudq2 (unsigned long long fract a, unsigned long long fract b)
— Runtime Function: int __cmpha2 (short accum a, short accum b)
— Runtime Function: int __cmpsa2 (accum a, accum b)
— Runtime Function: int __cmpda2 (long accum a, long accum b)
— Runtime Function: int __cmpta2 (long long accum a, long long accum b)
— Runtime Function: int __cmpuha2 (unsigned short accum a, unsigned short accum b)
— Runtime Function: int __cmpusa2 (unsigned accum a, unsigned accum b)
— Runtime Function: int __cmpuda2 (unsigned long accum a, unsigned long accum b)
— Runtime Function: int __cmputa2 (unsigned long long accum a, unsigned long long accum b)

These functions perform a signed or unsigned comparison of a and b (depending on the selected machine mode). If a is less than b, they return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

— Runtime Function: fract __fractqqhq2 (short fract a)
— Runtime Function: long fract __fractqqsq2 (short fract a)
— Runtime Function: long long fract __fractqqdq2 (short fract a)
— Runtime Function: short accum __fractqqha (short fract a)
— Runtime Function: accum __fractqqsa (short fract a)
— Runtime Function: long accum __fractqqda (short fract a)
— Runtime Function: long long accum __fractqqta (short fract a)
— Runtime Function: unsigned short fract __fractqquqq (short fract a)
— Runtime Function: unsigned fract __fractqquhq (short fract a)
— Runtime Function: unsigned long fract __fractqqusq (short fract a)
— Runtime Function: unsigned long long fract __fractqqudq (short fract a)
— Runtime Function: unsigned short accum __fractqquha (short fract a)
— Runtime Function: unsigned accum __fractqqusa (short fract a)
— Runtime Function: unsigned long accum __fractqquda (short fract a)
— Runtime Function: unsigned long long accum __fractqquta (short fract a)
— Runtime Function: signed char __fractqqqi (short fract a)
— Runtime Function: short __fractqqhi (short fract a)
— Runtime Function: int __fractqqsi (short fract a)
— Runtime Function: long __fractqqdi (short fract a)
— Runtime Function: long long __fractqqti (short fract a)
— Runtime Function: float __fractqqsf (short fract a)
— Runtime Function: double __fractqqdf (short fract a)
— Runtime Function: short fract __fracthqqq2 (fract a)
— Runtime Function: long fract __fracthqsq2 (fract a)
— Runtime Function: long long fract __fracthqdq2 (fract a)
— Runtime Function: short accum __fracthqha (fract a)
— Runtime Function: accum __fracthqsa (fract a)
— Runtime Function: long accum __fracthqda (fract a)
— Runtime Function: long long accum __fracthqta (fract a)
— Runtime Function: unsigned short fract __fracthquqq (fract a)
— Runtime Function: unsigned fract __fracthquhq (fract a)
— Runtime Function: unsigned long fract __fracthqusq (fract a)
— Runtime Function: unsigned long long fract __fracthqudq (fract a)
— Runtime Function: unsigned short accum __fracthquha (fract a)
— Runtime Function: unsigned accum __fracthqusa (fract a)
— Runtime Function: unsigned long accum __fracthquda (fract a)
— Runtime Function: unsigned long long accum __fracthquta (fract a)
— Runtime Function: signed char __fracthqqi (fract a)
— Runtime Function: short __fracthqhi (fract a)
— Runtime Function: int __fracthqsi (fract a)
— Runtime Function: long __fracthqdi (fract a)
— Runtime Function: long long __fracthqti (fract a)
— Runtime Function: float __fracthqsf (fract a)
— Runtime Function: double __fracthqdf (fract a)
— Runtime Function: short fract __fractsqqq2 (long fract a)
— Runtime Function: fract __fractsqhq2 (long fract a)
— Runtime Function: long long fract __fractsqdq2 (long fract a)
— Runtime Function: short accum __fractsqha (long fract a)
— Runtime Function: accum __fractsqsa (long fract a)
— Runtime Function: long accum __fractsqda (long fract a)
— Runtime Function: long long accum __fractsqta (long fract a)
— Runtime Function: unsigned short fract __fractsquqq (long fract a)
— Runtime Function: unsigned fract __fractsquhq (long fract a)
— Runtime Function: unsigned long fract __fractsqusq (long fract a)
— Runtime Function: unsigned long long fract __fractsqudq (long fract a)
— Runtime Function: unsigned short accum __fractsquha (long fract a)
— Runtime Function: unsigned accum __fractsqusa (long fract a)
— Runtime Function: unsigned long accum __fractsquda (long fract a)
— Runtime Function: unsigned long long accum __fractsquta (long fract a)
— Runtime Function: signed char __fractsqqi (long fract a)
— Runtime Function: short __fractsqhi (long fract a)
— Runtime Function: int __fractsqsi (long fract a)
— Runtime Function: long __fractsqdi (long fract a)
— Runtime Function: long long __fractsqti (long fract a)
— Runtime Function: float __fractsqsf (long fract a)
— Runtime Function: double __fractsqdf (long fract a)
— Runtime Function: short fract __fractdqqq2 (long long fract a)
— Runtime Function: fract __fractdqhq2 (long long fract a)
— Runtime Function: long fract __fractdqsq2 (long long fract a)
— Runtime Function: short accum __fractdqha (long long fract a)
— Runtime Function: accum __fractdqsa (long long fract a)
— Runtime Function: long accum __fractdqda (long long fract a)
— Runtime Function: long long accum __fractdqta (long long fract a)
— Runtime Function: unsigned short fract __fractdquqq (long long fract a)
— Runtime Function: unsigned fract __fractdquhq (long long fract a)
— Runtime Function: unsigned long fract __fractdqusq (long long fract a)
— Runtime Function: unsigned long long fract __fractdqudq (long long fract a)
— Runtime Function: unsigned short accum __fractdquha (long long fract a)
— Runtime Function: unsigned accum __fractdqusa (long long fract a)
— Runtime Function: unsigned long accum __fractdquda (long long fract a)
— Runtime Function: unsigned long long accum __fractdquta (long long fract a)
— Runtime Function: signed char __fractdqqi (long long fract a)
— Runtime Function: short __fractdqhi (long long fract a)
— Runtime Function: int __fractdqsi (long long fract a)
— Runtime Function: long __fractdqdi (long long fract a)
— Runtime Function: long long __fractdqti (long long fract a)
— Runtime Function: float __fractdqsf (long long fract a)
— Runtime Function: double __fractdqdf (long long fract a)
— Runtime Function: short fract __fracthaqq (short accum a)
— Runtime Function: fract __fracthahq (short accum a)
— Runtime Function: long fract __fracthasq (short accum a)
— Runtime Function: long long fract __fracthadq (short accum a)
— Runtime Function: accum __fracthasa2 (short accum a)
— Runtime Function: long accum __fracthada2 (short accum a)
— Runtime Function: long long accum __fracthata2 (short accum a)
— Runtime Function: unsigned short fract __fracthauqq (short accum a)
— Runtime Function: unsigned fract __fracthauhq (short accum a)
— Runtime Function: unsigned long fract __fracthausq (short accum a)
— Runtime Function: unsigned long long fract __fracthaudq (short accum a)
— Runtime Function: unsigned short accum __fracthauha (short accum a)
— Runtime Function: unsigned accum __fracthausa (short accum a)
— Runtime Function: unsigned long accum __fracthauda (short accum a)
— Runtime Function: unsigned long long accum __fracthauta (short accum a)
— Runtime Function: signed char __fracthaqi (short accum a)
— Runtime Function: short __fracthahi (short accum a)
— Runtime Function: int __fracthasi (short accum a)
— Runtime Function: long __fracthadi (short accum a)
— Runtime Function: long long __fracthati (short accum a)
— Runtime Function: float __fracthasf (short accum a)
— Runtime Function: double __fracthadf (short accum a)
— Runtime Function: short fract __fractsaqq (accum a)
— Runtime Function: fract __fractsahq (accum a)
— Runtime Function: long fract __fractsasq (accum a)
— Runtime Function: long long fract __fractsadq (accum a)
— Runtime Function: short accum __fractsaha2 (accum a)
— Runtime Function: long accum __fractsada2 (accum a)
— Runtime Function: long long accum __fractsata2 (accum a)
— Runtime Function: unsigned short fract __fractsauqq (accum a)
— Runtime Function: unsigned fract __fractsauhq (accum a)
— Runtime Function: unsigned long fract __fractsausq (accum a)
— Runtime Function: unsigned long long fract __fractsaudq (accum a)
— Runtime Function: unsigned short accum __fractsauha (accum a)
— Runtime Function: unsigned accum __fractsausa (accum a)
— Runtime Function: unsigned long accum __fractsauda (accum a)
— Runtime Function: unsigned long long accum __fractsauta (accum a)
— Runtime Function: signed char __fractsaqi (accum a)
— Runtime Function: short __fractsahi (accum a)
— Runtime Function: int __fractsasi (accum a)
— Runtime Function: long __fractsadi (accum a)
— Runtime Function: long long __fractsati (accum a)
— Runtime Function: float __fractsasf (accum a)
— Runtime Function: double __fractsadf (accum a)
— Runtime Function: short fract __fractdaqq (long accum a)
— Runtime Function: fract __fractdahq (long accum a)
— Runtime Function: long fract __fractdasq (long accum a)
— Runtime Function: long long fract __fractdadq (long accum a)
— Runtime Function: short accum __fractdaha2 (long accum a)
— Runtime Function: accum __fractdasa2 (long accum a)
— Runtime Function: long long accum __fractdata2 (long accum a)
— Runtime Function: unsigned short fract __fractdauqq (long accum a)
— Runtime Function: unsigned fract __fractdauhq (long accum a)
— Runtime Function: unsigned long fract __fractdausq (long accum a)
— Runtime Function: unsigned long long fract __fractdaudq (long accum a)
— Runtime Function: unsigned short accum __fractdauha (long accum a)
— Runtime Function: unsigned accum __fractdausa (long accum a)
— Runtime Function: unsigned long accum __fractdauda (long accum a)
— Runtime Function: unsigned long long accum __fractdauta (long accum a)
— Runtime Function: signed char __fractdaqi (long accum a)
— Runtime Function: short __fractdahi (long accum a)
— Runtime Function: int __fractdasi (long accum a)
— Runtime Function: long __fractdadi (long accum a)
— Runtime Function: long long __fractdati (long accum a)
— Runtime Function: float __fractdasf (long accum a)
— Runtime Function: double __fractdadf (long accum a)
— Runtime Function: short fract __fracttaqq (long long accum a)
— Runtime Function: fract __fracttahq (long long accum a)
— Runtime Function: long fract __fracttasq (long long accum a)
— Runtime Function: long long fract __fracttadq (long long accum a)
— Runtime Function: short accum __fracttaha2 (long long accum a)
— Runtime Function: accum __fracttasa2 (long long accum a)
— Runtime Function: long accum __fracttada2 (long long accum a)
— Runtime Function: unsigned short fract __fracttauqq (long long accum a)
— Runtime Function: unsigned fract __fracttauhq (long long accum a)
— Runtime Function: unsigned long fract __fracttausq (long long accum a)
— Runtime Function: unsigned long long fract __fracttaudq (long long accum a)
— Runtime Function: unsigned short accum __fracttauha (long long accum a)
— Runtime Function: unsigned accum __fracttausa (long long accum a)
— Runtime Function: unsigned long accum __fracttauda (long long accum a)
— Runtime Function: unsigned long long accum __fracttauta (long long accum a)
— Runtime Function: signed char __fracttaqi (long long accum a)
— Runtime Function: short __fracttahi (long long accum a)
— Runtime Function: int __fracttasi (long long accum a)
— Runtime Function: long __fracttadi (long long accum a)
— Runtime Function: long long __fracttati (long long accum a)
— Runtime Function: float __fracttasf (long long accum a)
— Runtime Function: double __fracttadf (long long accum a)
— Runtime Function: short fract __fractuqqqq (unsigned short fract a)
— Runtime Function: fract __fractuqqhq (unsigned short fract a)
— Runtime Function: long fract __fractuqqsq (unsigned short fract a)
— Runtime Function: long long fract __fractuqqdq (unsigned short fract a)
— Runtime Function: short accum __fractuqqha (unsigned short fract a)
— Runtime Function: accum __fractuqqsa (unsigned short fract a)
— Runtime Function: long accum __fractuqqda (unsigned short fract a)
— Runtime Function: long long accum __fractuqqta (unsigned short fract a)
— Runtime Function: unsigned fract __fractuqquhq2 (unsigned short fract a)
— Runtime Function: unsigned long fract __fractuqqusq2 (unsigned short fract a)
— Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned short fract a)
— Runtime Function: unsigned short accum __fractuqquha (unsigned short fract a)
— Runtime Function: unsigned accum __fractuqqusa (unsigned short fract a)
— Runtime Function: unsigned long accum __fractuqquda (unsigned short fract a)
— Runtime Function: unsigned long long accum __fractuqquta (unsigned short fract a)
— Runtime Function: signed char __fractuqqqi (unsigned short fract a)
— Runtime Function: short __fractuqqhi (unsigned short fract a)
— Runtime Function: int __fractuqqsi (unsigned short fract a)
— Runtime Function: long __fractuqqdi (unsigned short fract a)
— Runtime Function: long long __fractuqqti (unsigned short fract a)
— Runtime Function: float __fractuqqsf (unsigned short fract a)
— Runtime Function: double __fractuqqdf (unsigned short fract a)
— Runtime Function: short fract __fractuhqqq (unsigned fract a)
— Runtime Function: fract __fractuhqhq (unsigned fract a)
— Runtime Function: long fract __fractuhqsq (unsigned fract a)
— Runtime Function: long long fract __fractuhqdq (unsigned fract a)
— Runtime Function: short accum __fractuhqha (unsigned fract a)
— Runtime Function: accum __fractuhqsa (unsigned fract a)
— Runtime Function: long accum __fractuhqda (unsigned fract a)
— Runtime Function: long long accum __fractuhqta (unsigned fract a)
— Runtime Function: unsigned short fract __fractuhquqq2 (unsigned fract a)
— Runtime Function: unsigned long fract __fractuhqusq2 (unsigned fract a)
— Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned fract a)
— Runtime Function: unsigned short accum __fractuhquha (unsigned fract a)
— Runtime Function: unsigned accum __fractuhqusa (unsigned fract a)
— Runtime Function: unsigned long accum __fractuhquda (unsigned fract a)
— Runtime Function: unsigned long long accum __fractuhquta (unsigned fract a)
— Runtime Function: signed char __fractuhqqi (unsigned fract a)
— Runtime Function: short __fractuhqhi (unsigned fract a)
— Runtime Function: int __fractuhqsi (unsigned fract a)
— Runtime Function: long __fractuhqdi (unsigned fract a)
— Runtime Function: long long __fractuhqti (unsigned fract a)
— Runtime Function: float __fractuhqsf (unsigned fract a)
— Runtime Function: double __fractuhqdf (unsigned fract a)
— Runtime Function: short fract __fractusqqq (unsigned long fract a)
— Runtime Function: fract __fractusqhq (unsigned long fract a)
— Runtime Function: long fract __fractusqsq (unsigned long fract a)
— Runtime Function: long long fract __fractusqdq (unsigned long fract a)
— Runtime Function: short accum __fractusqha (unsigned long fract a)
— Runtime Function: accum __fractusqsa (unsigned long fract a)
— Runtime Function: long accum __fractusqda (unsigned long fract a)
— Runtime Function: long long accum __fractusqta (unsigned long fract a)
— Runtime Function: unsigned short fract __fractusquqq2 (unsigned long fract a)
— Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract a)
— Runtime Function: unsigned long long fract __fractusqudq2 (unsigned long fract a)
— Runtime Function: unsigned short accum __fractusquha (unsigned long fract a)
— Runtime Function: unsigned accum __fractusqusa (unsigned long fract a)
— Runtime Function: unsigned long accum __fractusquda (unsigned long fract a)
— Runtime Function: unsigned long long accum __fractusquta (unsigned long fract a)
— Runtime Function: signed char __fractusqqi (unsigned long fract a)
— Runtime Function: short __fractusqhi (unsigned long fract a)
— Runtime Function: int __fractusqsi (unsigned long fract a)
— Runtime Function: long __fractusqdi (unsigned long fract a)
— Runtime Function: long long __fractusqti (unsigned long fract a)
— Runtime Function: float __fractusqsf (unsigned long fract a)
— Runtime Function: double __fractusqdf (unsigned long fract a)
— Runtime Function: short fract __fractudqqq (unsigned long long fract a)
— Runtime Function: fract __fractudqhq (unsigned long long fract a)
— Runtime Function: long fract __fractudqsq (unsigned long long fract a)
— Runtime Function: long long fract __fractudqdq (unsigned long long fract a)
— Runtime Function: short accum __fractudqha (unsigned long long fract a)
— Runtime Function: accum __fractudqsa (unsigned long long fract a)
— Runtime Function: long accum __fractudqda (unsigned long long fract a)
— Runtime Function: long long accum __fractudqta (unsigned long long fract a)
— Runtime Function: unsigned short fract __fractudquqq2 (unsigned long long fract a)
— Runtime Function: unsigned fract __fractudquhq2 (unsigned long long fract a)
— Runtime Function: unsigned long fract __fractudqusq2 (unsigned long long fract a)
— Runtime Function: unsigned short accum __fractudquha (unsigned long long fract a)
— Runtime Function: unsigned accum __fractudqusa (unsigned long long fract a)
— Runtime Function: unsigned long accum __fractudquda (unsigned long long fract a)
— Runtime Function: unsigned long long accum __fractudquta (unsigned long long fract a)
— Runtime Function: signed char __fractudqqi (unsigned long long fract a)
— Runtime Function: short __fractudqhi (unsigned long long fract a)
— Runtime Function: int __fractudqsi (unsigned long long fract a)
— Runtime Function: long __fractudqdi (unsigned long long fract a)
— Runtime Function: long long __fractudqti (unsigned long long fract a)
— Runtime Function: float __fractudqsf (unsigned long long fract a)
— Runtime Function: double __fractudqdf (unsigned long long fract a)
— Runtime Function: short fract __fractuhaqq (unsigned short accum a)
— Runtime Function: fract __fractuhahq (unsigned short accum a)
— Runtime Function: long fract __fractuhasq (unsigned short accum a)
— Runtime Function: long long fract __fractuhadq (unsigned short accum a)
— Runtime Function: short accum __fractuhaha (unsigned short accum a)
— Runtime Function: accum __fractuhasa (unsigned short accum a)
— Runtime Function: long accum __fractuhada (unsigned short accum a)
— Runtime Function: long long accum __fractuhata (unsigned short accum a)
— Runtime Function: unsigned short fract __fractuhauqq (unsigned short accum a)
— Runtime Function: unsigned fract __fractuhauhq (unsigned short accum a)
— Runtime Function: unsigned long fract __fractuhausq (unsigned short accum a)
— Runtime Function: unsigned long long fract __fractuhaudq (unsigned short accum a)
— Runtime Function: unsigned accum __fractuhausa2 (unsigned short accum a)
— Runtime Function: unsigned long accum __fractuhauda2 (unsigned short accum a)
— Runtime Function: unsigned long long accum __fractuhauta2 (unsigned short accum a)
— Runtime Function: signed char __fractuhaqi (unsigned short accum a)
— Runtime Function: short __fractuhahi (unsigned short accum a)
— Runtime Function: int __fractuhasi (unsigned short accum a)
— Runtime Function: long __fractuhadi (unsigned short accum a)
— Runtime Function: long long __fractuhati (unsigned short accum a)
— Runtime Function: float __fractuhasf (unsigned short accum a)
— Runtime Function: double __fractuhadf (unsigned short accum a)
— Runtime Function: short fract __fractusaqq (unsigned accum a)
— Runtime Function: fract __fractusahq (unsigned accum a)
— Runtime Function: long fract __fractusasq (unsigned accum a)
— Runtime Function: long long fract __fractusadq (unsigned accum a)
— Runtime Function: short accum __fractusaha (unsigned accum a)
— Runtime Function: accum __fractusasa (unsigned accum a)
— Runtime Function: long accum __fractusada (unsigned accum a)
— Runtime Function: long long accum __fractusata (unsigned accum a)
— Runtime Function: unsigned short fract __fractusauqq (unsigned accum a)
— Runtime Function: unsigned fract __fractusauhq (unsigned accum a)
— Runtime Function: unsigned long fract __fractusausq (unsigned accum a)
— Runtime Function: unsigned long long fract __fractusaudq (unsigned accum a)
— Runtime Function: unsigned short accum __fractusauha2 (unsigned accum a)
— Runtime Function: unsigned long accum __fractusauda2 (unsigned accum a)
— Runtime Function: unsigned long long accum __fractusauta2 (unsigned accum a)
— Runtime Function: signed char __fractusaqi (unsigned accum a)
— Runtime Function: short __fractusahi (unsigned accum a)
— Runtime Function: int __fractusasi (unsigned accum a)
— Runtime Function: long __fractusadi (unsigned accum a)
— Runtime Function: long long __fractusati (unsigned accum a)
— Runtime Function: float __fractusasf (unsigned accum a)
— Runtime Function: double __fractusadf (unsigned accum a)
— Runtime Function: short fract __fractudaqq (unsigned long accum a)
— Runtime Function: fract __fractudahq (unsigned long accum a)
— Runtime Function: long fract __fractudasq (unsigned long accum a)
— Runtime Function: long long fract __fractudadq (unsigned long accum a)
— Runtime Function: short accum __fractudaha (unsigned long accum a)
— Runtime Function: accum __fractudasa (unsigned long accum a)
— Runtime Function: long accum __fractudada (unsigned long accum a)
— Runtime Function: long long accum __fractudata (unsigned long accum a)
— Runtime Function: unsigned short fract __fractudauqq (unsigned long accum a)
— Runtime Function: unsigned fract __fractudauhq (unsigned long accum a)
— Runtime Function: unsigned long fract __fractudausq (unsigned long accum a)
— Runtime Function: unsigned long long fract __fractudaudq (unsigned long accum a)
— Runtime Function: unsigned short accum __fractudauha2 (unsigned long accum a)
— Runtime Function: unsigned accum __fractudausa2 (unsigned long accum a)
— Runtime Function: unsigned long long accum __fractudauta2 (unsigned long accum a)
— Runtime Function: signed char __fractudaqi (unsigned long accum a)
— Runtime Function: short __fractudahi (unsigned long accum a)
— Runtime Function: int __fractudasi (unsigned long accum a)
— Runtime Function: long __fractudadi (unsigned long accum a)
— Runtime Function: long long __fractudati (unsigned long accum a)
— Runtime Function: float __fractudasf (unsigned long accum a)
— Runtime Function: double __fractudadf (unsigned long accum a)
— Runtime Function: short fract __fractutaqq (unsigned long long accum a)
— Runtime Function: fract __fractutahq (unsigned long long accum a)
— Runtime Function: long fract __fractutasq (unsigned long long accum a)
— Runtime Function: long long fract __fractutadq (unsigned long long accum a)
— Runtime Function: short accum __fractutaha (unsigned long long accum a)
— Runtime Function: accum __fractutasa (unsigned long long accum a)
— Runtime Function: long accum __fractutada (unsigned long long accum a)
— Runtime Function: long long accum __fractutata (unsigned long long accum a)
— Runtime Function: unsigned short fract __fractutauqq (unsigned long long accum a)
— Runtime Function: unsigned fract __fractutauhq (unsigned long long accum a)
— Runtime Function: unsigned long fract __fractutausq (unsigned long long accum a)
— Runtime Function: unsigned long long fract __fractutaudq (unsigned long long accum a)
— Runtime Function: unsigned short accum __fractutauha2 (unsigned long long accum a)
— Runtime Function: unsigned accum __fractutausa2 (unsigned long long accum a)
— Runtime Function: unsigned long accum __fractutauda2 (unsigned long long accum a)
— Runtime Function: signed char __fractutaqi (unsigned long long accum a)
— Runtime Function: short __fractutahi (unsigned long long accum a)
— Runtime Function: int __fractutasi (unsigned long long accum a)
— Runtime Function: long __fractutadi (unsigned long long accum a)
— Runtime Function: long long __fractutati (unsigned long long accum a)
— Runtime Function: float __fractutasf (unsigned long long accum a)
— Runtime Function: double __fractutadf (unsigned long long accum a)
— Runtime Function: short fract __fractqiqq (signed char a)
— Runtime Function: fract __fractqihq (signed char a)
— Runtime Function: long fract __fractqisq (signed char a)
— Runtime Function: long long fract __fractqidq (signed char a)
— Runtime Function: short accum __fractqiha (signed char a)
— Runtime Function: accum __fractqisa (signed char a)
— Runtime Function: long accum __fractqida (signed char a)
— Runtime Function: long long accum __fractqita (signed char a)
— Runtime Function: unsigned short fract __fractqiuqq (signed char a)
— Runtime Function: unsigned fract __fractqiuhq (signed char a)
— Runtime Function: unsigned long fract __fractqiusq (signed char a)
— Runtime Function: unsigned long long fract __fractqiudq (signed char a)
— Runtime Function: unsigned short accum __fractqiuha (signed char a)
— Runtime Function: unsigned accum __fractqiusa (signed char a)
— Runtime Function: unsigned long accum __fractqiuda (signed char a)
— Runtime Function: unsigned long long accum __fractqiuta (signed char a)
— Runtime Function: short fract __fracthiqq (short a)
— Runtime Function: fract __fracthihq (short a)
— Runtime Function: long fract __fracthisq (short a)
— Runtime Function: long long fract __fracthidq (short a)
— Runtime Function: short accum __fracthiha (short a)
— Runtime Function: accum __fracthisa (short a)
— Runtime Function: long accum __fracthida (short a)
— Runtime Function: long long accum __fracthita (short a)
— Runtime Function: unsigned short fract __fracthiuqq (short a)
— Runtime Function: unsigned fract __fracthiuhq (short a)
— Runtime Function: unsigned long fract __fracthiusq (short a)
— Runtime Function: unsigned long long fract __fracthiudq (short a)
— Runtime Function: unsigned short accum __fracthiuha (short a)
— Runtime Function: unsigned accum __fracthiusa (short a)
— Runtime Function: unsigned long accum __fracthiuda (short a)
— Runtime Function: unsigned long long accum __fracthiuta (short a)
— Runtime Function: short fract __fractsiqq (int a)
— Runtime Function: fract __fractsihq (int a)
— Runtime Function: long fract __fractsisq (int a)
— Runtime Function: long long fract __fractsidq (int a)
— Runtime Function: short accum __fractsiha (int a)
— Runtime Function: accum __fractsisa (int a)
— Runtime Function: long accum __fractsida (int a)
— Runtime Function: long long accum __fractsita (int a)
— Runtime Function: unsigned short fract __fractsiuqq (int a)
— Runtime Function: unsigned fract __fractsiuhq (int a)
— Runtime Function: unsigned long fract __fractsiusq (int a)
— Runtime Function: unsigned long long fract __fractsiudq (int a)
— Runtime Function: unsigned short accum __fractsiuha (int a)
— Runtime Function: unsigned accum __fractsiusa (int a)
— Runtime Function: unsigned long accum __fractsiuda (int a)
— Runtime Function: unsigned long long accum __fractsiuta (int a)
— Runtime Function: short fract __fractdiqq (long a)
— Runtime Function: fract __fractdihq (long a)
— Runtime Function: long fract __fractdisq (long a)
— Runtime Function: long long fract __fractdidq (long a)
— Runtime Function: short accum __fractdiha (long a)
— Runtime Function: accum __fractdisa (long a)
— Runtime Function: long accum __fractdida (long a)
— Runtime Function: long long accum __fractdita (long a)
— Runtime Function: unsigned short fract __fractdiuqq (long a)
— Runtime Function: unsigned fract __fractdiuhq (long a)
— Runtime Function: unsigned long fract __fractdiusq (long a)
— Runtime Function: unsigned long long fract __fractdiudq (long a)
— Runtime Function: unsigned short accum __fractdiuha (long a)
— Runtime Function: unsigned accum __fractdiusa (long a)
— Runtime Function: unsigned long accum __fractdiuda (long a)
— Runtime Function: unsigned long long accum __fractdiuta (long a)
— Runtime Function: short fract __fracttiqq (long long a)
— Runtime Function: fract __fracttihq (long long a)
— Runtime Function: long fract __fracttisq (long long a)
— Runtime Function: long long fract __fracttidq (long long a)
— Runtime Function: short accum __fracttiha (long long a)
— Runtime Function: accum __fracttisa (long long a)
— Runtime Function: long accum __fracttida (long long a)
— Runtime Function: long long accum __fracttita (long long a)
— Runtime Function: unsigned short fract __fracttiuqq (long long a)
— Runtime Function: unsigned fract __fracttiuhq (long long a)
— Runtime Function: unsigned long fract __fracttiusq (long long a)
— Runtime Function: unsigned long long fract __fracttiudq (long long a)
— Runtime Function: unsigned short accum __fracttiuha (long long a)
— Runtime Function: unsigned accum __fracttiusa (long long a)
— Runtime Function: unsigned long accum __fracttiuda (long long a)
— Runtime Function: unsigned long long accum __fracttiuta (long long a)
— Runtime Function: short fract __fractsfqq (float a)
— Runtime Function: fract __fractsfhq (float a)
— Runtime Function: long fract __fractsfsq (float a)
— Runtime Function: long long fract __fractsfdq (float a)
— Runtime Function: short accum __fractsfha (float a)
— Runtime Function: accum __fractsfsa (float a)
— Runtime Function: long accum __fractsfda (float a)
— Runtime Function: long long accum __fractsfta (float a)
— Runtime Function: unsigned short fract __fractsfuqq (float a)
— Runtime Function: unsigned fract __fractsfuhq (float a)
— Runtime Function: unsigned long fract __fractsfusq (float a)
— Runtime Function: unsigned long long fract __fractsfudq (float a)
— Runtime Function: unsigned short accum __fractsfuha (float a)
— Runtime Function: unsigned accum __fractsfusa (float a)
— Runtime Function: unsigned long accum __fractsfuda (float a)
— Runtime Function: unsigned long long accum __fractsfuta (float a)
— Runtime Function: short fract __fractdfqq (double a)
— Runtime Function: fract __fractdfhq (double a)
— Runtime Function: long fract __fractdfsq (double a)
— Runtime Function: long long fract __fractdfdq (double a)
— Runtime Function: short accum __fractdfha (double a)
— Runtime Function: accum __fractdfsa (double a)
— Runtime Function: long accum __fractdfda (double a)
— Runtime Function: long long accum __fractdfta (double a)
— Runtime Function: unsigned short fract __fractdfuqq (double a)
— Runtime Function: unsigned fract __fractdfuhq (double a)
— Runtime Function: unsigned long fract __fractdfusq (double a)
— Runtime Function: unsigned long long fract __fractdfudq (double a)
— Runtime Function: unsigned short accum __fractdfuha (double a)
— Runtime Function: unsigned accum __fractdfusa (double a)
— Runtime Function: unsigned long accum __fractdfuda (double a)
— Runtime Function: unsigned long long accum __fractdfuta (double a)

These functions convert from fractional and signed non-fractionals to fractionals and signed non-fractionals, without saturation.

— Runtime Function: fract __satfractqqhq2 (short fract a)
— Runtime Function: long fract __satfractqqsq2 (short fract a)
— Runtime Function: long long fract __satfractqqdq2 (short fract a)
— Runtime Function: short accum __satfractqqha (short fract a)
— Runtime Function: accum __satfractqqsa (short fract a)
— Runtime Function: long accum __satfractqqda (short fract a)
— Runtime Function: long long accum __satfractqqta (short fract a)
— Runtime Function: unsigned short fract __satfractqquqq (short fract a)
— Runtime Function: unsigned fract __satfractqquhq (short fract a)
— Runtime Function: unsigned long fract __satfractqqusq (short fract a)
— Runtime Function: unsigned long long fract __satfractqqudq (short fract a)
— Runtime Function: unsigned short accum __satfractqquha (short fract a)
— Runtime Function: unsigned accum __satfractqqusa (short fract a)
— Runtime Function: unsigned long accum __satfractqquda (short fract a)
— Runtime Function: unsigned long long accum __satfractqquta (short fract a)
— Runtime Function: short fract __satfracthqqq2 (fract a)
— Runtime Function: long fract __satfracthqsq2 (fract a)
— Runtime Function: long long fract __satfracthqdq2 (fract a)
— Runtime Function: short accum __satfracthqha (fract a)
— Runtime Function: accum __satfracthqsa (fract a)
— Runtime Function: long accum __satfracthqda (fract a)
— Runtime Function: long long accum __satfracthqta (fract a)
— Runtime Function: unsigned short fract __satfracthquqq (fract a)
— Runtime Function: unsigned fract __satfracthquhq (fract a)
— Runtime Function: unsigned long fract __satfracthqusq (fract a)
— Runtime Function: unsigned long long fract __satfracthqudq (fract a)
— Runtime Function: unsigned short accum __satfracthquha (fract a)
— Runtime Function: unsigned accum __satfracthqusa (fract a)
— Runtime Function: unsigned long accum __satfracthquda (fract a)
— Runtime Function: unsigned long long accum __satfracthquta (fract a)
— Runtime Function: short fract __satfractsqqq2 (long fract a)
— Runtime Function: fract __satfractsqhq2 (long fract a)
— Runtime Function: long long fract __satfractsqdq2 (long fract a)
— Runtime Function: short accum __satfractsqha (long fract a)
— Runtime Function: accum __satfractsqsa (long fract a)
— Runtime Function: long accum __satfractsqda (long fract a)
— Runtime Function: long long accum __satfractsqta (long fract a)
— Runtime Function: unsigned short fract __satfractsquqq (long fract a)
— Runtime Function: unsigned fract __satfractsquhq (long fract a)
— Runtime Function: unsigned long fract __satfractsqusq (long fract a)
— Runtime Function: unsigned long long fract __satfractsqudq (long fract a)
— Runtime Function: unsigned short accum __satfractsquha (long fract a)
— Runtime Function: unsigned accum __satfractsqusa (long fract a)
— Runtime Function: unsigned long accum __satfractsquda (long fract a)
— Runtime Function: unsigned long long accum __satfractsquta (long fract a)
— Runtime Function: short fract __satfractdqqq2 (long long fract a)
— Runtime Function: fract __satfractdqhq2 (long long fract a)
— Runtime Function: long fract __satfractdqsq2 (long long fract a)
— Runtime Function: short accum __satfractdqha (long long fract a)
— Runtime Function: accum __satfractdqsa (long long fract a)
— Runtime Function: long accum __satfractdqda (long long fract a)
— Runtime Function: long long accum __satfractdqta (long long fract a)
— Runtime Function: unsigned short fract __satfractdquqq (long long fract a)
— Runtime Function: unsigned fract __satfractdquhq (long long fract a)
— Runtime Function: unsigned long fract __satfractdqusq (long long fract a)
— Runtime Function: unsigned long long fract __satfractdqudq (long long fract a)
— Runtime Function: unsigned short accum __satfractdquha (long long fract a)
— Runtime Function: unsigned accum __satfractdqusa (long long fract a)
— Runtime Function: unsigned long accum __satfractdquda (long long fract a)
— Runtime Function: unsigned long long accum __satfractdquta (long long fract a)
— Runtime Function: short fract __satfracthaqq (short accum a)
— Runtime Function: fract __satfracthahq (short accum a)
— Runtime Function: long fract __satfracthasq (short accum a)
— Runtime Function: long long fract __satfracthadq (short accum a)
— Runtime Function: accum __satfracthasa2 (short accum a)
— Runtime Function: long accum __satfracthada2 (short accum a)
— Runtime Function: long long accum __satfracthata2 (short accum a)
— Runtime Function: unsigned short fract __satfracthauqq (short accum a)
— Runtime Function: unsigned fract __satfracthauhq (short accum a)
— Runtime Function: unsigned long fract __satfracthausq (short accum a)
— Runtime Function: unsigned long long fract __satfracthaudq (short accum a)
— Runtime Function: unsigned short accum __satfracthauha (short accum a)
— Runtime Function: unsigned accum __satfracthausa (short accum a)
— Runtime Function: unsigned long accum __satfracthauda (short accum a)
— Runtime Function: unsigned long long accum __satfracthauta (short accum a)
— Runtime Function: short fract __satfractsaqq (accum a)
— Runtime Function: fract __satfractsahq (accum a)
— Runtime Function: long fract __satfractsasq (accum a)
— Runtime Function: long long fract __satfractsadq (accum a)
— Runtime Function: short accum __satfractsaha2 (accum a)
— Runtime Function: long accum __satfractsada2 (accum a)
— Runtime Function: long long accum __satfractsata2 (accum a)
— Runtime Function: unsigned short fract __satfractsauqq (accum a)
— Runtime Function: unsigned fract __satfractsauhq (accum a)
— Runtime Function: unsigned long fract __satfractsausq (accum a)
— Runtime Function: unsigned long long fract __satfractsaudq (accum a)
— Runtime Function: unsigned short accum __satfractsauha (accum a)
— Runtime Function: unsigned accum __satfractsausa (accum a)
— Runtime Function: unsigned long accum __satfractsauda (accum a)
— Runtime Function: unsigned long long accum __satfractsauta (accum a)
— Runtime Function: short fract __satfractdaqq (long accum a)
— Runtime Function: fract __satfractdahq (long accum a)
— Runtime Function: long fract __satfractdasq (long accum a)
— Runtime Function: long long fract __satfractdadq (long accum a)
— Runtime Function: short accum __satfractdaha2 (long accum a)
— Runtime Function: accum __satfractdasa2 (long accum a)
— Runtime Function: long long accum __satfractdata2 (long accum a)
— Runtime Function: unsigned short fract __satfractdauqq (long accum a)
— Runtime Function: unsigned fract __satfractdauhq (long accum a)
— Runtime Function: unsigned long fract __satfractdausq (long accum a)
— Runtime Function: unsigned long long fract __satfractdaudq (long accum a)
— Runtime Function: unsigned short accum __satfractdauha (long accum a)
— Runtime Function: unsigned accum __satfractdausa (long accum a)
— Runtime Function: unsigned long accum __satfractdauda (long accum a)
— Runtime Function: unsigned long long accum __satfractdauta (long accum a)
— Runtime Function: short fract __satfracttaqq (long long accum a)
— Runtime Function: fract __satfracttahq (long long accum a)
— Runtime Function: long fract __satfracttasq (long long accum a)
— Runtime Function: long long fract __satfracttadq (long long accum a)
— Runtime Function: short accum __satfracttaha2 (long long accum a)
— Runtime Function: accum __satfracttasa2 (long long accum a)
— Runtime Function: long accum __satfracttada2 (long long accum a)
— Runtime Function: unsigned short fract __satfracttauqq (long long accum a)
— Runtime Function: unsigned fract __satfracttauhq (long long accum a)
— Runtime Function: unsigned long fract __satfracttausq (long long accum a)
— Runtime Function: unsigned long long fract __satfracttaudq (long long accum a)
— Runtime Function: unsigned short accum __satfracttauha (long long accum a)
— Runtime Function: unsigned accum __satfracttausa (long long accum a)
— Runtime Function: unsigned long accum __satfracttauda (long long accum a)
— Runtime Function: unsigned long long accum __satfracttauta (long long accum a)
— Runtime Function: short fract __satfractuqqqq (unsigned short fract a)
— Runtime Function: fract __satfractuqqhq (unsigned short fract a)
— Runtime Function: long fract __satfractuqqsq (unsigned short fract a)
— Runtime Function: long long fract __satfractuqqdq (unsigned short fract a)
— Runtime Function: short accum __satfractuqqha (unsigned short fract a)
— Runtime Function: accum __satfractuqqsa (unsigned short fract a)
— Runtime Function: long accum __satfractuqqda (unsigned short fract a)
— Runtime Function: long long accum __satfractuqqta (unsigned short fract a)
— Runtime Function: unsigned fract __satfractuqquhq2 (unsigned short fract a)
— Runtime Function: unsigned long fract __satfractuqqusq2 (unsigned short fract a)
— Runtime Function: unsigned long long fract __satfractuqqudq2 (unsigned short fract a)
— Runtime Function: unsigned short accum __satfractuqquha (unsigned short fract a)
— Runtime Function: unsigned accum __satfractuqqusa (unsigned short fract a)
— Runtime Function: unsigned long accum __satfractuqquda (unsigned short fract a)
— Runtime Function: unsigned long long accum __satfractuqquta (unsigned short fract a)
— Runtime Function: short fract __satfractuhqqq (unsigned fract a)
— Runtime Function: fract __satfractuhqhq (unsigned fract a)
— Runtime Function: long fract __satfractuhqsq (unsigned fract a)
— Runtime Function: long long fract __satfractuhqdq (unsigned fract a)
— Runtime Function: short accum __satfractuhqha (unsigned fract a)
— Runtime Function: accum __satfractuhqsa (unsigned fract a)
— Runtime Function: long accum __satfractuhqda (unsigned fract a)
— Runtime Function: long long accum __satfractuhqta (unsigned fract a)
— Runtime Function: unsigned short fract __satfractuhquqq2 (unsigned fract a)
— Runtime Function: unsigned long fract __satfractuhqusq2 (unsigned fract a)
— Runtime Function: unsigned long long fract __satfractuhqudq2 (unsigned fract a)
— Runtime Function: unsigned short accum __satfractuhquha (unsigned fract a)
— Runtime Function: unsigned accum __satfractuhqusa (unsigned fract a)
— Runtime Function: unsigned long accum __satfractuhquda (unsigned fract a)
— Runtime Function: unsigned long long accum __satfractuhquta (unsigned fract a)
— Runtime Function: short fract __satfractusqqq (unsigned long fract a)
— Runtime Function: fract __satfractusqhq (unsigned long fract a)
— Runtime Function: long fract __satfractusqsq (unsigned long fract a)
— Runtime Function: long long fract __satfractusqdq (unsigned long fract a)
— Runtime Function: short accum __satfractusqha (unsigned long fract a)
— Runtime Function: accum __satfractusqsa (unsigned long fract a)
— Runtime Function: long accum __satfractusqda (unsigned long fract a)
— Runtime Function: long long accum __satfractusqta (unsigned long fract a)
— Runtime Function: unsigned short fract __satfractusquqq2 (unsigned long fract a)
— Runtime Function: unsigned fract __satfractusquhq2 (unsigned long fract a)
— Runtime Function: unsigned long long fract __satfractusqudq2 (unsigned long fract a)
— Runtime Function: unsigned short accum __satfractusquha (unsigned long fract a)
— Runtime Function: unsigned accum __satfractusqusa (unsigned long fract a)
— Runtime Function: unsigned long accum __satfractusquda (unsigned long fract a)
— Runtime Function: unsigned long long accum __satfractusquta (unsigned long fract a)
— Runtime Function: short fract __satfractudqqq (unsigned long long fract a)
— Runtime Function: fract __satfractudqhq (unsigned long long fract a)
— Runtime Function: long fract __satfractudqsq (unsigned long long fract a)
— Runtime Function: long long fract __satfractudqdq (unsigned long long fract a)
— Runtime Function: short accum __satfractudqha (unsigned long long fract a)
— Runtime Function: accum __satfractudqsa (unsigned long long fract a)
— Runtime Function: long accum __satfractudqda (unsigned long long fract a)
— Runtime Function: long long accum __satfractudqta (unsigned long long fract a)
— Runtime Function: unsigned short fract __satfractudquqq2 (unsigned long long fract a)
— Runtime Function: unsigned fract __satfractudquhq2 (unsigned long long fract a)
— Runtime Function: unsigned long fract __satfractudqusq2 (unsigned long long fract a)
— Runtime Function: unsigned short accum __satfractudquha (unsigned long long fract a)
— Runtime Function: unsigned accum __satfractudqusa (unsigned long long fract a)
— Runtime Function: unsigned long accum __satfractudquda (unsigned long long fract a)
— Runtime Function: unsigned long long accum __satfractudquta (unsigned long long fract a)
— Runtime Function: short fract __satfractuhaqq (unsigned short accum a)
— Runtime Function: fract __satfractuhahq (unsigned short accum a)
— Runtime Function: long fract __satfractuhasq (unsigned short accum a)
— Runtime Function: long long fract __satfractuhadq (unsigned short accum a)
— Runtime Function: short accum __satfractuhaha (unsigned short accum a)
— Runtime Function: accum __satfractuhasa (unsigned short accum a)
— Runtime Function: long accum __satfractuhada (unsigned short accum a)
— Runtime Function: long long accum __satfractuhata (unsigned short accum a)
— Runtime Function: unsigned short fract __satfractuhauqq (unsigned short accum a)
— Runtime Function: unsigned fract __satfractuhauhq (unsigned short accum a)
— Runtime Function: unsigned long fract __satfractuhausq (unsigned short accum a)
— Runtime Function: unsigned long long fract __satfractuhaudq (unsigned short accum a)
— Runtime Function: unsigned accum __satfractuhausa2 (unsigned short accum a)
— Runtime Function: unsigned long accum __satfractuhauda2 (unsigned short accum a)
— Runtime Function: unsigned long long accum __satfractuhauta2 (unsigned short accum a)
— Runtime Function: short fract __satfractusaqq (unsigned accum a)
— Runtime Function: fract __satfractusahq (unsigned accum a)
— Runtime Function: long fract __satfractusasq (unsigned accum a)
— Runtime Function: long long fract __satfractusadq (unsigned accum a)
— Runtime Function: short accum __satfractusaha (unsigned accum a)
— Runtime Function: accum __satfractusasa (unsigned accum a)
— Runtime Function: long accum __satfractusada (unsigned accum a)
— Runtime Function: long long accum __satfractusata (unsigned accum a)
— Runtime Function: unsigned short fract __satfractusauqq (unsigned accum a)
— Runtime Function: unsigned fract __satfractusauhq (unsigned accum a)
— Runtime Function: unsigned long fract __satfractusausq (unsigned accum a)
— Runtime Function: unsigned long long fract __satfractusaudq (unsigned accum a)
— Runtime Function: unsigned short accum __satfractusauha2 (unsigned accum a)
— Runtime Function: unsigned long accum __satfractusauda2 (unsigned accum a)
— Runtime Function: unsigned long long accum __satfractusauta2 (unsigned accum a)
— Runtime Function: short fract __satfractudaqq (unsigned long accum a)
— Runtime Function: fract __satfractudahq (unsigned long accum a)
— Runtime Function: long fract __satfractudasq (unsigned long accum a)
— Runtime Function: long long fract __satfractudadq (unsigned long accum a)
— Runtime Function: short accum __satfractudaha (unsigned long accum a)
— Runtime Function: accum __satfractudasa (unsigned long accum a)
— Runtime Function: long accum __satfractudada (unsigned long accum a)
— Runtime Function: long long accum __satfractudata (unsigned long accum a)
— Runtime Function: unsigned short fract __satfractudauqq (unsigned long accum a)
— Runtime Function: unsigned fract __satfractudauhq (unsigned long accum a)
— Runtime Function: unsigned long fract __satfractudausq (unsigned long accum a)
— Runtime Function: unsigned long long fract __satfractudaudq (unsigned long accum a)
— Runtime Function: unsigned short accum __satfractudauha2 (unsigned long accum a)
— Runtime Function: unsigned accum __satfractudausa2 (unsigned long accum a)
— Runtime Function: unsigned long long accum __satfractudauta2 (unsigned long accum a)
— Runtime Function: short fract __satfractutaqq (unsigned long long accum a)
— Runtime Function: fract __satfractutahq (unsigned long long accum a)
— Runtime Function: long fract __satfractutasq (unsigned long long accum a)
— Runtime Function: long long fract __satfractutadq (unsigned long long accum a)
— Runtime Function: short accum __satfractutaha (unsigned long long accum a)
— Runtime Function: accum __satfractutasa (unsigned long long accum a)
— Runtime Function: long accum __satfractutada (unsigned long long accum a)
— Runtime Function: long long accum __satfractutata (unsigned long long accum a)
— Runtime Function: unsigned short fract __satfractutauqq (unsigned long long accum a)
— Runtime Function: unsigned fract __satfractutauhq (unsigned long long accum a)
— Runtime Function: unsigned long fract __satfractutausq (unsigned long long accum a)
— Runtime Function: unsigned long long fract __satfractutaudq (unsigned long long accum a)
— Runtime Function: unsigned short accum __satfractutauha2 (unsigned long long accum a)
— Runtime Function: unsigned accum __satfractutausa2 (unsigned long long accum a)
— Runtime Function: unsigned long accum __satfractutauda2 (unsigned long long accum a)
— Runtime Function: short fract __satfractqiqq (signed char a)
— Runtime Function: fract __satfractqihq (signed char a)
— Runtime Function: long fract __satfractqisq (signed char a)
— Runtime Function: long long fract __satfractqidq (signed char a)
— Runtime Function: short accum __satfractqiha (signed char a)
— Runtime Function: accum __satfractqisa (signed char a)
— Runtime Function: long accum __satfractqida (signed char a)
— Runtime Function: long long accum __satfractqita (signed char a)
— Runtime Function: unsigned short fract __satfractqiuqq (signed char a)
— Runtime Function: unsigned fract __satfractqiuhq (signed char a)
— Runtime Function: unsigned long fract __satfractqiusq (signed char a)
— Runtime Function: unsigned long long fract __satfractqiudq (signed char a)
— Runtime Function: unsigned short accum __satfractqiuha (signed char a)
— Runtime Function: unsigned accum __satfractqiusa (signed char a)
— Runtime Function: unsigned long accum __satfractqiuda (signed char a)
— Runtime Function: unsigned long long accum __satfractqiuta (signed char a)
— Runtime Function: short fract __satfracthiqq (short a)
— Runtime Function: fract __satfracthihq (short a)
— Runtime Function: long fract __satfracthisq (short a)
— Runtime Function: long long fract __satfracthidq (short a)
— Runtime Function: short accum __satfracthiha (short a)
— Runtime Function: accum __satfracthisa (short a)
— Runtime Function: long accum __satfracthida (short a)
— Runtime Function: long long accum __satfracthita (short a)
— Runtime Function: unsigned short fract __satfracthiuqq (short a)
— Runtime Function: unsigned fract __satfracthiuhq (short a)
— Runtime Function: unsigned long fract __satfracthiusq (short a)
— Runtime Function: unsigned long long fract __satfracthiudq (short a)
— Runtime Function: unsigned short accum __satfracthiuha (short a)
— Runtime Function: unsigned accum __satfracthiusa (short a)
— Runtime Function: unsigned long accum __satfracthiuda (short a)
— Runtime Function: unsigned long long accum __satfracthiuta (short a)
— Runtime Function: short fract __satfractsiqq (int a)
— Runtime Function: fract __satfractsihq (int a)
— Runtime Function: long fract __satfractsisq (int a)
— Runtime Function: long long fract __satfractsidq (int a)
— Runtime Function: short accum __satfractsiha (int a)
— Runtime Function: accum __satfractsisa (int a)
— Runtime Function: long accum __satfractsida (int a)
— Runtime Function: long long accum __satfractsita (int a)
— Runtime Function: unsigned short fract __satfractsiuqq (int a)
— Runtime Function: unsigned fract __satfractsiuhq (int a)
— Runtime Function: unsigned long fract __satfractsiusq (int a)
— Runtime Function: unsigned long long fract __satfractsiudq (int a)
— Runtime Function: unsigned short accum __satfractsiuha (int a)
— Runtime Function: unsigned accum __satfractsiusa (int a)
— Runtime Function: unsigned long accum __satfractsiuda (int a)
— Runtime Function: unsigned long long accum __satfractsiuta (int a)
— Runtime Function: short fract __satfractdiqq (long a)
— Runtime Function: fract __satfractdihq (long a)
— Runtime Function: long fract __satfractdisq (long a)
— Runtime Function: long long fract __satfractdidq (long a)
— Runtime Function: short accum __satfractdiha (long a)
— Runtime Function: accum __satfractdisa (long a)
— Runtime Function: long accum __satfractdida (long a)
— Runtime Function: long long accum __satfractdita (long a)
— Runtime Function: unsigned short fract __satfractdiuqq (long a)
— Runtime Function: unsigned fract __satfractdiuhq (long a)
— Runtime Function: unsigned long fract __satfractdiusq (long a)
— Runtime Function: unsigned long long fract __satfractdiudq (long a)
— Runtime Function: unsigned short accum __satfractdiuha (long a)
— Runtime Function: unsigned accum __satfractdiusa (long a)
— Runtime Function: unsigned long accum __satfractdiuda (long a)
— Runtime Function: unsigned long long accum __satfractdiuta (long a)
— Runtime Function: short fract __satfracttiqq (long long a)
— Runtime Function: fract __satfracttihq (long long a)
— Runtime Function: long fract __satfracttisq (long long a)
— Runtime Function: long long fract __satfracttidq (long long a)
— Runtime Function: short accum __satfracttiha (long long a)
— Runtime Function: accum __satfracttisa (long long a)
— Runtime Function: long accum __satfracttida (long long a)
— Runtime Function: long long accum __satfracttita (long long a)
— Runtime Function: unsigned short fract __satfracttiuqq (long long a)
— Runtime Function: unsigned fract __satfracttiuhq (long long a)
— Runtime Function: unsigned long fract __satfracttiusq (long long a)
— Runtime Function: unsigned long long fract __satfracttiudq (long long a)
— Runtime Function: unsigned short accum __satfracttiuha (long long a)
— Runtime Function: unsigned accum __satfracttiusa (long long a)
— Runtime Function: unsigned long accum __satfracttiuda (long long a)
— Runtime Function: unsigned long long accum __satfracttiuta (long long a)
— Runtime Function: short fract __satfractsfqq (float a)
— Runtime Function: fract __satfractsfhq (float a)
— Runtime Function: long fract __satfractsfsq (float a)
— Runtime Function: long long fract __satfractsfdq (float a)
— Runtime Function: short accum __satfractsfha (float a)
— Runtime Function: accum __satfractsfsa (float a)
— Runtime Function: long accum __satfractsfda (float a)
— Runtime Function: long long accum __satfractsfta (float a)
— Runtime Function: unsigned short fract __satfractsfuqq (float a)
— Runtime Function: unsigned fract __satfractsfuhq (float a)
— Runtime Function: unsigned long fract __satfractsfusq (float a)
— Runtime Function: unsigned long long fract __satfractsfudq (float a)
— Runtime Function: unsigned short accum __satfractsfuha (float a)
— Runtime Function: unsigned accum __satfractsfusa (float a)
— Runtime Function: unsigned long accum __satfractsfuda (float a)
— Runtime Function: unsigned long long accum __satfractsfuta (float a)
— Runtime Function: short fract __satfractdfqq (double a)
— Runtime Function: fract __satfractdfhq (double a)
— Runtime Function: long fract __satfractdfsq (double a)
— Runtime Function: long long fract __satfractdfdq (double a)
— Runtime Function: short accum __satfractdfha (double a)
— Runtime Function: accum __satfractdfsa (double a)
— Runtime Function: long accum __satfractdfda (double a)
— Runtime Function: long long accum __satfractdfta (double a)
— Runtime Function: unsigned short fract __satfractdfuqq (double a)
— Runtime Function: unsigned fract __satfractdfuhq (double a)
— Runtime Function: unsigned long fract __satfractdfusq (double a)
— Runtime Function: unsigned long long fract __satfractdfudq (double a)
— Runtime Function: unsigned short accum __satfractdfuha (double a)
— Runtime Function: unsigned accum __satfractdfusa (double a)
— Runtime Function: unsigned long accum __satfractdfuda (double a)
— Runtime Function: unsigned long long accum __satfractdfuta (double a)

The functions convert from fractional and signed non-fractionals to fractionals, with saturation.

— Runtime Function: unsigned char __fractunsqqqi (short fract a)
— Runtime Function: unsigned short __fractunsqqhi (short fract a)
— Runtime Function: unsigned int __fractunsqqsi (short fract a)
— Runtime Function: unsigned long __fractunsqqdi (short fract a)
— Runtime Function: unsigned long long __fractunsqqti (short fract a)
— Runtime Function: unsigned char __fractunshqqi (fract a)
— Runtime Function: unsigned short __fractunshqhi (fract a)
— Runtime Function: unsigned int __fractunshqsi (fract a)
— Runtime Function: unsigned long __fractunshqdi (fract a)
— Runtime Function: unsigned long long __fractunshqti (fract a)
— Runtime Function: unsigned char __fractunssqqi (long fract a)
— Runtime Function: unsigned short __fractunssqhi (long fract a)
— Runtime Function: unsigned int __fractunssqsi (long fract a)
— Runtime Function: unsigned long __fractunssqdi (long fract a)
— Runtime Function: unsigned long long __fractunssqti (long fract a)
— Runtime Function: unsigned char __fractunsdqqi (long long fract a)
— Runtime Function: unsigned short __fractunsdqhi (long long fract a)
— Runtime Function: unsigned int __fractunsdqsi (long long fract a)
— Runtime Function: unsigned long __fractunsdqdi (long long fract a)
— Runtime Function: unsigned long long __fractunsdqti (long long fract a)
— Runtime Function: unsigned char __fractunshaqi (short accum a)
— Runtime Function: unsigned short __fractunshahi (short accum a)
— Runtime Function: unsigned int __fractunshasi (short accum a)
— Runtime Function: unsigned long __fractunshadi (short accum a)
— Runtime Function: unsigned long long __fractunshati (short accum a)
— Runtime Function: unsigned char __fractunssaqi (accum a)
— Runtime Function: unsigned short __fractunssahi (accum a)
— Runtime Function: unsigned int __fractunssasi (accum a)
— Runtime Function: unsigned long __fractunssadi (accum a)
— Runtime Function: unsigned long long __fractunssati (accum a)
— Runtime Function: unsigned char __fractunsdaqi (long accum a)
— Runtime Function: unsigned short __fractunsdahi (long accum a)
— Runtime Function: unsigned int __fractunsdasi (long accum a)
— Runtime Function: unsigned long __fractunsdadi (long accum a)
— Runtime Function: unsigned long long __fractunsdati (long accum a)
— Runtime Function: unsigned char __fractunstaqi (long long accum a)
— Runtime Function: unsigned short __fractunstahi (long long accum a)
— Runtime Function: unsigned int __fractunstasi (long long accum a)
— Runtime Function: unsigned long __fractunstadi (long long accum a)
— Runtime Function: unsigned long long __fractunstati (long long accum a)
— Runtime Function: unsigned char __fractunsuqqqi (unsigned short fract a)
— Runtime Function: unsigned short __fractunsuqqhi (unsigned short fract a)
— Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract a)
— Runtime Function: unsigned long __fractunsuqqdi (unsigned short fract a)
— Runtime Function: unsigned long long __fractunsuqqti (unsigned short fract a)
— Runtime Function: unsigned char __fractunsuhqqi (unsigned fract a)
— Runtime Function: unsigned short __fractunsuhqhi (unsigned fract a)
— Runtime Function: unsigned int __fractunsuhqsi (unsigned fract a)
— Runtime Function: unsigned long __fractunsuhqdi (unsigned fract a)
— Runtime Function: unsigned long long __fractunsuhqti (unsigned fract a)
— Runtime Function: unsigned char __fractunsusqqi (unsigned long fract a)
— Runtime Function: unsigned short __fractunsusqhi (unsigned long fract a)
— Runtime Function: unsigned int __fractunsusqsi (unsigned long fract a)
— Runtime Function: unsigned long __fractunsusqdi (unsigned long fract a)
— Runtime Function: unsigned long long __fractunsusqti (unsigned long fract a)
— Runtime Function: unsigned char __fractunsudqqi (unsigned long long fract a)
— Runtime Function: unsigned short __fractunsudqhi (unsigned long long fract a)
— Runtime Function: unsigned int __fractunsudqsi (unsigned long long fract a)
— Runtime Function: unsigned long __fractunsudqdi (unsigned long long fract a)
— Runtime Function: unsigned long long __fractunsudqti (unsigned long long fract a)
— Runtime Function: unsigned char __fractunsuhaqi (unsigned short accum a)
— Runtime Function: unsigned short __fractunsuhahi (unsigned short accum a)
— Runtime Function: unsigned int __fractunsuhasi (unsigned short accum a)
— Runtime Function: unsigned long __fractunsuhadi (unsigned short accum a)
— Runtime Function: unsigned long long __fractunsuhati (unsigned short accum a)
— Runtime Function: unsigned char __fractunsusaqi (unsigned accum a)
— Runtime Function: unsigned short __fractunsusahi (unsigned accum a)
— Runtime Function: unsigned int __fractunsusasi (unsigned accum a)
— Runtime Function: unsigned long __fractunsusadi (unsigned accum a)
— Runtime Function: unsigned long long __fractunsusati (unsigned accum a)
— Runtime Function: unsigned char __fractunsudaqi (unsigned long accum a)
— Runtime Function: unsigned short __fractunsudahi (unsigned long accum a)
— Runtime Function: unsigned int __fractunsudasi (unsigned long accum a)
— Runtime Function: unsigned long __fractunsudadi (unsigned long accum a)
— Runtime Function: unsigned long long __fractunsudati (unsigned long accum a)
— Runtime Function: unsigned char __fractunsutaqi (unsigned long long accum a)
— Runtime Function: unsigned short __fractunsutahi (unsigned long long accum a)
— Runtime Function: unsigned int __fractunsutasi (unsigned long long accum a)
— Runtime Function: unsigned long __fractunsutadi (unsigned long long accum a)
— Runtime Function: unsigned long long __fractunsutati (unsigned long long accum a)
— Runtime Function: short fract __fractunsqiqq (unsigned char a)
— Runtime Function: fract __fractunsqihq (unsigned char a)
— Runtime Function: long fract __fractunsqisq (unsigned char a)
— Runtime Function: long long fract __fractunsqidq (unsigned char a)
— Runtime Function: short accum __fractunsqiha (unsigned char a)
— Runtime Function: accum __fractunsqisa (unsigned char a)
— Runtime Function: long accum __fractunsqida (unsigned char a)
— Runtime Function: long long accum __fractunsqita (unsigned char a)
— Runtime Function: unsigned short fract __fractunsqiuqq (unsigned char a)
— Runtime Function: unsigned fract __fractunsqiuhq (unsigned char a)
— Runtime Function: unsigned long fract __fractunsqiusq (unsigned char a)
— Runtime Function: unsigned long long fract __fractunsqiudq (unsigned char a)
— Runtime Function: unsigned short accum __fractunsqiuha (unsigned char a)
— Runtime Function: unsigned accum __fractunsqiusa (unsigned char a)
— Runtime Function: unsigned long accum __fractunsqiuda (unsigned char a)
— Runtime Function: unsigned long long accum __fractunsqiuta (unsigned char a)
— Runtime Function: short fract __fractunshiqq (unsigned short a)
— Runtime Function: fract __fractunshihq (unsigned short a)
— Runtime Function: long fract __fractunshisq (unsigned short a)
— Runtime Function: long long fract __fractunshidq (unsigned short a)
— Runtime Function: short accum __fractunshiha (unsigned short a)
— Runtime Function: accum __fractunshisa (unsigned short a)
— Runtime Function: long accum __fractunshida (unsigned short a)
— Runtime Function: long long accum __fractunshita (unsigned short a)
— Runtime Function: unsigned short fract __fractunshiuqq (unsigned short a)
— Runtime Function: unsigned fract __fractunshiuhq (unsigned short a)
— Runtime Function: unsigned long fract __fractunshiusq (unsigned short a)
— Runtime Function: unsigned long long fract __fractunshiudq (unsigned short a)
— Runtime Function: unsigned short accum __fractunshiuha (unsigned short a)
— Runtime Function: unsigned accum __fractunshiusa (unsigned short a)
— Runtime Function: unsigned long accum __fractunshiuda (unsigned short a)
— Runtime Function: unsigned long long accum __fractunshiuta (unsigned short a)
— Runtime Function: short fract __fractunssiqq (unsigned int a)
— Runtime Function: fract __fractunssihq (unsigned int a)
— Runtime Function: long fract __fractunssisq (unsigned int a)
— Runtime Function: long long fract __fractunssidq (unsigned int a)
— Runtime Function: short accum __fractunssiha (unsigned int a)
— Runtime Function: accum __fractunssisa (unsigned int a)
— Runtime Function: long accum __fractunssida (unsigned int a)
— Runtime Function: long long accum __fractunssita (unsigned int a)
— Runtime Function: unsigned short fract __fractunssiuqq (unsigned int a)
— Runtime Function: unsigned fract __fractunssiuhq (unsigned int a)
— Runtime Function: unsigned long fract __fractunssiusq (unsigned int a)
— Runtime Function: unsigned long long fract __fractunssiudq (unsigned int a)
— Runtime Function: unsigned short accum __fractunssiuha (unsigned int a)
— Runtime Function: unsigned accum __fractunssiusa (unsigned int a)
— Runtime Function: unsigned long accum __fractunssiuda (unsigned int a)
— Runtime Function: unsigned long long accum __fractunssiuta (unsigned int a)
— Runtime Function: short fract __fractunsdiqq (unsigned long a)
— Runtime Function: fract __fractunsdihq (unsigned long a)
— Runtime Function: long fract __fractunsdisq (unsigned long a)
— Runtime Function: long long fract __fractunsdidq (unsigned long a)
— Runtime Function: short accum __fractunsdiha (unsigned long a)
— Runtime Function: accum __fractunsdisa (unsigned long a)
— Runtime Function: long accum __fractunsdida (unsigned long a)
— Runtime Function: long long accum __fractunsdita (unsigned long a)
— Runtime Function: unsigned short fract __fractunsdiuqq (unsigned long a)
— Runtime Function: unsigned fract __fractunsdiuhq (unsigned long a)
— Runtime Function: unsigned long fract __fractunsdiusq (unsigned long a)
— Runtime Function: unsigned long long fract __fractunsdiudq (unsigned long a)
— Runtime Function: unsigned short accum __fractunsdiuha (unsigned long a)
— Runtime Function: unsigned accum __fractunsdiusa (unsigned long a)
— Runtime Function: unsigned long accum __fractunsdiuda (unsigned long a)
— Runtime Function: unsigned long long accum __fractunsdiuta (unsigned long a)
— Runtime Function: short fract __fractunstiqq (unsigned long long a)
— Runtime Function: fract __fractunstihq (unsigned long long a)
— Runtime Function: long fract __fractunstisq (unsigned long long a)
— Runtime Function: long long fract __fractunstidq (unsigned long long a)
— Runtime Function: short accum __fractunstiha (unsigned long long a)
— Runtime Function: accum __fractunstisa (unsigned long long a)
— Runtime Function: long accum __fractunstida (unsigned long long a)
— Runtime Function: long long accum __fractunstita (unsigned long long a)
— Runtime Function: unsigned short fract __fractunstiuqq (unsigned long long a)
— Runtime Function: unsigned fract __fractunstiuhq (unsigned long long a)
— Runtime Function: unsigned long fract __fractunstiusq (unsigned long long a)
— Runtime Function: unsigned long long fract __fractunstiudq (unsigned long long a)
— Runtime Function: unsigned short accum __fractunstiuha (unsigned long long a)
— Runtime Function: unsigned accum __fractunstiusa (unsigned long long a)
— Runtime Function: unsigned long accum __fractunstiuda (unsigned long long a)
— Runtime Function: unsigned long long accum __fractunstiuta (unsigned long long a)

These functions convert from fractionals to unsigned non-fractionals; and from unsigned non-fractionals to fractionals, without saturation.

— Runtime Function: short fract __satfractunsqiqq (unsigned char a)
— Runtime Function: fract __satfractunsqihq (unsigned char a)
— Runtime Function: long fract __satfractunsqisq (unsigned char a)
— Runtime Function: long long fract __satfractunsqidq (unsigned char a)
— Runtime Function: short accum __satfractunsqiha (unsigned char a)
— Runtime Function: accum __satfractunsqisa (unsigned char a)
— Runtime Function: long accum __satfractunsqida (unsigned char a)
— Runtime Function: long long accum __satfractunsqita (unsigned char a)
— Runtime Function: unsigned short fract __satfractunsqiuqq (unsigned char a)
— Runtime Function: unsigned fract __satfractunsqiuhq (unsigned char a)
— Runtime Function: unsigned long fract __satfractunsqiusq (unsigned char a)
— Runtime Function: unsigned long long fract __satfractunsqiudq (unsigned char a)
— Runtime Function: unsigned short accum __satfractunsqiuha (unsigned char a)
— Runtime Function: unsigned accum __satfractunsqiusa (unsigned char a)
— Runtime Function: unsigned long accum __satfractunsqiuda (unsigned char a)
— Runtime Function: unsigned long long accum __satfractunsqiuta (unsigned char a)
— Runtime Function: short fract __satfractunshiqq (unsigned short a)
— Runtime Function: fract __satfractunshihq (unsigned short a)
— Runtime Function: long fract __satfractunshisq (unsigned short a)
— Runtime Function: long long fract __satfractunshidq (unsigned short a)
— Runtime Function: short accum __satfractunshiha (unsigned short a)
— Runtime Function: accum __satfractunshisa (unsigned short a)
— Runtime Function: long accum __satfractunshida (unsigned short a)
— Runtime Function: long long accum __satfractunshita (unsigned short a)
— Runtime Function: unsigned short fract __satfractunshiuqq (unsigned short a)
— Runtime Function: unsigned fract __satfractunshiuhq (unsigned short a)
— Runtime Function: unsigned long fract __satfractunshiusq (unsigned short a)
— Runtime Function: unsigned long long fract __satfractunshiudq (unsigned short a)
— Runtime Function: unsigned short accum __satfractunshiuha (unsigned short a)
— Runtime Function: unsigned accum __satfractunshiusa (unsigned short a)
— Runtime Function: unsigned long accum __satfractunshiuda (unsigned short a)
— Runtime Function: unsigned long long accum __satfractunshiuta (unsigned short a)
— Runtime Function: short fract __satfractunssiqq (unsigned int a)
— Runtime Function: fract __satfractunssihq (unsigned int a)
— Runtime Function: long fract __satfractunssisq (unsigned int a)
— Runtime Function: long long fract __satfractunssidq (unsigned int a)
— Runtime Function: short accum __satfractunssiha (unsigned int a)
— Runtime Function: accum __satfractunssisa (unsigned int a)
— Runtime Function: long accum __satfractunssida (unsigned int a)
— Runtime Function: long long accum __satfractunssita (unsigned int a)
— Runtime Function: unsigned short fract __satfractunssiuqq (unsigned int a)
— Runtime Function: unsigned fract __satfractunssiuhq (unsigned int a)
— Runtime Function: unsigned long fract __satfractunssiusq (unsigned int a)
— Runtime Function: unsigned long long fract __satfractunssiudq (unsigned int a)
— Runtime Function: unsigned short accum __satfractunssiuha (unsigned int a)
— Runtime Function: unsigned accum __satfractunssiusa (unsigned int a)
— Runtime Function: unsigned long accum __satfractunssiuda (unsigned int a)
— Runtime Function: unsigned long long accum __satfractunssiuta (unsigned int a)
— Runtime Function: short fract __satfractunsdiqq (unsigned long a)
— Runtime Function: fract __satfractunsdihq (unsigned long a)
— Runtime Function: long fract __satfractunsdisq (unsigned long a)
— Runtime Function: long long fract __satfractunsdidq (unsigned long a)
— Runtime Function: short accum __satfractunsdiha (unsigned long a)
— Runtime Function: accum __satfractunsdisa (unsigned long a)
— Runtime Function: long accum __satfractunsdida (unsigned long a)
— Runtime Function: long long accum __satfractunsdita (unsigned long a)
— Runtime Function: unsigned short fract __satfractunsdiuqq (unsigned long a)
— Runtime Function: unsigned fract __satfractunsdiuhq (unsigned long a)
— Runtime Function: unsigned long fract __satfractunsdiusq (unsigned long a)
— Runtime Function: unsigned long long fract __satfractunsdiudq (unsigned long a)
— Runtime Function: unsigned short accum __satfractunsdiuha (unsigned long a)
— Runtime Function: unsigned accum __satfractunsdiusa (unsigned long a)
— Runtime Function: unsigned long accum __satfractunsdiuda (unsigned long a)
— Runtime Function: unsigned long long accum __satfractunsdiuta (unsigned long a)
— Runtime Function: short fract __satfractunstiqq (unsigned long long a)
— Runtime Function: fract __satfractunstihq (unsigned long long a)
— Runtime Function: long fract __satfractunstisq (unsigned long long a)
— Runtime Function: long long fract __satfractunstidq (unsigned long long a)
— Runtime Function: short accum __satfractunstiha (unsigned long long a)
— Runtime Function: accum __satfractunstisa (unsigned long long a)
— Runtime Function: long accum __satfractunstida (unsigned long long a)
— Runtime Function: long long accum __satfractunstita (unsigned long long a)
— Runtime Function: unsigned short fract __satfractunstiuqq (unsigned long long a)
— Runtime Function: unsigned fract __satfractunstiuhq (unsigned long long a)
— Runtime Function: unsigned long fract __satfractunstiusq (unsigned long long a)
— Runtime Function: unsigned long long fract __satfractunstiudq (unsigned long long a)
— Runtime Function: unsigned short accum __satfractunstiuha (unsigned long long a)
— Runtime Function: unsigned accum __satfractunstiusa (unsigned long long a)
— Runtime Function: unsigned long accum __satfractunstiuda (unsigned long long a)
— Runtime Function: unsigned long long accum __satfractunstiuta (unsigned long long a)

These functions convert from unsigned non-fractionals to fractionals, with saturation.


Next: , Previous: Fixed-point fractional library routines, Up: Libgcc

4.5 Language-independent routines for exception handling

document me!

       _Unwind_DeleteException
       _Unwind_Find_FDE
       _Unwind_ForcedUnwind
       _Unwind_GetGR
       _Unwind_GetIP
       _Unwind_GetLanguageSpecificData
       _Unwind_GetRegionStart
       _Unwind_GetTextRelBase
       _Unwind_GetDataRelBase
       _Unwind_RaiseException
       _Unwind_Resume
       _Unwind_SetGR
       _Unwind_SetIP
       _Unwind_FindEnclosingFunction
       _Unwind_SjLj_Register
       _Unwind_SjLj_Unregister
       _Unwind_SjLj_RaiseException
       _Unwind_SjLj_ForcedUnwind
       _Unwind_SjLj_Resume
       __deregister_frame
       __deregister_frame_info
       __deregister_frame_info_bases
       __register_frame
       __register_frame_info
       __register_frame_info_bases
       __register_frame_info_table
       __register_frame_info_table_bases
       __register_frame_table


Previous: Exception handling routines, Up: Libgcc

4.6 Miscellaneous runtime library routines

4.6.1 Cache control functions

— Runtime Function: void __clear_cache (char *beg, char *end)

This function clears the instruction cache between beg and end.


Next: , Previous: Libgcc, Up: Top

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see Trees), was initially designed for C, and many aspects of it are still somewhat biased towards C and C-like languages. It is, however, reasonably well suited to other procedural languages, and front ends for many such languages have been written for GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler or generating C code which is then compiled by GCC, has several advantages:

Because of the advantages of writing a compiler as a GCC front end, GCC front ends have also been created for languages very different from those for which GCC was designed, such as the declarative logic/functional language Mercury. For these reasons, it may also be useful to implement compilers created for specialized purposes (for example, as part of a research project) as GCC front ends.


Next: , Previous: Languages, Up: Top

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built. The user documentation for building and installing GCC is in a separate manual (http://gcc.gnu.org/install/), with which it is presumed that you are familiar.


Next: , Up: Source Tree

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing to anyone who doesn't know why things are the way they are. While there are other documents which describe the configuration process in detail, here are a few things that everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building on (build), the machine that you are building for (host), and the machine that GCC will produce code for (target). When you configure GCC, you specify these with --build=, --host=, and --target=.

Specifying the host without specifying the build should be avoided, as configure may (and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the same but target is different, this is called a cross. If build, host, and target are all different this is called a canadian (for obscure reasons dealing with Canada's political party and the background of the person working on the build at that time). If host and target are the same, but build is different, you are using a cross-compiler to build a native for a different system. Some people call this a host-x-host, crossed native, or cross-built native. If build and target are the same, but host is different, you are using a cross compiler to build a cross compiler that produces code for the machine you're building on. This is rare, so there is no common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the target libraries (like libstdc++). If build and host are different, you must have already built and installed a cross compiler that will be used to build the target libraries (if you configured with --target=foo-bar, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you're building for is the machine you specified with --target. So, build is the machine you're building on (no change there), host is the machine you're building for (the target libraries are built for the target, so host is the target you specified), and target doesn't apply (because you're not building a compiler, you're building libraries). The configure/make process will adjust these variables as needed. It also sets $with_cross_host to the original --host value in case you need it.

The libiberty support library is built up to three times: once for the host, once for the target (even if they are the same), and once for the build if build and host are different. This allows it to be used by all programs which are generated in the course of the build process.


Next: , Previous: Configure Terms, Up: Source Tree

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories that are shared with other software distributions such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries:

boehm-gc
The Boehm conservative garbage collector, used as part of the Java runtime library.
contrib
Contributed scripts that may be found useful in conjunction with GCC. One of these, contrib/texi2pod.pl, is used to generate man pages from Texinfo manuals as part of the GCC build process.
fastjar
An implementation of the jar command, used with the Java front end.
fixincludes
The support for fixing system headers to work with GCC. See fixincludes/README for more information. The headers fixed by this mechanism are installed in libsubdir/include-fixed. Along with those headers, README-fixinc is also installed, as libsubdir/include-fixed/README.
gcc
The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, language front ends, and testsuites. See The gcc Subdirectory, for details.
include
Headers for the libiberty library.
intl
GNU libintl, from GNU gettext, for systems which do not include it in libc.
libada
The Ada runtime library.
libcpp
The C preprocessor library.
libgfortran
The Fortran runtime library.
libffi
The libffi library, used as part of the Java runtime library.
libiberty
The libiberty library, used for portability and for some generally useful data structures and algorithms. See Introduction, for more information about this library.
libjava
The Java runtime library.
libmudflap
The libmudflap library, used for instrumenting pointer and array dereferencing operations.
libobjc
The Objective-C and Objective-C++ runtime library.
libstdc++-v3
The C++ runtime library.
maintainer-scripts
Scripts used by the gccadmin account on gcc.gnu.org.
zlib
The zlib compression library, used by the Java front end and as part of the Java runtime library.

The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with GNU Binutils. See GNU configure and build system, for details.


Next: , Previous: Top Level, Up: Source Tree

6.3 The gcc Subdirectory

The gcc directory contains many files that are part of the C sources of GCC, other files used as part of the configuration and build process, and subdirectories including documentation and a testsuite. The files that are sources of GCC are documented in a separate chapter. See Passes and Files of the Compiler.


Next: , Up: gcc Directory

6.3.1 Subdirectories of gcc

The gcc directory contains the following subdirectories:

language
Subdirectories for various languages. Directories containing a file config-lang.in are language subdirectories. The contents of the subdirectories cp (for C++), objc (for Objective-C) and objcp (for Objective-C++) are documented in this manual (see Passes and Files of the Compiler); those for other languages are not. See Anatomy of a Language Front End, for details of the files in these directories.
config
Configuration files for supported architectures and operating systems. See Anatomy of a Target Back End, for details of the files in this directory.
doc
Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML. See Documentation.
ginclude
System headers installed by GCC, mainly those required by the C standard of freestanding implementations. See Headers Installed by GCC, for details of when these and other headers are installed.
po
Message catalogs with translations of messages produced by GCC into various languages, language.po. This directory also contains gcc.pot, the template for these message catalogues, exgettext, a wrapper around gettext to extract the messages from the GCC sources and create gcc.pot, which is run by ‘make gcc.pot’, and EXCLUDES, a list of files from which messages should not be extracted.
testsuite
The GCC testsuites (except for those for runtime libraries). See Testsuites.


Next: , Previous: Subdirectories, Up: gcc Directory

6.3.2 Configuration in the gcc Directory

The gcc directory is configured with an Autoconf-generated script configure. The configure script is generated from configure.ac and aclocal.m4. From the files configure.ac and acconfig.h, Autoheader generates the file config.in. The file cstamp-h.in is used as a timestamp.


Next: , Up: Configuration
6.3.2.1 Scripts Used by configure

configure uses some other scripts to help in its work:


Next: , Previous: Config Fragments, Up: Configuration
6.3.2.2 The config.build; config.host; and config.gcc Files

The config.build file contains specific rules for particular systems which GCC is built on. This should be used as rarely as possible, as the behavior of the build system can always be detected by autoconf.

The config.host file contains specific rules for particular systems which GCC will run on. This is rarely needed.

The config.gcc file contains specific rules for particular systems which GCC will generate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control build, host and target configuration.


Previous: System Config, Up: Configuration
6.3.2.3 Files Created by configure

Here we spell out what files will be set up by configure in the gcc directory. Some other files are created as temporary files in the configuration process, and are not used in the subsequent build; these are not documented.

The following configuration headers are created from the Makefile, using mkconfig.sh, rather than directly by configure. config.h, bconfig.h and tconfig.h all contain the xm-machine.h header, if any, appropriate to the host, build and target machines respectively, the configuration headers for the target, and some definitions; for the host and build machines, these include the autoconfigured headers generated by configure. The other configuration headers are determined by config.gcc. They also contain the typedefs for rtx, rtvec and tree.


Next: , Previous: Configuration, Up: gcc Directory

6.3.3 Build System in the gcc Directory

FIXME: describe the build system, including what is built in what stages. Also list the various source files that are used in the build process but aren't source files of GCC itself and so aren't documented below (see Passes).


Next: , Previous: Build, Up: gcc Directory

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all
This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built.
doc
Produce info-formatted documentation and man pages. Essentially it calls ‘make man’ and ‘make info’.
dvi
Produce DVI-formatted documentation.
pdf
Produce PDF-formatted documentation.
html
Produce HTML-formatted documentation.
man
Generate man pages.
info
Generate info-formatted pages.
mostlyclean
Delete the files made while building the compiler.
clean
That, and all the other files built by ‘make all’.
distclean
That, and all the files created by configure.
maintainer-clean
Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build gcc.
srcextra
Generates files in the source directory that do not exist in CVS but should go into a release tarball. One example is gcc/java/parse.c which is generated from the CVS source file gcc/java/parse.y.
srcinfo
srcman
Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball.
install
Installs gcc.
uninstall
Deletes installed files.
check
Run the testsuite. This creates a testsuite subdirectory that has various .sum and .log files containing the results of the testing. You can run subsets with, for example, ‘make check-gcc’. You can specify specific tests by setting RUNTESTFLAGS to be the name of the .exp file, optionally followed by (for some tests) an equals and a file wildcard, like:
          make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such as TCL or dejagnu.

The toplevel tree from which you start GCC compilation is not the GCC directory, but rather a complex Makefile that coordinates the various steps of the build, including bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to do a full three-stage bootstrap. This means that GCC is built three times—once with the native compiler, once with the native-built compiler it just built, and once with the compiler it built the second time. In theory, the last two should produce the same results, which ‘make compare’ can check. Each stage is configured separately and compiled into a separate directory, to minimize problems due to ABI incompatibilities between the native compiler and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the change through the three stages. Each stage is taken from its build directory (if it had been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for example, continue a bootstrap after fixing a bug which causes the stage2 build to crash. It does not provide as good coverage of the compiler as bootstrapping from scratch, but it ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions by mistake), and avoids spurious bootstrap comparison failures1.

Other targets available from the top level include:

bootstrap-lean
Like bootstrap, except that the various stages are removed once they're no longer needed. This saves disk space.
bootstrap2
bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a “lean” bootstrap is approximately independent of the number of stages.
stageN-bubble (N = 1...4)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the changes as described above.
all-stageN (N = 1...4)
Assuming that stage N has already been built, rebuild it with the appropriate flags. This is rarely needed.
cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).
compare
Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled.
profiledbootstrap
Builds a compiler with profiling feedback information. For more information, see Building with profile feedback.
restrap
Restart a bootstrap, so that everything that was not built with the system compiler is rebuilt.
stageN-start (N = 1...4)
For each package that is bootstrapped, rename directories so that, for example, gcc points to the stageN GCC, compiled with the stageN-1 GCC2.

You will invoke this target if you need to test or debug the stageN GCC. If you only need to execute GCC (but you need not run ‘make’ either to rebuild it or to run test suites), you should be able to work directly in the stageN-gcc directory. This makes it easier to debug multiple stages in parallel.

stage
For each package that is bootstrapped, relocate its build directory to indicate its stage. For example, if the gcc directory points to the stage2 GCC, after invoking this target it will be renamed to stage2-gcc.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically, C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for example, of the Fortran front-end), you may want to have front-ends for other languages in the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing ‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a command like

     make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not enabled by default in stage1. For example, make f951 will build a Fortran compiler even in the stage1 build directory.


Next: , Previous: Makefile, Up: gcc Directory

6.3.5 Library Source Files and Headers under the gcc Directory

FIXME: list here, with explanation, all the C source files and headers under the gcc directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as crtstuff.c and unwind-dw2.c. See Headers Installed by GCC, for more information about the ginclude directory.


Next: , Previous: Library Files, Up: gcc Directory

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed in libsubdir/include. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ginclude directory. These headers, iso646.h, stdarg.h, stdbool.h, and stddef.h, are installed in libsubdir/include, unless the target Makefile fragment (see Target Fragment) overrides this by setting USER_H.

In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in libsubdir/include. config.gcc may set extra_headers; this specifies additional headers under config to be installed on some systems.

GCC installs its own version of <float.h>, from ginclude/float.h. This is done to cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <limits.h>; this is generated from glimits.h, together with limitx.h and limity.h if the system also has its own version of <limits.h>. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in <limits.h>.) The system's <limits.h> header is used via libsubdir/include/syslimits.h, which is copied from gsyslimits.h if it does not need fixing to work with GCC; if it needs fixing, syslimits.h is the fixed copy.

GCC can also install <tgmath.h>. It will do this when config.gcc sets use_gcc_tgmath to yes.


Next: , Previous: Headers, Up: gcc Directory

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by ‘make pdf’, and HTML versions by make html. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation outside the gcc directory. FIXME: document the documentation for runtime libraries somewhere.


Next: , Up: Documentation
6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files doc/*.texi. Other front ends have their own manuals in files language/*.texi. Common files doc/include/*.texi are provided which may be included in multiple manuals; the following files are in doc/include:

fdl.texi
The GNU Free Documentation License.
funding.texi
The section “Funding Free Software”.
gcc-common.texi
Common definitions for manuals.
gpl.texi
gpl_v3.texi
The GNU General Public License.
texinfo.tex
A copy of texinfo.tex known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Makefile macro $(TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses texi2pdf (via the Makefile macro $(TEXI2PDF)). HTML formatted manuals are generated by make html. Info manuals are generated by ‘make info’ (which is run as part of a bootstrap); this generates the manuals in the source directory, using makeinfo via the Makefile macro $(MAKEINFO), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script maintainer-scripts/update_web_docs. Each manual to be provided online must be listed in the definition of MANUALS in that file; a file name.texi must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the source tree.) The manual file name.texi should only include other files in its own directory or in doc/include. HTML manuals will be generated by ‘makeinfo --html’, PostScript manuals by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts of manuals must be checked into SVN, even if they are generated files, for the generation of online manuals to work.

The installation manual, doc/install.texi, is also provided on the GCC web site. The HTML version is generated by the script doc/install.texi2html.


Next: , Previous: Texinfo Manuals, Up: Documentation
6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which contain extracts from those manuals. These man pages are generated from the Texinfo manuals using contrib/texi2pod.pl and pod2man. (The man page for g++, cp/g++.1, just contains a ‘.so’ reference to gcc.1, but all the other man pages are generated from Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man pages, they are only generated if the configure script detects that recent enough tools are installed, and the Makefiles allow generating man pages to fail without aborting the build. Man pages are also included in release distributions. They are generated in the source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file go into a man page. Only a subset of Texinfo is supported by texi2pod.pl, and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To improve the man page output, some special Texinfo macros are provided in doc/include/gcc-common.texi which texi2pod.pl understands:

@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed output the effect of ‘@code’ is better than that of ‘@option’ but for man page output a different effect is wanted.
@gccoptlist
Use for summary lists of options in manuals.
@gol
Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid problems with differences in how the ‘@gccoptlist’ macro is handled by different Texinfo formatters.

FIXME: describe the texi2pod.pl input language and magic comments in more detail.


Previous: Man Page Generation, Up: Documentation
6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other text files with miscellaneous documentation:

ABOUT-GCC-NLS
Notes on GCC's Native Language Support. FIXME: this should be part of this manual rather than a separate file.
ABOUT-NLS
Notes on the Free Translation Project.
COPYING
The GNU General Public License.
COPYING.LIB
The GNU Lesser General Public License.
*ChangeLog*
*/ChangeLog*
Change log files for various parts of GCC.
LANGUAGES
Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual.
ONEWS
Information about new features in old versions of GCC. (For recent versions, the information is on the GCC web site.)
README.Portability
Information about portability issues when writing code in GCC. FIXME: why isn't this part of this manual or of the GCC Coding Conventions?

FIXME: document such files in subdirectories, at least config, cp, objc, testsuite.


Next: , Previous: Documentation, Up: gcc Directory

6.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:

If the front end is added to the official GCC source repository, the following are also necessary:


Next: , Up: Front End
6.3.8.1 The Front End language Directory

A front end language directory contains the source files of that front end (but not of any runtime libraries, which should be outside the gcc directory). This includes documentation, and possibly some subsidiary programs build alongside the front end. Certain files are special and other parts of the compiler depend on their names:

config-lang.in
This file is required in all language subdirectories. See The Front End config-lang.in File, for details of its contents
Make-lang.in
This file is required in all language subdirectories. It contains targets lang.hook (where lang is the setting of language in config-lang.in) for the following values of hook, and any other Makefile rules required to build those targets (which may if necessary use other Makefiles specified in outputs in config-lang.in, although this is deprecated). It also adds any testsuite targets that can use the standard rule in gcc/Makefile.in to the variable lang_checks.
all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?
tags
Build an etags TAGS file in the language subdirectory in the source tree.
info
Build info documentation for the front end, in the build directory. This target is only called by ‘make bootstrap’ if a suitable version of makeinfo is available, so does not need to check for this, and should fail if an error occurs.
dvi
Build DVI documentation for the front end, in the build directory. This should be done using $(TEXI2DVI), with appropriate -I arguments pointing to directories of included files.
pdf
Build PDF documentation for the front end, in the build directory. This should be done using $(TEXI2PDF), with appropriate -I arguments pointing to directories of included files.
html
Build HTML documentation for the front end, in the build directory.
man
Build generated man pages for the front end from Texinfo manuals (see Man Page Generation), in the build directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way.
install-common
Install everything that is part of the front end, apart from the compiler executables listed in compilers in config-lang.in.
install-info
Install info documentation for the front end, if it is present in the source directory. This target should have dependencies on info files that should be installed.
install-man
Install man pages for the front end. This target should ignore errors.
srcextra
Copies its dependencies into the source directory. This generally should be used for generated files such as Bison output files which are not present in CVS, but should be included in any release tarballs. This target will be executed during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified as a configure option.
srcinfo
srcman
Copies its dependencies into the source directory. These targets will be executed during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified as a configure option.
uninstall
Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything.
mostlyclean
clean
distclean
maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See Standard Targets for Users, for details of the standard targets. For GCC, maintainer-clean should delete all generated files in the source directory that are not checked into CVS, but should not delete anything checked into CVS.

Make-lang.in must also define a variable lang_OBJS to a list of host object files that are used by that language.

lang.opt
This file registers the set of switches that the front end accepts on the command line, and their --help text. See Options.
lang-specs.h
This file provides entries for default_compilers in gcc.c which override the default of giving an error that a compiler for that language is not installed.
language-tree.def
This file, which need not exist, defines any language-specific tree codes.


Previous: Front End Directory, Up: Front End
6.3.8.2 The Front End config-lang.in File

Each language subdirectory contains a config-lang.in file. In addition the main directory contains c-config-lang.in, which contains limited information for the C language. This file is a shell script that may define some variables describing the language:

language
This definition must be present, and gives the name of the language for some purposes such as arguments to --enable-languages.
lang_requires
If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with the names given being their language settings). For example, the Java front end depends on the C++ front end, so sets ‘lang_requires=c++’.
subdir_requires
If defined, this variable lists (space-separated) front end directories other than C that this front end requires to be present. For example, the Objective-C++ front end uses source files from the C++ and Objective-C front ends, so sets ‘subdir_requires="cp objc"’.
target_libs
If defined, this variable lists (space-separated) targets in the top level Makefile to build the runtime libraries for this language, such as target-libobjc.
lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to gcc), apart from the runtime libraries, that should not be configured if this front end is not built.
build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a --enable-languages argument. Otherwise, front ends are built by default, subject to any special logic in configure.ac (as is present to disable the Ada front end if the Ada compiler is not already installed).
boot_language
If defined to ‘yes’, this front end is built in stage 1 of the bootstrap. This is only relevant to front ends written in their own languages.
compilers
If defined, a space-separated list of compiler executables that will be run by the driver. The names here will each end with ‘\$(exeext)’.
outputs
If defined, a space-separated list of files that should be generated by configure substituting values in them. This mechanism can be used to create a file language/Makefile from language/Makefile.in, but this is deprecated, building everything from the single gcc/Makefile is preferred.
gtfiles
If defined, a space-separated list of files that should be scanned by gengtype.c to generate the garbage collection tables and routines for this language. This excludes the files that are common to all front ends. See Type Information.


Previous: Front End, Up: gcc Directory

6.3.9 Anatomy of a Target Back End

A back end for a target architecture in GCC has the following parts:

If the back end is added to the official GCC source repository, the following are also necessary:


Previous: gcc Directory, Up: Source Tree

6.4 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime libraries and language front ends in GCC have testsuites. Currently only the C language testsuites are documented here; FIXME: document the others.


Next: , Up: Testsuites

6.4.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing -n.c, starting with -1.c, in case other testcases with similar names are added later. If the test is a test of some well-defined feature, it should have a name referring to that feature such as feature-1.c. If it does not test a well-defined feature but just happens to exercise a bug somewhere in the compiler, and a bug report has been filed for this bug in the GCC bug database, prbug-number-1.c is the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug database), and previously more generally, test cases are named after the date on which they were added. This allows people to tell at a glance whether a test failure is because of a recently found bug that has not yet been fixed, or whether it may be a regression, but does not give any other information about the bug or where discussion of it may be found. Some other language testsuites follow similar conventions.

In the gcc.dg testsuite, it is often necessary to test that an error is indeed a hard error and not just a warning—for example, where it is a constraint violation in the C standard, which must become an error with -pedantic-errors. The following idiom, where the first line shown is line line of the file and the line that generates the error, is used for this:

     /* { dg-bogus "warning" "warning in place of error" } */
     /* { dg-error "regexp" "message" { target *-*-* } line } */

It may be necessary to check that an expression is an integer constant expression and has a certain value. To check that E has value V, an idiom similar to the following is used:

     char x[((E) == (V) ? 1 : -1)];

In gcc.dg tests, __typeof__ is sometimes used to make assertions about the types of expressions. See, for example, gcc.dg/c99-condexpr-1.c. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, for example, gcc.dg/c99-intconst-1.c.

It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where the optimization will lead to code being optimized away (for example, where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in gcc.c-torture/execute. Where code should be optimized away, a call to a nonexistent function such as link_failure () may be inserted; a definition

     #ifndef __OPTIMIZE__
     void
     link_failure (void)
     {
       abort ();
     }
     #endif

will also be needed so that linking still succeeds when the test is run without optimization. When all calls to a built-in function should have been optimized and no calls to the non-built-in version of the function should remain, that function may be defined as static to call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ by directory.

FIXME: discuss non-C testsuites here.


Next: , Previous: Test Idioms, Up: Testsuites

6.4.2 Directives used within DejaGnu tests

Test directives appear within comments in a test source file and begin with dg-. Some of these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to GCC sometimes override information used by the DejaGnu directives, which know nothing about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors which are usually preceded by the keyword target or xfail. A selector is: one or more target triplets, possibly including wildcard characters; a single effective-target keyword; or a logical expression. Depending on the context, the selector specifies whether a test is skipped and reported as unsupported or is expected to fail. Use ‘*-*-*’ to match any target. Effective-target keywords are defined in target-supports.exp in the GCC testsuite.

A selector expression appears within curly braces and uses a single logical operator: one of ‘!’, ‘&&’, or ‘||’. An operand is another selector expression, an effective-target keyword, a single target triplet, or a list of target triplets within quotes or curly braces. For example:

     { target { ! "hppa*-*-* ia64*-*-*" } }
     { target { powerpc*-*-* && lp64 } }
     { xfail { lp64 || vect_no_align } }
{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed. It is one of:
preprocess
Compile with -E to run only the preprocessor.
compile
Compile with -S to produce an assembly code file.
assemble
Compile with -c to produce a relocatable object file.
link
Compile, assemble, and link to produce an executable file.
run
Produce and run an executable file, which is expected to return an exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector }’ then the test is skipped unless the target system is included in the list of target triplets or matches the effective-target keyword.

If ‘do-what-keyword’ is run and the directive includes the optional ‘{ xfail selector }’ and the selector is met then the test is expected to fail. The xfail clause is ignored for other values of ‘do-what-keyword’; those tests can use directive dg-xfail-if.

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the target system matches selector, that replace the default options used for this set of tests.
{ dg-add-options feature ... }
Add any compiler options that are needed to access certain features. This directive does nothing on targets that enable the features by default, or that don't provide them at all. It must come after all dg-options directives.

The supported values of feature are:

c99_runtime
The target's C99 runtime (both headers and libraries).
mips16_attribute
mips16 function attributes. Only MIPS targets support this feature, and only then in certain modes.

{ dg-timeout n [{target selector }] }
Set the time limit for the compilation and for the execution of the test to the specified number of seconds.
{ dg-timeout-factor x [{ target selector }] }
Multiply the normal time limit for compilation and execution of the test by the specified floating-point factor. The normal timeout limit, in seconds, is found by searching the following in order:
{ dg-skip-if comment { selector } { include-opts } { exclude-opts } }
Skip the test if the test system is included in selector and if each of the options in include-opts is in the set of options with which the test would be compiled and if none of the options in exclude-opts is in the set of options with which the test would be compiled.

Use ‘"*"’ for an empty include-opts list and ‘""’ for an empty exclude-opts list.

{ dg-xfail-if comment { selector } { include-opts } { exclude-opts } }
Expect the test to fail if the conditions (which are the same as for dg-skip-if) are met. This does not affect the execute step.
{ dg-xfail-run-if comment { selector } { include-opts } { exclude-opts } }
Expect the execute step of a test to fail if the conditions (which are the same as for dg-skip-if) and dg-xfail-if) are met.
{ dg-require-support args }
Skip the test if the target does not provide the required support; see gcc-dg.exp in the GCC testsuite for the actual directives. These directives must appear after any dg-do directive in the test and before any dg-additional-sources directive. They require at least one argument, which can be an empty string if the specific procedure does not examine the argument.
{ dg-require-effective-target keyword [{ selector }] }
Skip the test if the test target, including current multilib flags, is not covered by the effective-target keyword. If the directive includes the optional ‘{ selector }’ then the effective-target test is only performed if the target system matches the selector. This directive must appear after any dg-do directive in the test and before any dg-additional-sources directive.
{ dg-shouldfail comment { selector } { include-opts } { exclude-opts } }
Expect the test executable to return a nonzero exit status if the conditions (which are the same as for dg-skip-if) are met.
{ dg-error regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get an error message, or else specifies the source line associated with the message. If there is no message for that line or if the text of that message is not matched by regexp then the check fails and comment is included in the FAIL message. The check does not look for the string ‘"error"’ unless it is part of regexp.
{ dg-warning regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that is expected to get a warning message, or else specifies the source line associated with the message. If there is no message for that line or if the text of that message is not matched by regexp then the check fails and comment is included in the FAIL message. The check does not look for the string ‘"warning"’ unless it is part of regexp.
{ dg-message regexp [comment [{ target/xfail selector } [line] }]] }
The line is expected to get a message other than an error or warning. If there is no message for that line or if the text of that message is not matched by regexp then the check fails and comment is included in the FAIL message.
{ dg-bogus regexp [comment [{ target/xfail selector } [line] }]] }
This DejaGnu directive appears on a source line that should not get a message matching regexp, or else specifies the source line associated with the bogus message. It is usually used with ‘xfail’ to indicate that the message is a known problem for a particular set of targets.
{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’. For this directive ‘xfail’ has the same effect as ‘target’.
{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test executable writes to stdout and stderr.
{ dg-prune-output regexp }
Prune messages matching regexp from test output.
{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the system where the compiler runs.
{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main test file.
{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file and is processed after the test has been compiled and run. Multiple ‘dg-final’ commands are processed in the order in which they appear in the source file.

The GCC testsuite defines the following directives to be used within dg-final.

cleanup-coverage-files
Removes coverage data files generated for this test.
cleanup-repo-files
Removes files generated for this test for -frepo.
cleanup-rtl-dump suffix
Removes RTL dump files generated for this test.
cleanup-tree-dump suffix
Removes tree dump files matching suffix which were generated for this test.
cleanup-saved-temps
Removes files for the current test which were kept for --save-temps.
scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.
scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.
scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test's assembly output.
scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test's assembly output.
scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test's assembler output.
scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test's assembler output.
scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test's assembler output.
scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test's demangled assembler output.
scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test's demangled assembler output.
scan-tree-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with suffix suffix.
scan-tree-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.
scan-tree-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix suffix.
scan-tree-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix suffix.
scan-tree-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file with suffix suffix.
output-exists [{ target/xfail selector }]
Passes if compiler output file exists.
output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.
run-gcov sourcefile
Check line counts in gcov tests.
run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov tests.


Next: , Previous: Test Directives, Up: Testsuites

6.4.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS 2.5 testsuite, publicly available at http://www.adaic.org/compilers/acats/2.5

These tests are integrated in the GCC testsuite in the gcc/testsuite/ada/acats directory, and enabled automatically when running make check, assuming the Ada language has been enabled when configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset of the tests by specifying which chapter to run, e.g.:

     $ make check-ada CHAPTERS="c3 c9"

The tests are organized by directory, each directory corresponding to a chapter of the Ada Reference Manual. So for example, c9 corresponds to chapter 9, which deals with tasking features of the language.

There is also an extra chapter called gcc containing a template for creating new executable tests.

The tests are run using two sh scripts: run_acats and run_all.sh. To run the tests using a simulator or a cross target, see the small customization section at the top of run_all.sh.

These tests are run using the build tree: they can be run without doing a make install.


Next: , Previous: Ada Tests, Up: Testsuites

6.4.4 C Language Testsuites

GCC contains the following C language testsuites, in the gcc/testsuite directory:

gcc.dg
This contains tests of particular features of the C compiler, using the more modern ‘dg’ harness. Correctness tests for various compiler features should go here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked or run. In these tests, error and warning message texts are compared against expected texts or regular expressions given in comments. These tests are run with the options ‘-ansi -pedantic’ unless other options are given in the test. Except as noted below they are not run with multiple optimization options.

gcc.dg/compat
This subdirectory contains tests for binary compatibility using compat.exp, which in turn uses the language-independent support (see Support for testing binary compatibility).
gcc.dg/cpp
This subdirectory contains tests of the preprocessor.
gcc.dg/debug
This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports.
gcc.dg/format
This subdirectory contains tests of the -Wformat format checking. Tests in this directory are run with and without -DWIDE.
gcc.dg/noncompile
This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization.
gcc.dg/special
FIXME: describe this.
gcc.c-torture
This contains particular code fragments which have historically broken easily. These tests are run with multiple optimization options, so tests for features which only break at some optimization levels belong here. This also contains tests to check that certain optimizations occur. It might be worthwhile to separate the correctness tests cleanly from the code quality tests, but it hasn't been done yet.
gcc.c-torture/compat
FIXME: describe this.

This directory should probably not be used for new tests.

gcc.c-torture/compile
This testsuite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific platforms, by the use of .x files, mostly these test cases should not contain platform dependencies. FIXME: discuss how defines such as NO_LABEL_VALUES and STACK_SIZE are used.
gcc.c-torture/execute
This testsuite contains test cases that should compile, link and run; otherwise the same comments as for gcc.c-torture/compile apply.
gcc.c-torture/execute/ieee
This contains tests which are specific to IEEE floating point.
gcc.c-torture/unsorted
FIXME: describe this.

This directory should probably not be used for new tests.

gcc.c-torture/misc-tests
This directory contains C tests that require special handling. Some of these tests have individual expect files, and others share special-purpose expect files:
bprob*.c
Test -fbranch-probabilities using bprob.exp, which in turn uses the generic, language-independent framework (see Support for testing profile-directed optimizations).
dg-*.c
Test the testsuite itself using dg-test.exp.
gcov*.c
Test gcov output using gcov.exp, which in turn uses the language-independent support (see Support for testing gcov).
i386-pf-*.c
Test i386-specific support for data prefetch using i386-prefetch.exp.

FIXME: merge in testsuite/README.gcc and discuss the format of test cases and magic comments more.


Next: , Previous: C Tests, Up: Testsuites

6.4.5 The Java library testsuites.

Runtime tests are executed via ‘make check’ in the target/libjava/testsuite directory in the build tree. Additional runtime tests can be checked into this testsuite.

Regression testing of the core packages in libgcj is also covered by the Mauve testsuite. The Mauve Project develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at libjava/testsuite/libjava.mauve/mauve, or by specifying the location of that tree when invoking ‘make’, as in ‘make MAUVEDIR=~/mauve check’.

To detect regressions, a mechanism in mauve.exp compares the failures for a test run against the list of expected failures in libjava/testsuite/libjava.mauve/xfails from the source hierarchy. Update this file when adding new failing tests to Mauve, or when fixing bugs in libgcj that had caused Mauve test failures.

We encourage developers to contribute test cases to Mauve.


Next: , Previous: libgcj Tests, Up: Testsuites

6.4.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling produces expected values, is provided by the expect file gcov.exp. gcov tests also rely on procedures in gcc.dg.exp to compile and run the test program. A typical gcov test contains the following DejaGnu commands within comments:

     { dg-options "-fprofile-arcs -ftest-coverage" }
     { dg-do run { target native } }
     { dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return percentages. All of these checks are requested via commands that appear in comments in the test's source file. Commands to check line counts are processed by default. Commands to check branch percentages and call return percentages are processed if the run-gcov command has arguments branches or calls, respectively. For example, the following specifies checking both, as well as passing -b to gcov:

     { dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to get the specified count and has the form count(cnt). A test should only check line counts for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns) are very similar to each other. A beginning command appears on or before the first of a range of lines that will report the percentage, and the ending command follows that range of lines. The beginning command can include a list of percentages, all of which are expected to be found within the range. A range is terminated by the next command of the same kind. A command branch(end) or returns(end) marks the end of a range without starting a new one. For example:

     if (i > 10 && j > i && j < 20)  /* branch(27 50 75) */
                                     /* branch(end) */
       foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to return. For a branch percentage, the value is either the expected percentage or 100 minus that value, since the direction of a branch can differ depending on the target or the optimization level.

Not all branches and calls need to be checked. A test should not check for branches that might be optimized away or replaced with predicated instructions. Don't check for calls inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call return percentages. The command to check a line count must appear on the line that will report that count, but commands to check branch percentages and call return percentages can bracket the lines that report them.


Next: , Previous: gcov Testing, Up: Testsuites

6.4.7 Support for testing profile-directed optimizations

The file profopt.exp provides language-independent support for checking correct execution of a test built with profile-directed optimization. This testing requires that a test program be built and executed twice. The first time it is compiled to generate profile data, and the second time it is compiled to use the data that was generated during the first execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and run a third time with normal optimizations to verify that the performance is better with the profile-directed optimizations. profopt.exp has the beginnings of this kind of support.

profopt.exp provides generic support for profile-directed optimizations. Each set of tests that uses it provides information about a specific optimization:

tool
tool being tested, e.g., gcc
profile_option
options used to generate profile data
feedback_option
options used to optimize using that profile data
prof_ext
suffix of profile data files
PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests


Next: , Previous: profopt Testing, Up: Testsuites

6.4.8 Support for testing binary compatibility

The file compat.exp provides language-independent support for binary compatibility testing. It supports testing interoperability of two compilers that follow the same ABI, or of multiple sets of compiler options that should not affect binary compatibility. It is intended to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main program and two pieces that interact with each other to split up the functionality being tested.

testname_main.suffix
Contains the main program, which calls a function in file testname_x.suffix.
testname_x.suffix
Contains at least one call to a function in testname_y.suffix.
testname_y.suffix
Shares data with, or gets arguments from, testname_x.suffix.

Within each test, the main program and one functional piece are compiled by the GCC under test. The other piece can be compiled by an alternate compiler. If no alternate compiler is specified, then all three source files are all compiled by the GCC under test. You can specify pairs of sets of compiler options. The first element of such a pair specifies options used with the GCC under test, and the second element of the pair specifies options used with the alternate compiler. Each test is compiled with each pair of options.

compat.exp defines default pairs of compiler options. These can be overridden by defining the environment variable COMPAT_OPTIONS as:

     COMPAT_OPTIONS="[list [list {tst1} {alt1}]
       ...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti used by the alternate compiler. For example, with [list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]], the test is first built with -g -O0 by the compiler under test and with -O3 by the alternate compiler. The test is built a second time using -fpic by the compiler under test and -fPIC -O2 by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define ALT_CXX_UNDER_TEST. These will be written to the site.exp file used by DejaGnu. The default is to build each test with the compiler under test using the first of each pair of compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_TEST is same, each test is built using the compiler under test but with combinations of the options from COMPAT_OPTIONS.

To run only the C++ compatibility suite using the compiler under test and another version of GCC using specific compiler options, do the following from objdir/gcc:

     rm site.exp
     make -k \
       ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
       COMPAT_OPTIONS="lists as shown above" \
       check-c++ \
       RUNTESTFLAGS="compat.exp"

A test that fails when the source files are compiled with different compilers, but passes when the files are compiled with the same compiler, demonstrates incompatibility of the generated code or runtime support. A test that fails for the alternate compiler but passes for the compiler under test probably tests for a bug that was fixed in the compiler under test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that appear within comments in a test file.

dg-require-*
These commands can be used in testname_main.suffix to skip the test if specific support is not available on the target.
dg-options
The specified options are used for compiling this particular source file, appended to the options from COMPAT_OPTIONS. When this command appears in testname_main.suffix the options are also used to link the test program.
dg-xfail-if
This command can be used in a secondary source file to specify that compilation is expected to fail for particular options on particular targets.


Previous: compat Testing, Up: Testsuites

6.4.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run multiple times, each with a different set of options. These are known as torture tests. gcc/testsuite/lib/torture-options.exp defines procedures to set up these lists:

torture-init
Initialize use of torture lists.
set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally combine a set of torture options with a set of other options, as is done with Objective-C runtime options.
torture-finish
Finalize use of torture lists.

The .exp file for a set of tests that use torture options must include calls to these three procedures if:

It is not necessary for a .exp file that calls gcc-dg-runtest to call the torture procedures if the tests should use the list in DG_TORTURE_OPTIONS defined in gcc-dg.exp.

Most uses of torture options can override the default lists by defining TORTURE_OPTIONS or add to the default list by defining ADDITIONAL_TORTURE_OPTIONS. Define these in a .dejagnurc file or add them to the site.exp file; for example

     set ADDITIONAL_TORTURE_OPTIONS  [list \
       { -O2 -ftree-loop-linear } \
       { -O2 -fpeel-loops } ]


Next: , Previous: Source Tree, Up: Top

7 Option specification files

Most GCC command-line options are described by special option definition files, the names of which conventionally end in .opt. This chapter describes the format of these files.


Next: , Up: Options

7.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which the records themselves are separated by blank lines. Comments may appear on their own line anywhere within the file and are preceded by semicolons. Whitespace is allowed before the semicolon.

The files can contain the following types of record:


Previous: Option file format, Up: Options

7.2 Option properties

The second field of an option record can specify the following properties:

Common
The option is available for all languages and targets.
Target
The option is available for all languages but is target-specific.
language
The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. Each language must have been declared by an earlier Language record. See Option file format.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W” or “m” are assumed to have a “no-” form unless this property is used.
Negative(othername)
The option will turn off another option othername, which is the the option name with the leading “-” removed. This chain action will propagate through the Negative property of the option to be turned off.
Joined
Separate
The option takes a mandatory argument. Joined indicates that the option and argument can be included in the same argv entry (as with -mflush-func=name, for example). Separate indicates that the option and argument can be separate argv entries (as with -o). An option is allowed to have both of these properties.
JoinedOrMissing
The option takes an optional argument. If the argument is given, it will be part of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

UInteger
The option's argument is a non-negative integer. The option parser will check and convert the argument before passing it to the relevant option handler. UInteger should also be used on options like -falign-loops where both -falign-loops and -falign-loops=n are supported to make sure the saved options are given a full integer.
Var(var)
The state of this option should be stored in variable var. The way that the state is stored depends on the type of option:

The option-processing script will usually declare var in options.c and leave it to be zero-initialized at start-up time. You can modify this behavior using VarExists and Init.

Var(var, set)
The option controls an integer variable var and is active when var equals set. The option parser will set var to set when the positive form of the option is used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

VarExists
The variable specified by the Var property already exists. No definition should be added to options.c in response to this option record.

You should use this property only if the variable is declared outside options.c.

Init(value)
The variable specified by the Var property should be statically initialized to value.
Mask(name)
The option is associated with a bit in the target_flags variable (see Run-time Target) and is active when that bit is set. You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the option. If the option is attached to ‘target_flags’, the script will set the macro MASK_name to the appropriate bitmask. It will also declare a TARGET_name macro that has the value 1 when the option is active and 0 otherwise. If you use Var to attach the option to a different variable, the associated macros are called OPTION_MASK_name and OPTION_name respectively.

You can disable automatic bit allocation using MaskExists.

InverseMask(othername)
InverseMask(othername, thisname)
The option is the inverse of another option that has the Mask(othername) property. If thisname is given, the options-processing script will declare a TARGET_thisname macro that is 1 when the option is active and 0 otherwise.
MaskExists
The mask specified by the Mask property already exists. No MASK or TARGET definitions should be added to options.h in response to this option record.

The main purpose of this property is to support synonymous options. The first option should use ‘Mask(name)’ and the others should use ‘Mask(name) MaskExists’.

Report
The state of the option should be printed by -fverbose-asm.
Undocumented
The option is deliberately missing documentation and should not be included in the --help output.
Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note that any C declarations associated with the option will be present even if cond is false; cond simply controls whether the option is accepted and whether it is printed in the --help output.
Save
Build the cl_target_option structure to hold a copy of the option, add the functions cl_target_option_save and cl_target_option_restore to save and restore the options.


Next: , Previous: Options, Up: Top

8 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation passes of the compiler. In the process, it describes some of the language front end interface, though this description is no where near complete.


Next: , Up: Passes

8.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the entire input. The language front end may use any intermediate language representation deemed appropriate. The C front end uses GENERIC trees (CROSSREF), plus a double handful of language specific tree codes defined in c-common.def. The Fortran front end uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a representation understood by the language-independent portions of the compiler. Current practice takes one of two forms. The C front end manually invokes the gimplifier (CROSSREF) on each function, and uses the gimplifier callbacks to convert the language-specific tree nodes directly to GIMPLE (CROSSREF) before passing the function off to be compiled. The Fortran front end converts from a private representation to GENERIC, which is later lowered to GIMPLE when the function is compiled. Which route to choose probably depends on how well GENERIC (plus extensions) can be made to match up with the source language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is certain that the function is used, (2) warning flags specified by the user require some amount of compilation in order to honor, (3) the language indicates that semantic analysis is not complete until gimplification occurs. Hum... this sounds overly complicated. Perhaps we should just have the front end gimplify always; in most cases it's only one function call.

The front end needs to pass all function definitions and top level declarations off to the middle-end so that they can be compiled and emitted to the object file. For a simple procedural language, it is usually most convenient to do this as each top level declaration or definition is seen. There is also a distinction to be made between generating functional code and generating complete debug information. The only thing that is absolutely required for functional code is that function and data definitions be passed to the middle-end. For complete debug information, function, data and type declarations should all be passed as well.

In any case, the front end needs each complete top-level function or data declaration, and each data definition should be passed to rest_of_decl_compilation. Each complete type definition should be passed to rest_of_type_compilation. Each function definition should be passed to cgraph_finalize_function.

TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics. I plan to move all code generation bits (both Tree and RTL) to compile_function. Should we hide cgraph from the front ends and move back to rest_of_compilation as the official interface? Possibly we should rename all three interfaces such that the names match in some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or queue them for later processing.


Next: , Previous: Parsing pass, Up: Passes

8.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate representation of a function into the GIMPLE language (CROSSREF). The term stuck, and so words like “gimplification”, “gimplify”, “gimplifier” and the like are sprinkled throughout this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this can be a moderately complex process unless the intermediate language used by the front end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in gimplify.c. From here we process the entire function gimplifying each statement in turn. The main workhorse for this pass is gimplify_expr. Approximately everything passes through here at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the expression is not a language specific construct that requires attention. Otherwise it should alter the expression in some way to such that forward progress is made toward producing valid GIMPLE. If the callback is certain that the transformation is complete and the expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return GS_OK, which will cause the expression to be processed again. If the callback encounters an error during the transformation (because the front end is relying on the gimplification process to finish semantic checks), it should return GS_ERROR.


Next: , Previous: Gimplification pass, Up: Passes

8.3 Pass manager

The pass manager is located in passes.c, tree-optimize.c and tree-pass.h. Its job is to run all of the individual passes in the correct order, and take care of standard bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything we need to know about that pass—when it should be run, how it should be run, what intermediate language form or on-the-side data structures it needs. We register the pass to be run in some particular order, and the pass manager arranges for everything to happen in the correct order.

The actuality doesn't completely live up to the theory at present. Command-line switches and timevar_id_t enumerations must still be defined elsewhere. The pass manager validates constraints but does not attempt to (re-)generate data structures or lower intermediate language form based on the requirements of the next pass. Nevertheless, what is present is useful, and a far sight better than nothing at all.

Each pass may have its own dump file (for GCC debugging purposes). Passes without any names, or with a name starting with a star, do not dump anything.

TODO: describe the global variables set up by the pass manager, and a brief description of how a new pass should use it. I need to look at what info RTL passes use first...


Next: , Previous: Pass manager, Up: Passes

8.4 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification and what source files they are located in.


Previous: Tree SSA passes, Up: Passes

8.5 RTL passes

The following briefly describes the RTL generation and optimization passes that are run after the Tree optimization passes.


Next: , Previous: Passes, Up: Top

9 Trees: The intermediate representation used by the C and C++ front ends

This chapter documents the internal representation used by GCC to represent C and C++ source programs. When presented with a C or C++ source program, GCC parses the program, performs semantic analysis (including the generation of error messages), and then produces the internal representation described here. This representation contains a complete representation for the entire translation unit provided as input to the front end. This representation is then typically processed by a code-generator in order to produce machine code, but could also be used in the creation of source browsers, intelligent editors, automatic documentation generators, interpreters, and any other programs needing the ability to process C or C++ code.

This chapter explains the internal representation. In particular, it documents the internal representation for C and C++ source constructs, and the macros, functions, and variables that can be used to access these constructs. The C++ representation is largely a superset of the representation used in the C front end. There is only one construct used in C that does not appear in the C++ front end and that is the GNU “nested function” extension. Many of the macros documented here do not apply in C because the corresponding language constructs do not appear in C.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses this representation, you may occasionally find that you need to ask questions not easily answered by the functions and macros available here. If that situation occurs, it is quite likely that GCC already supports the functionality you desire, but that the interface is simply not documented here. In that case, you should ask the GCC maintainers (via mail to gcc@gcc.gnu.org) about documenting the functionality you require. Similarly, if you find yourself writing functions that do not deal directly with your back end, but instead might be useful to other people using the GCC front end, you should submit your patches for inclusion in GCC.


Next: , Up: Trees

9.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet, only preliminary documentation.


Next: , Previous: Deficiencies, Up: Trees

9.2 Overview

The central data structure used by the internal representation is the tree. These nodes, while all of the C type tree, are of many varieties. A tree is a pointer type, but the object to which it points may be of a variety of types. From this point forward, we will refer to trees in ordinary type, rather than in this font, except when talking about the actual C type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many, many macros take trees as input and return trees as output. However, most macros require a certain kind of tree node as input. In other words, there is a type-system for trees, but it is not reflected in the C type-system.

For safety, it is useful to configure GCC with --enable-checking. Although this results in a significant performance penalty (since all tree types are checked at run-time), and is therefore inappropriate in a release version, it is extremely helpful during the development process.

Many macros behave as predicates. Many, although not all, of these predicates end in ‘_P’. Do not rely on the result type of these macros being of any particular type. You may, however, rely on the fact that the type can be compared to 0, so that statements like

     if (TEST_P (t) && !TEST_P (y))
       x = 1;

and

     int i = (TEST_P (t) != 0);

are legal. Macros that return int values now may be changed to return tree values, or other pointers in the future. Even those that continue to return int may return multiple nonzero codes where previously they returned only zero and one. Therefore, you should not write code like

     if (TEST_P (t) == 1)

as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are entirely in lowercase. There are rare exceptions to this rule. You should assume that any macro or function whose name is made up entirely of uppercase letters may evaluate its arguments more than once. You may assume that a macro or function whose name is made up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is only ever one node with that code, the usual practice is to compare the tree against error_mark_node. (This test is just a test for pointer equality.) If an error has occurred during front-end processing the flag errorcount will be set. If the front end has encountered code it cannot handle, it will issue a message to the user and set sorrycount. When these flags are set, any macro or function which normally returns a tree of a particular kind may instead return the error_mark_node. Thus, if you intend to do any processing of erroneous code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field in a declaration) will be referred to as “reserved for the back end”. These slots are used to store RTL when the tree is converted to RTL for use by the GCC back end. However, if that process is not taking place (e.g., if the front end is being hooked up to an intelligent editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of types not mentioned here, or macros documented to return entities of a particular kind that instead return entities of some different kind, you have found a bug, either in the front end or in the documentation. Please report these bugs as you would any other bug.


Next: , Up: Tree overview

9.2.1 Trees

This section is not here yet.


Next: , Previous: Macros and Functions, Up: Tree overview

9.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept that the standard C or C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other extraordinary characters.

There are never two distinct IDENTIFIER_NODEs representing the same identifier. Therefore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a routine like strcmp.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is always NUL-terminated, and contains no embedded NUL characters.
IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as strlen (IDENTIFIER_POINTER (x)).
IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded operator. In this case, you should not depend on the contents of either the IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.
IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined conversion operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds the type to which the conversion operator converts.


Previous: Identifiers, Up: Tree overview

9.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A TREE_LIST is a singly linked list containing two trees per node. These are the TREE_PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of tag, or additional information, while the TREE_VALUE contains the majority of the payload. In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT macro, which takes two arguments. The first is the TREE_VEC in question; the second is an integer indicating which element in the vector is desired. The elements are indexed from zero.


Next: , Previous: Tree overview, Up: Trees

9.3 Types

All types have corresponding tree nodes. However, you should not assume that there is exactly one tree node corresponding to each type. There are often multiple nodes corresponding to the same type.

For the most part, different kinds of types have different tree codes. (For example, pointer types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to member functions use the RECORD_TYPE code. Therefore, when writing a switch statement that depends on the code associated with a particular type, you should take care to handle pointers to member functions under the RECORD_TYPE case label.

In C++, an array type is not qualified; rather the type of the array elements is qualified. This situation is reflected in the intermediate representation. The macros described here will always examine the qualification of the underlying element type when applied to an array type. (If the element type is itself an array, then the recursion continues until a non-array type is found, and the qualification of this type is examined.) So, for example, CP_TYPE_CONST_P will hold of the type const int ()[7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

CP_TYPE_QUALS
This macro returns the set of type qualifiers applied to this type. This value is TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type is restrict-qualified.
CP_TYPE_CONST_P
This macro holds if the type is const-qualified.
CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.
CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.
CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.
TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.
TYPE_ALIGN
The alignment of the type, in bits, represented as an int.
TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type. (Note this macro does not return a IDENTIFIER_NODE, as you might expect, given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that is not a built-in type, the result of a typedef, or a named class type.
CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enumerations are not integral types.
ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a floating point type.
CLASS_TYPE_P
This predicate holds for a class-type.
TYPE_BUILT_IN
This predicate holds for a built-in type.
TYPE_PTRMEM_P
This predicate holds if the type is a pointer to data member.
TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data member.
TYPE_PTRFN_P
This predicate holds for a pointer to function type.
TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P to test for a pointer to object type as well as void *.
TYPE_CANONICAL
This macro returns the “canonical” type for the given type node. Canonical types are used to improve performance in the C++ and Objective-C++ front ends by allowing efficient comparison between two type nodes in same_type_p: if the TYPE_CANONICAL values of the types are equal, the types are equivalent; otherwise, the types are not equivalent. The notion of equivalence for canonical types is the same as the notion of type equivalence in the language itself. For instance,

When TYPE_CANONICAL is NULL_TREE, there is no canonical type for the given type node. In this case, comparison between this type and any other type requires the compiler to perform a deep, “structural” comparison to see if the two type nodes have the same form and properties.

The canonical type for a node is always the most fundamental type in the equivalence class of types. For instance, int is its own canonical type. A typedef I of int will have int as its canonical type. Similarly, I* and a typedef IP (defined to I*) will has int* as their canonical type. When building a new type node, be sure to set TYPE_CANONICAL to the appropriate canonical type. If the new type is a compound type (built from other types), and any of those other types require structural equality, use SET_TYPE_STRUCTURAL_EQUALITY to ensure that the new type also requires structural equality. Finally, if for some reason you cannot guarantee that TYPE_CANONICAL will point to the canonical type, use SET_TYPE_STRUCTURAL_EQUALITY to make sure that the new type–and any type constructed based on it–requires structural equality. If you suspect that the canonical type system is miscomparing types, pass --param verify-canonical-types=1 to the compiler or configure with --enable-checking to force the compiler to verify its canonical-type comparisons against the structural comparisons; the compiler will then print any warnings if the canonical types miscompare.

TYPE_STRUCTURAL_EQUALITY_P
This predicate holds when the node requires structural equality checks, e.g., when TYPE_CANONICAL is NULL_TREE.
SET_TYPE_STRUCTURAL_EQUALITY
This macro states that the type node it is given requires structural equality checks, e.g., it sets TYPE_CANONICAL to NULL_TREE.
same_type_p
This predicate takes two types as input, and holds if they are the same type. For example, if one type is a typedef for the other, or both are typedefs for the same type. This predicate also holds if the two trees given as input are simply copies of one another; i.e., there is no difference between them at the source level, but, for whatever reason, a duplicate has been made in the representation. You should never use == (pointer equality) to compare types; always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access them. Although other kinds of types are used elsewhere in G++, the types described here are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE
Used to represent the void type.
INTEGER_TYPE
Used to represent the various integral types, including char, short, int, long, and long long. This code is not used for enumeration types, nor for the bool type. The TYPE_PRECISION is the number of bits used in the representation, represented as an unsigned int. (Note that in the general case this is not the same value as TYPE_SIZE; suppose that there were a 24-bit integer type, but that alignment requirements for the ABI required 32-bit alignment. Then, TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be 24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for the largest integer that may be represented by this type.

REAL_TYPE
Used to represent the float, double, and long double types. The number of bits in the floating-point representation is given by TYPE_PRECISION, as in the INTEGER_TYPE case.
FIXED_POINT_TYPE
Used to represent the short _Fract, _Fract, long _Fract, long long _Fract, short _Accum, _Accum, long _Accum, and long long _Accum types. The number of bits in the fixed-point representation is given by TYPE_PRECISION, as in the INTEGER_TYPE case. There may be padding bits, fractional bits and integral bits. The number of fractional bits is given by TYPE_FBIT, and the number of integral bits is given by TYPE_IBIT. The fixed-point type is unsigned if TYPE_UNSIGNED holds; otherwise, it is signed. The fixed-point type is saturating if TYPE_SATURATING holds; otherwise, it is not saturating.
COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is the type of the real and imaginary parts.
ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an int), the number of bits used to represent the type. If there are no negative enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at the TYPE_VALUES. This macro will return a TREE_LIST, containing the constants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the value assigned to that constant. These constants will appear in the order in which they were declared. The TREE_TYPE of each of these constants will be the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.
POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_TYPE gives the type to which this type points. If the type is a pointer to data member type, then TYPE_PTRMEM_P will hold. For a pointer to data member type of the form ‘T X::*’, TYPE_PTRMEM_CLASS_TYPE will be the type X, while TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.
REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this type refers.
FUNCTION_TYPE
Used to represent the type of non-member functions and of static member functions. The TREE_TYPE gives the return type of the function. The TYPE_ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each node in this list is the type of the corresponding argument; the TREE_PURPOSE is an expression for the default argument value, if any. If the last node in the list is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_node), then functions of this type do not take variable arguments. Otherwise, they do take a variable number of arguments.

Note that in C (but not in C++) a function declared like void f() is an unprototyped function taking a variable number of arguments; the TYPE_ARG_TYPES of such a function will be NULL.

METHOD_TYPE
Used to represent the type of a non-static member function. Like a FUNCTION_TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the class of which functions of this type are a member, is given by the TYPE_METHOD_BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE, and includes the this argument.
ARRAY_TYPE
Used to represent array types. The TREE_TYPE gives the type of the elements in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than the number of elements in the array, i.e., the highest value which may be used to index an element in the array.
RECORD_TYPE
Used to represent struct and class types, as well as pointers to member functions and similar constructs in other languages. TYPE_FIELDS contains the items contained in this type, each of which can be a FIELD_DECL, VAR_DECL, CONST_DECL, or TYPE_DECL. You may not make any assumptions about the ordering of the fields in the type or whether one or more of them overlap. If TYPE_PTRMEMFUNC_P holds, then this type is a pointer-to-member type. In that case, the TYPE_PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_TYPE. The METHOD_TYPE is the type of a function pointed to by the pointer-to-member function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class type. For more information, see see Classes.
UNION_TYPE
Used to represent union types. Similar to RECORD_TYPE except that all FIELD_DECL nodes in TYPE_FIELD start at bit position zero.
QUAL_UNION_TYPE
Used to represent part of a variant record in Ada. Similar to UNION_TYPE except that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean expression that indicates whether the field is present in the object. The type will only have one field, so each field's DECL_QUALIFIER is only evaluated if none of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally these expressions will reference a field in the outer object using a PLACEHOLDER_EXPR.
UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for a sound processing.
OFFSET_TYPE
This node is used to represent a pointer-to-data member. For a data member X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.
TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The TREE_TYPE is non-NULL if the node is implicitly generated in support for the implicit typename extension; in which case the TREE_TYPE is a type node for the base-class.
TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expression the type of which is being represented.

There are variables whose values represent some of the basic types. These include:

void_type_node
A node for void.
integer_type_node
A node for int.
unsigned_type_node.
A node for unsigned int.
char_type_node.
A node for char.
It may sometimes be useful to compare one of these variables with a type in hand, using same_type_p.


Next: , Previous: Types, Up: Trees

9.4 Scopes

The root of the entire intermediate representation is the variable global_namespace. This is the namespace specified with :: in C++ source code. All other namespaces, types, variables, functions, and so forth can be found starting with this namespace.

Besides namespaces, the other high-level scoping construct in C++ is the class. (Throughout this manual the term class is used to mean the types referred to in the ANSI/ISO C++ Standard as classes; these include types defined with the class, struct, and union keywords.)


Next: , Up: Scopes

9.4.1 Namespaces

A namespace is represented by a NAMESPACE_DECL node.

However, except for the fact that it is distinguished as the root of the representation, the global namespace is no different from any other namespace. Thus, in what follows, we describe namespaces generally, rather than the global namespace in particular.

The following macros and functions can be used on a NAMESPACE_DECL:

DECL_NAME
This macro is used to obtain the IDENTIFIER_NODE corresponding to the unqualified name of the name of the namespace (see Identifiers). The name of the global namespace is ‘::’, even though in C++ the global namespace is unnamed. However, you should use comparison with global_namespace, rather than DECL_NAME to determine whether or not a namespace is the global one. An unnamed namespace will have a DECL_NAME equal to anonymous_namespace_name. Within a single translation unit, all unnamed namespaces will have the same name.
DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the global_namespace is NULL_TREE.
DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias. Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special ::std namespace.
cp_namespace_decls
This function will return the declarations contained in the namespace, including types, overloaded functions, other namespaces, and so forth. If there are no declarations, this function will return NULL_TREE. The declarations are connected through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the TREE_PURPOSE is unspecified; back ends should ignore this value. As with the other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list, See Declarations. Some declarations will not appear on this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_ALIAS set.


Previous: Namespaces, Up: Scopes

9.4.2 Classes

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared with the union tag is represented by a UNION_TYPE, while classes declared with either the struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed to a struct. This macro will be true only for classes declared with the class tag.

Almost all non-function members are available on the TYPE_FIELDS list. Given one member, the next can be found by following the TREE_CHAIN. You should not depend in any way on the order in which fields appear on this list. All nodes on this list will be ‘DECL’ nodes. A FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to represent a static data member, and a TYPE_DECL is used to represent a type. Note that the CONST_DECL for an enumeration constant will appear on this list, if the enumeration type was declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear here as well.) There are no entries for base classes on this list. In particular, there is no FIELD_DECL for the “base-class portion” of an object.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables. It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

The function members are available on the TYPE_METHODS list. Again, subsequent members are found by following the TREE_CHAIN field. If a function is overloaded, each of the overloaded functions appears; no OVERLOAD nodes appear on the TYPE_METHODS list. Implicitly declared functions (including default constructors, copy constructors, assignment operators, and destructors) will appear on this list as well.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case, whereby every class is considered to be its own base-class. The base binfos for a particular binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO (BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce access_public_node, access_private_node or access_protected_node. If bases are always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The other flags, BINFO_MARKED_P and BINFO_FLAG_1 to BINFO_FLAG_6 can be used for language specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function body.
TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or inherited).
TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default constructor.
CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.
CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.
TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.
TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.
TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is overloaded.
TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]
TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.


Next: , Previous: Functions, Up: Trees

9.5 Declarations

This section covers the various kinds of declarations that appear in the internal representation, except for declarations of functions (represented by FUNCTION_DECL nodes), which are described in Functions.


Next: , Up: Declarations

9.5.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.
TREE_TYPE
This macro returns the type of the entity declared.
TREE_FILENAME
This macro returns the name of the file in which the entity was declared, as a char*. For an entity declared implicitly by the compiler (like __builtin_memcpy), this will be the string "<internal>".
TREE_LINENO
This macro returns the line number at which the entity was declared, as an int.
DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler. For example, this predicate will hold of an implicitly declared member function, or of the TYPE_DECL implicitly generated for a class type. Recall that in C++ code like:
          struct S {};

is roughly equivalent to C code like:

          struct S {};
          typedef struct S S;

The implicitly generated typedef declaration is represented by a TYPE_DECL for which DECL_ARTIFICIAL holds.

DECL_NAMESPACE_SCOPE_P
This predicate holds if the entity was declared at a namespace scope.
DECL_CLASS_SCOPE_P
This predicate holds if the entity was declared at a class scope.
DECL_FUNCTION_SCOPE_P
This predicate holds if the entity was declared inside a function body.

The various kinds of declarations include:

LABEL_DECL
These nodes are used to represent labels in function bodies. For more information, see Functions. These nodes only appear in block scopes.
CONST_DECL
These nodes are used to represent enumeration constants. The value of the constant is given by DECL_INITIAL which will be an INTEGER_CST with the same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.
RESULT_DECL
These nodes represent the value returned by a function. When a value is assigned to a RESULT_DECL, that indicates that the value should be returned, via bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a RESULT_DECL, just as with a VAR_DECL.
TYPE_DECL
These nodes represent typedef declarations. The TREE_TYPE is the type declared to have the name given by DECL_NAME. In some cases, there is no associated name.
VAR_DECL
These nodes represent variables with namespace or block scope, as well as static data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_TYPE, since special attributes may have been applied to the variable to give it a particular size and alignment. You may use the predicates DECL_THIS_STATIC or DECL_THIS_EXTERN to test whether the storage class specifiers static or extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_INITIAL will be an expression for the initializer. The initializer should be evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL is the error_mark_node, there is an initializer, but it is given by an explicit statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global variables, to be placed in particular registers. This extension is being used for a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_NAME is the name of the register into which the variable will be placed.

PARM_DECL
Used to represent a parameter to a function. Treat these nodes similarly to VAR_DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when a value is passed to this function. It may be a wider type than the TREE_TYPE of the parameter; for example, the ordinary type might be short while the DECL_ARG_TYPE is int.

FIELD_DECL
These nodes represent non-static data members. The DECL_SIZE and DECL_ALIGN behave as for VAR_DECL nodes. The position of the field within the parent record is specified by a combination of three attributes. DECL_FIELD_OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized word containing the bit of the field closest to the beginning of the structure. DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this word; this may be nonzero even for fields that are not bit-fields, since DECL_OFFSET_ALIGN may be greater than the natural alignment of the field's type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_FIELD_TYPE also contains the type that was originally specified for it, while DECL_TYPE may be a modified type with lesser precision, according to the size of the bit field.

NAMESPACE_DECL
See Namespaces.
TEMPLATE_DECL
These nodes are used to represent class, function, and variable (static data member) templates. The DECL_TEMPLATE_SPECIALIZATIONS are a TREE_LIST. The TREE_VALUE of each node in the list is a TEMPLATE_DECLs or FUNCTION_DECLs representing specializations (including instantiations) of this template. Back ends can safely ignore TEMPLATE_DECLs, but should examine FUNCTION_DECL nodes on the specializations list just as they would ordinary FUNCTION_DECL nodes.

For a class template, the DECL_TEMPLATE_INSTANTIATIONS list contains the instantiations. The TREE_VALUE of each node is an instantiation of the class. The DECL_TEMPLATE_SPECIALIZATIONS contains partial specializations of the class.

USING_DECL
Back ends can safely ignore these nodes.


Previous: Working with declarations, Up: Declarations

9.5.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.


Next: , Up: Internal structure
9.5.2.1 Current structure hierarchy
struct tree_decl_minimal
This is the minimal structure to inherit from in order for common DECL macros to work. The fields it contains are a unique ID, source location, context, and name.
struct tree_decl_common
This structure inherits from struct tree_decl_minimal. It contains fields that most DECL nodes need, such as a field to store alignment, machine mode, size, and attributes.
struct tree_field_decl
This structure inherits from struct tree_decl_common. It is used to represent FIELD_DECL.
struct tree_label_decl
This structure inherits from struct tree_decl_common. It is used to represent LABEL_DECL.
struct tree_translation_unit_decl
This structure inherits from struct tree_decl_common. It is used to represent TRANSLATION_UNIT_DECL.
struct tree_decl_with_rtl
This structure inherits from struct tree_decl_common. It contains a field to store the low-level RTL associated with a DECL node.
struct tree_result_decl
This structure inherits from struct tree_decl_with_rtl. It is used to represent RESULT_DECL.
struct tree_const_decl
This structure inherits from struct tree_decl_with_rtl. It is used to represent CONST_DECL.
struct tree_parm_decl
This structure inherits from struct tree_decl_with_rtl. It is used to represent PARM_DECL.
struct tree_decl_with_vis
This structure inherits from struct tree_decl_with_rtl. It contains fields necessary to store visibility information, as well as a section name and assembler name.
struct tree_var_decl
This structure inherits from struct tree_decl_with_vis. It is used to represent VAR_DECL.
struct tree_function_decl
This structure inherits from struct tree_decl_with_vis. It is used to represent FUNCTION_DECL.


Previous: Current structure hierarchy, Up: Internal structure
9.5.2.2 Adding new DECL node types

Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a .def file in each frontend directory where the tree code should be added. For DECL nodes that are part of the middle-end, the code should be added to tree.def.
Create a new structure type for the DECL node
These structures should inherit from one of the existing structures in the language hierarchy by using that structure as the first member.
          struct tree_foo_decl
          {
             struct tree_decl_with_vis common;
          }

Would create a structure name tree_foo_decl that inherits from struct tree_decl_with_vis.

For language specific DECL nodes, this new structure type should go in the appropriate .h file. For DECL nodes that are part of the middle-end, the structure type should go in tree.h.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node structure type is required to have a unique enumerator value specified with it. For language specific DECL nodes, this new enumerator value should go in the appropriate .def file. For DECL nodes that are part of the middle-end, the enumerator values are specified in treestruct.def.
Update union tree_node
In order to make your new structure type usable, it must be added to union tree_node. For language specific DECL nodes, a new entry should be added to the appropriate .h file of the form
            struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes directly into union tree_node in tree.h.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_node is legal, and whether a certain DECL node contains one of the enumerated DECL node structures in the hierarchy, a simple lookup table is used. This lookup table needs to be kept up to date with the tree structure hierarchy, or else checking and containment macros will fail inappropriately.

For language specific DECL nodes, their is an init_ts function in an appropriate .c file, which initializes the lookup table. Code setting up the table for new DECL nodes should be added there. For each DECL tree code and enumerator value representing a member of the inheritance hierarchy, the table should contain 1 if that tree code inherits (directly or indirectly) from that member. Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator value TS_FOO_DECL, would be set up as follows

          tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1;
          tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1;
          tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1;
          tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1;

For DECL nodes that are part of the middle-end, the setup code goes into tree.c.

Add macros to access any new fields and flags
Each added field or flag should have a macro that is used to access it, that performs appropriate checking to ensure only the right type of DECL nodes access the field.

These macros generally take the following form

          #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something like the following should be used

          #define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
          #define BASE_STRUCT_FIELDNAME(NODE) \
             (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname


Next: , Previous: Scopes, Up: Trees

9.6 Functions

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is sometimes represented by a OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_’ macros should be used on an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads. In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_DECL) of which the function is a member. For a virtual function, this macro returns the class in which the function was actually defined, not the base class in which the virtual declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be used to determine the class in which it was defined. For example, in

     class C { friend void f() {} };

the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will be the RECORD_TYPE for C.

In C, the DECL_CONTEXT for a function maybe another function. This representation indicates that the GNU nested function extension is in use. For details on the semantics of nested functions, see the GCC Manual. The nested function can refer to local variables in its containing function. Such references are not explicitly marked in the tree structure; back ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT for the referenced VAR_DECL is not the same as the function currently being processed, and neither DECL_EXTERNAL nor TREE_STATIC hold, then the reference is to a local variable in a containing function, and the back end must take appropriate action.


Next: , Up: Functions

9.6.1 Function Basics

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P
This predicate holds for a function that is the program entry point ::code.
DECL_NAME
This macro returns the unqualified name of the function, as an IDENTIFIER_NODE. For an instantiation of a function template, the DECL_NAME is the unqualified name of the template, not something like f<int>. The value of DECL_NAME is undefined when used on a constructor, destructor, overloaded operator, or type-conversion operator, or any function that is implicitly generated by the compiler. See below for macros that can be used to distinguish these cases.
DECL_ASSEMBLER_NAME
This macro returns the mangled name of the function, also an IDENTIFIER_NODE. This name does not contain leading underscores on systems that prefix all identifiers with underscores. The mangled name is computed in the same way on all platforms; if special processing is required to deal with the object file format used on a particular platform, it is the responsibility of the back end to perform those modifications. (Of course, the back end should not modify DECL_ASSEMBLER_NAME itself.)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for the mangled name of the entity) so it should be used only when emitting assembly code. It should not be used within the optimizers to determine whether or not two declarations are the same, even though some of the existing optimizers do use it in that way. These uses will be removed over time.

DECL_EXTERNAL
This predicate holds if the function is undefined.
TREE_PUBLIC
This predicate holds if the function has external linkage.
DECL_LOCAL_FUNCTION_P
This predicate holds if the function was declared at block scope, even though it has a global scope.
DECL_ANTICIPATED
This predicate holds if the function is a built-in function but its prototype is not yet explicitly declared.
DECL_EXTERN_C_FUNCTION_P
This predicate holds if the function is declared as an `extern "C"' function.
DECL_LINKONCE_P
This macro holds if multiple copies of this function may be emitted in various translation units. It is the responsibility of the linker to merge the various copies. Template instantiations are the most common example of functions for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all translation units which require them, and then relies on the linker to remove duplicate instantiations.

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member of a namespace.
DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.
DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.
DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.
DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.
DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.
DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.
DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a complete type.
DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-object.
DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.
DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.
DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete type.
DECL_OVERLOADED_OPERATOR_P
This macro holds if the function is an overloaded operator.
DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.
DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.
DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.
DECL_THUNK_P
This predicate holds if the function is a thunk.

These functions represent stub code that adjusts the this pointer and then jumps to another function. When the jumped-to function returns, control is transferred directly to the caller, without returning to the thunk. The first parameter to the thunk is always the this pointer; the thunk should add THUNK_DELTA to this value. (The THUNK_DELTA is an int, not an INTEGER_CST.)

Then, if THUNK_VCALL_OFFSET (an INTEGER_CST) is nonzero the adjusted this pointer must be adjusted again. The complete calculation is given by the following pseudo-code:

          this += THUNK_DELTA
          if (THUNK_VCALL_OFFSET)
            this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P
This predicate holds if the function is not a thunk function.
GLOBAL_INIT_PRIORITY
If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives the initialization priority for the function. The linker will arrange that all functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of priority before main is called. When the program exits, all functions for which DECL_GLOBAL_DTOR_P holds are run in the reverse order.
DECL_ARTIFICIAL
This macro holds if the function was implicitly generated by the compiler, rather than explicitly declared. In addition to implicitly generated class member functions, this macro holds for the special functions created to implement static initialization and destruction, to compute run-time type information, and so forth.
DECL_ARGUMENTS
This macro returns the PARM_DECL for the first argument to the function. Subsequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.
DECL_RESULT
This macro returns the RESULT_DECL for the function.
TREE_TYPE
This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.
TYPE_RAISES_EXCEPTIONS
This macro returns the list of exceptions that a (member-)function can raise. The returned list, if non NULL, is comprised of nodes whose TREE_VALUE represents a type.
TYPE_NOTHROW_P
This predicate holds when the exception-specification of its arguments is of the form `()'.
DECL_ARRAY_DELETE_OPERATOR_P
This predicate holds if the function an overloaded operator delete[].
DECL_FUNCTION_SPECIFIC_TARGET
This macro returns a tree node that holds the target options that are to be used to compile this particular function or NULL_TREE if the function is to be compiled with the target options specified on the command line.
DECL_FUNCTION_SPECIFIC_OPTIMIZATION
This macro returns a tree node that holds the optimization options that are to be used to compile this particular function or NULL_TREE if the function is to be compiled with the optimization options specified on the command line.


Previous: Function Basics, Up: Functions

9.6.2 Function Bodies

A function that has a definition in the current translation unit will have a non-NULL DECL_INITIAL. However, back ends should not make use of the particular value given by DECL_INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.

9.6.2.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used within the C and C++ frontends. These are enumerated here, together with a list of the various macros that can be used to obtain information about them. There are a few macros that can be used with all statements:

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created during a statement are destroyed when the statement is complete. However, G++ sometimes represents expressions by statements; these statements will not have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements should be destroyed when the innermost enclosing statement with STMT_IS_FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them. This documentation describes the use of these nodes in non-template functions (including instantiations of template functions). In template functions, the same nodes are used, but sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body, which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to a statement consisting of a single ;, i.e., an expression statement in which the expression has been omitted. A substatement may in fact be a list of statements, connected via their TREE_CHAINs. So, you should always process the statement tree by looping over substatements, like this:

     void process_stmt (stmt)
          tree stmt;
     {
       while (stmt)
         {
           switch (TREE_CODE (stmt))
             {
             case IF_STMT:
               process_stmt (THEN_CLAUSE (stmt));
               /* More processing here.  */
               break;
     
             ...
             }
     
           stmt = TREE_CHAIN (stmt);
         }
     }

In other words, while the then clause of an if statement in C++ can be only one statement (although that one statement may be a compound statement), the intermediate representation will sometimes use several statements chained together.

ASM_EXPR
Used to represent an inline assembly statement. For an inline assembly statement like:
          asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If the original statement made use of the extended-assembly syntax, then ASM_OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and clobbers for the statement, represented as STRING_CST nodes. The extended-assembly syntax looks like:

          asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The next two strings are the output and inputs, respectively; this statement has no clobbers. As this example indicates, “plain” assembly statements are merely a special case of extended assembly statements; they have no cv-qualifiers, outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not an extended assembly statement, and is therefore implicitly volatile, then the predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

BREAK_STMT
Used to represent a break statement. There are no additional fields.
CASE_LABEL_EXPR
Use to represent a case label, range of case labels, or a default label. If CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is an expression giving the value of the label. Both CASE_LOW and CASE_HIGH are INTEGER_CST nodes. These values will have the same type as the condition expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a range of case labels. Such statements originate with the extension that allows users to write things of the form:

          case 2 ... 5:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

CLEANUP_STMT
Used to represent an action that should take place upon exit from the enclosing scope. Typically, these actions are calls to destructors for local objects, but back ends cannot rely on this fact. If these nodes are in fact representing such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise, CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the expression to execute. The cleanups executed on exit from a scope should be run in the reverse order of the order in which the associated CLEANUP_STMTs were encountered.
CONTINUE_STMT
Used to represent a continue statement. There are no additional fields.
CTOR_STMT
Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P holds of the main body of a constructor. See also SUBOBJECT for more information on how to use these nodes.
DECL_STMT
Used to represent a local declaration. The DECL_STMT_DECL macro can be used to obtain the entity declared. This declaration may be a LABEL_DECL, indicating that the label declared is a local label. (As an extension, GCC allows the declaration of labels with scope.) In C, this declaration may be a FUNCTION_DECL, indicating the use of the GCC nested function extension. For more information, see Functions.
DO_STMT
Used to represent a do loop. The body of the loop is given by DO_BODY while the termination condition for the loop is given by DO_COND. The condition for a do-statement is always an expression.
EMPTY_CLASS_EXPR
Used to represent a temporary object of a class with no data whose address is never taken. (All such objects are interchangeable.) The TREE_TYPE represents the type of the object.
EXPR_STMT
Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the expression.
FOR_STMT
Used to represent a for statement. The FOR_INIT_STMT is the initialization statement for the loop. The FOR_COND is the termination condition. The FOR_EXPR is the expression executed right before the FOR_COND on each loop iteration; often, this expression increments a counter. The body of the loop is given by FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while FOR_COND and FOR_EXPR return expressions.
GOTO_EXPR
Used to represent a goto statement. The GOTO_DESTINATION will usually be a LABEL_DECL. However, if the “computed goto” extension has been used, the GOTO_DESTINATION will be an arbitrary expression indicating the destination. This expression will always have pointer type.
HANDLER
Used to represent a C++ catch block. The HANDLER_TYPE is the type of exception that will be caught by this handler; it is equal (by pointer equality) to NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the catch parameter, and HANDLER_BODY is the code for the block itself.
IF_STMT
Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually a DECL_STMT). Each time the condition is evaluated, the statement should be executed. Then, the TREE_VALUE should be used as the conditional expression itself. This representation is used to handle C++ code like this:

          if (int i = 7) ...

where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while the ELSE_CLAUSE represents the statement given by the else condition.

LABEL_EXPR
Used to represent a label. The LABEL_DECL declared by this statement can be obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the name of the label can be obtained from the LABEL_DECL with DECL_NAME.
RETURN_STMT
Used to represent a return statement. The RETURN_EXPR is the expression returned; it will be NULL_TREE if the statement was just
          return;

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject of this is fully constructed. If, after this point, an exception is thrown before a CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must be executed. The cleanups must be executed in the reverse order in which they appear.
SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expression on which the switch is occurring. See the documentation for an IF_STMT for more information on the representation used for the condition. The SWITCH_STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the original type of switch expression as given in the source, before any compiler conversions.
TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_STMTS. Each of the catch blocks is a HANDLER node. The first handler is given by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_CHAIN link from one handler to the next. The body of the handler is given by HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a HANDLER node. Instead, it will be an expression that should be executed if an exception is thrown in the try block. It must rethrow the exception after executing that code. And, if an exception is thrown while the expression is executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_NAMESPACE, which will be a NAMESPACE_DECL. This node is needed inside template functions, to implement using directives during instantiation.
WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition for the loop. See the documentation for an IF_STMT for more information on the representation used for the condition.

The WHILE_BODY is the body of the loop.


Next: , Previous: Declarations, Up: Trees

9.7 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed with the following macros. All attributes are stored in this way, and many also cause other changes to the declaration or type or to other internal compiler data structures.

— Tree Macro: tree DECL_ATTRIBUTES (tree decl)

This macro returns the attributes on the declaration decl.

— Tree Macro: tree TYPE_ATTRIBUTES (tree type)

This macro returns the attributes on the type type.


Previous: Attributes, Up: Trees

9.8 Expressions

The internal representation for expressions is for the most part quite straightforward. However, there are a few facts that one must bear in mind. In particular, the expression “tree” is actually a directed acyclic graph. (For example there may be many references to the integer constant zero throughout the source program; many of these will be represented by the same expression node.) You should not rely on certain kinds of node being shared, nor should you rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are documented to have either integral or boolean type. At some point in the future, the C front end may also make use of this same intermediate representation, and at this point these nodes will certainly have integral type. The previous sentence is not meant to imply that the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the operands to an expression are accessed using the TREE_OPERAND macro. For example, to access the first operand to a binary plus expression expr, use:

     TREE_OPERAND (expr, 0)

As this example indicates, the operands are zero-indexed.

All the expressions starting with OMP_ represent directives and clauses used by the OpenMP API http://www.openmp.org/.

The table below begins with constants, moves on to unary expressions, then proceeds to binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants is obtained with TREE_TYPE; they are not always of type int. In particular, char constants are represented with INTEGER_CST nodes. The value of the integer constant e is given by
          ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT)
          + TREE_INST_CST_LOW (e))

HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. Both TREE_INT_CST_HIGH and TREE_INT_CST_LOW return a HOST_WIDE_INT. The value of an INTEGER_CST is interpreted as a signed or unsigned quantity depending on the type of the constant. In general, the expression given above will overflow, so it should not be used to calculate the value of the constant.

The variable integer_zero_node is an integer constant with value zero. Similarly, integer_one_node is an integer constant with value one. The size_zero_node and size_one_node variables are analogous, but have type size_t rather than int.

The function tree_int_cst_lt is a predicate which holds if its first argument is less than its second. Both constants are assumed to have the same signedness (i.e., either both should be signed or both should be unsigned.) The full width of the constant is used when doing the comparison; the usual rules about promotions and conversions are ignored. Similarly, tree_int_cst_equal holds if the two constants are equal. The tree_int_cst_sgn function returns the sign of a constant. The value is 1, 0, or -1 according on whether the constant is greater than, equal to, or less than zero. Again, the signedness of the constant's type is taken into account; an unsigned constant is never less than zero, no matter what its bit-pattern.

REAL_CST
FIXME: Talk about how to obtain representations of this constant, do comparisons, and so forth.
FIXED_CST
These nodes represent fixed-point constants. The type of these constants is obtained with TREE_TYPE. TREE_FIXED_CST_PTR points to to struct fixed_value; TREE_FIXED_CST returns the structure itself. Struct fixed_value contains data with the size of two HOST_BITS_PER_WIDE_INT and mode as the associated fixed-point machine mode for data.
COMPLEX_CST
These nodes are used to represent complex number constants, that is a __complex__ whose parts are constant nodes. The TREE_REALPART and TREE_IMAGPART return the real and the imaginary parts respectively.
VECTOR_CST
These nodes are used to represent vector constants, whose parts are constant nodes. Each individual constant node is either an integer or a double constant node. The first operand is a TREE_LIST of the constant nodes and is accessed through TREE_VECTOR_CST_ELTS.
STRING_CST
These nodes represent string-constants. The TREE_STRING_LENGTH returns the length of the string, as an int. The TREE_STRING_POINTER is a char* containing the string itself. The string may not be NUL-terminated, and it may contain embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in the string, and the TREE_STRING_POINTER points to an array of the bytes of the string, as represented on the target system (that is, as integers in the target endianness). Wide and non-wide string constants are distinguished only by the TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target system bytes are not the same width as host system bytes.

PTRMEM_CST
These nodes are used to represent pointer-to-member constants. The PTRMEM_CST_CLASS is the class type (either a RECORD_TYPE or UNION_TYPE within which the pointer points), and the PTRMEM_CST_MEMBER is the declaration for the pointed to object. Note that the DECL_CONTEXT for the PTRMEM_CST_MEMBER is in general different from the PTRMEM_CST_CLASS. For example, given:
          struct B { int i; };
          struct D : public B {};
          int D::*dp = &D::i;

The PTRMEM_CST_CLASS for &D::i is D, even though the DECL_CONTEXT for the PTRMEM_CST_MEMBER is B, since B::i is a member of B, not D.

VAR_DECL
These nodes represent variables, including static data members. For more information, see Declarations.
NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer and floating-point types. The type of negation can be determined by looking at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by the flag_wrapv and flag_trapv variables.

ABS_EXPR
These nodes represent the absolute value of the single operand, for both integer and floating-point types. This is typically used to implement the abs, labs and llabs builtins for integer types, and the fabs, fabsf and fabsl builtins for floating point types. The type of abs operation can be determined by looking at the type of the expression.

This node is not used for complex types. To represent the modulus or complex abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in functions.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type. The only operand is the value to be complemented.
TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or boolean) type. The operand is the value being negated. The type of the operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.
PREDECREMENT_EXPR
PREINCREMENT_EXPR
POSTDECREMENT_EXPR
POSTINCREMENT_EXPR
These nodes represent increment and decrement expressions. The value of the single operand is computed, and the operand incremented or decremented. In the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the expression is the value resulting after the increment or decrement; in the case of POSTDECREMENT_EXPR and POSTINCREMENT_EXPR is the value before the increment or decrement occurs. The type of the operand, like that of the result, will be either integral, boolean, or floating-point.
ADDR_EXPR
These nodes are used to represent the address of an object. (These expressions will always have pointer or reference type.) The operand may be another expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case, the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an expression is void*.

If the object addressed is not an lvalue, a temporary is created, and the address of the temporary is used.

INDIRECT_REF
These nodes are used to represent the object pointed to by a pointer. The operand is the pointer being dereferenced; it will always have pointer or reference type.
FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The single operand will have a floating-point type, while the complete expression will have an integral (or boolean) type. The operand is rounded towards zero.
FLOAT_EXPR
These nodes represent conversion of an integral (or boolean) value to a floating-point value. The single operand will have integral type, while the complete expression will have a floating-point type.

FIXME: How is the operand supposed to be rounded? Is this dependent on -mieee?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two expressions of the same (integer or real) type. The first operand is the real part and the second operand is the imaginary part.
CONJ_EXPR
These nodes represent the conjugate of their operand.
REALPART_EXPR
IMAGPART_EXPR
These nodes represent respectively the real and the imaginary parts of complex numbers (their sole argument).
NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an lvalue. A back end can treat these identically to the single operand.
NOP_EXPR
These nodes are used to represent conversions that do not require any code-generation. For example, conversion of a char* to an int* does not require any code be generated; such a conversion is represented by a NOP_EXPR. The single operand is the expression to be converted. The conversion from a pointer to a reference is also represented with a NOP_EXPR.
CONVERT_EXPR
These nodes are similar to NOP_EXPRs, but are used in those situations where code may need to be generated. For example, if an int* is converted to an int code may need to be generated on some platforms. These nodes are never used for C++-specific conversions, like conversions between pointers to different classes in an inheritance hierarchy. Any adjustments that need to be made in such cases are always indicated explicitly. Similarly, a user-defined conversion is never represented by a CONVERT_EXPR; instead, the function calls are made explicit.
FIXED_CONVERT_EXPR
These nodes are used to represent conversions that involve fixed-point values. For example, from a fixed-point value to another fixed-point value, from an integer to a fixed-point value, from a fixed-point value to an integer, from a floating-point value to a fixed-point value, or from a fixed-point value to a floating-point value.
THROW_EXPR
These nodes represent throw expressions. The single operand is an expression for the code that should be executed to throw the exception. However, there is one implicit action not represented in that expression; namely the call to __throw. This function takes no arguments. If setjmp/longjmp exceptions are used, the function __sjthrow is called instead. The normal GCC back end uses the function emit_throw to generate this code; you can examine this function to see what needs to be done.
LSHIFT_EXPR
RSHIFT_EXPR
These nodes represent left and right shifts, respectively. The first operand is the value to shift; it will always be of integral type. The second operand is an expression for the number of bits by which to shift. Right shift should be treated as arithmetic, i.e., the high-order bits should be zero-filled when the expression has unsigned type and filled with the sign bit when the expression has signed type. Note that the result is undefined if the second operand is larger than or equal to the first operand's type size.
BIT_IOR_EXPR
BIT_XOR_EXPR
BIT_AND_EXPR
These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise and, respectively. Both operands will always have integral type.
TRUTH_ANDIF_EXPR
TRUTH_ORIF_EXPR
These nodes represent logical “and” and logical “or”, respectively. These operators are not strict; i.e., the second operand is evaluated only if the value of the expression is not determined by evaluation of the first operand. The type of the operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.
TRUTH_AND_EXPR
TRUTH_OR_EXPR
TRUTH_XOR_EXPR
These nodes represent logical and, logical or, and logical exclusive or. They are strict; both arguments are always evaluated. There are no corresponding operators in C or C++, but the front end will sometimes generate these expressions anyhow, if it can tell that strictness does not matter. The type of the operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.
POINTER_PLUS_EXPR
This node represents pointer arithmetic. The first operand is always a pointer/reference type. The second operand is always an unsigned integer type compatible with sizetype. This is the only binary arithmetic operand that can operate on pointer types.
PLUS_EXPR
MINUS_EXPR
MULT_EXPR
These nodes represent various binary arithmetic operations. Respectively, these operations are addition, subtraction (of the second operand from the first) and multiplication. Their operands may have either integral or floating type, but there will never be case in which one operand is of floating type and the other is of integral type.

The behavior of these operations on signed arithmetic overflow is controlled by the flag_wrapv and flag_trapv variables.

RDIV_EXPR
This node represents a floating point division operation.
TRUNC_DIV_EXPR
FLOOR_DIV_EXPR
CEIL_DIV_EXPR
ROUND_DIV_EXPR
These nodes represent integer division operations that return an integer result. TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards negative infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_EXPR rounds to the closest integer. Integer division in C and C++ is truncating, i.e. TRUNC_DIV_EXPR.

The behavior of these operations on signed arithmetic overflow, when dividing the minimum signed integer by minus one, is controlled by the flag_wrapv and flag_trapv variables.

TRUNC_MOD_EXPR
FLOOR_MOD_EXPR
CEIL_MOD_EXPR
ROUND_MOD_EXPR
These nodes represent the integer remainder or modulus operation. The integer modulus of two operands a and b is defined as a - (a/b)*b where the division calculated using the corresponding division operator. Hence for TRUNC_MOD_EXPR this definition assumes division using truncation towards zero, i.e. TRUNC_DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_MOD_EXPR.
EXACT_DIV_EXPR
The EXACT_DIV_EXPR code is used to represent integer divisions where the numerator is known to be an exact multiple of the denominator. This allows the backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and FLOOR_DIV_EXPR for the current target.
ARRAY_REF
These nodes represent array accesses. The first operand is the array; the second is the index. To calculate the address of the memory accessed, you must scale the index by the size of the type of the array elements. The type of these expressions must be the type of a component of the array. The third and fourth operands are used after gimplification to represent the lower bound and component size but should not be used directly; call array_ref_low_bound and array_ref_element_size instead.
ARRAY_RANGE_REF
These nodes represent access to a range (or “slice”) of an array. The operands are the same as that for ARRAY_REF and have the same meanings. The type of these expressions must be an array whose component type is the same as that of the first operand. The range of that array type determines the amount of data these expressions access.
TARGET_MEM_REF
These nodes represent memory accesses whose address directly map to an addressing mode of the target architecture. The first argument is TMR_SYMBOL and must be a VAR_DECL of an object with a fixed address. The second argument is TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP and must be an INTEGER_CST. The fifth argument is TMR_OFFSET and must be an INTEGER_CST. Any of the arguments may be NULL if the appropriate component does not appear in the address. Address of the TARGET_MEM_REF is determined in the following way.
          &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is preserved for the purposes of the RTL alias analysis. The seventh argument is a tag representing the results of tree level alias analysis.

LT_EXPR
LE_EXPR
GT_EXPR
GE_EXPR
EQ_EXPR
NE_EXPR
These nodes represent the less than, less than or equal to, greater than, greater than or equal to, equal, and not equal comparison operators. The first and second operand with either be both of integral type or both of floating type. The result type of these expressions will always be of integral or boolean type. These operations return the result type's zero value for false, and the result type's one value for true.

For floating point comparisons, if we honor IEEE NaNs and either operand is NaN, then NE_EXPR always returns true and the remaining operators always return false. On some targets, comparisons against an IEEE NaN, other than equality and inequality, may generate a floating point exception.

ORDERED_EXPR
UNORDERED_EXPR
These nodes represent non-trapping ordered and unordered comparison operators. These operations take two floating point operands and determine whether they are ordered or unordered relative to each other. If either operand is an IEEE NaN, their comparison is defined to be unordered, otherwise the comparison is defined to be ordered. The result type of these expressions will always be of integral or boolean type. These operations return the result type's zero value for false, and the result type's one value for true.
UNLT_EXPR
UNLE_EXPR
UNGT_EXPR
UNGE_EXPR
UNEQ_EXPR
LTGT_EXPR
These nodes represent the unordered comparison operators. These operations take two floating point operands and determine whether the operands are unordered or are less than, less than or equal to, greater than, greater than or equal to, or equal respectively. For example, UNLT_EXPR returns true if either operand is an IEEE NaN or the first operand is less than the second. With the possible exception of LTGT_EXPR, all of these operations are guaranteed not to generate a floating point exception. The result type of these expressions will always be of integral or boolean type. These operations return the result type's zero value for false, and the result type's one value for true.
MODIFY_EXPR
These nodes represent assignment. The left-hand side is the first operand; the right-hand side is the second operand. The left-hand side will be a VAR_DECL, INDIRECT_REF, COMPONENT_REF, or other lvalue.

These nodes are used to represent not only assignment with ‘=’ but also compound assignments (like ‘+=’), by reduction to ‘=’ assignment. In other words, the representation for ‘i += 3’ looks just like that for ‘i = i + 3’.

INIT_EXPR
These nodes are just like MODIFY_EXPR, but are used only when a variable is initialized, rather than assigned to subsequently. This means that we can assume that the target of the initialization is not used in computing its own value; any reference to the lhs in computing the rhs is undefined.
COMPONENT_REF
These nodes represent non-static data member accesses. The first operand is the object (rather than a pointer to it); the second operand is the FIELD_DECL for the data member. The third operand represents the byte offset of the field, but should not be used directly; call component_ref_field_offset instead.
COMPOUND_EXPR
These nodes represent comma-expressions. The first operand is an expression whose value is computed and thrown away prior to the evaluation of the second operand. The value of the entire expression is the value of the second operand.
COND_EXPR
These nodes represent ?: expressions. The first operand is of boolean or integral type. If it evaluates to a nonzero value, the second operand should be evaluated, and returned as the value of the expression. Otherwise, the third operand is evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless it unconditionally throws an exception or calls a noreturn function, in which case it should have void type. The same constraints apply to the third operand. This allows array bounds checks to be represented conveniently as (i >= 0 && i < 10) ? i : abort().

As a GNU extension, the C language front-ends allow the second operand of the ?: operator may be omitted in the source. For example, x ? : 3 is equivalent to x ? x : 3, assuming that x is an expression without side-effects. In the tree representation, however, the second operand is always present, possibly protected by SAVE_EXPR if the first argument does cause side-effects.

CALL_EXPR
These nodes are used to represent calls to functions, including non-static member functions. CALL_EXPRs are implemented as expression nodes with a variable number of operands. Rather than using TREE_OPERAND to extract them, it is preferable to use the specialized accessor macros and functions that operate specifically on CALL_EXPR nodes.

CALL_EXPR_FN returns a pointer to the function to call; it is always an expression whose type is a POINTER_TYPE.

The number of arguments to the call is returned by call_expr_nargs, while the arguments themselves can be accessed with the CALL_EXPR_ARG macro. The arguments are zero-indexed and numbered left-to-right. You can iterate over the arguments using FOR_EACH_CALL_EXPR_ARG, as in:

          tree call, arg;
          call_expr_arg_iterator iter;
          FOR_EACH_CALL_EXPR_ARG (arg, iter, call)
            /* arg is bound to successive arguments of call.  */
            ...;

For non-static member functions, there will be an operand corresponding to the this pointer. There will always be expressions corresponding to all of the arguments, even if the function is declared with default arguments and some arguments are not explicitly provided at the call sites.

CALL_EXPRs also have a CALL_EXPR_STATIC_CHAIN operand that is used to implement nested functions. This operand is otherwise null.

STMT_EXPR
These nodes are used to represent GCC's statement-expression extension. The statement-expression extension allows code like this:
          int f() { return ({ int j; j = 3; j + 7; }); }

In other words, an sequence of statements may occur where a single expression would normally appear. The STMT_EXPR node represents such an expression. The STMT_EXPR_STMT gives the statement contained in the expression. The value of the expression is the value of the last sub-statement in the body. More precisely, the value is the value computed by the last statement nested inside BIND_EXPR, TRY_FINALLY_EXPR, or TRY_CATCH_EXPR. For example, in:

          ({ 3; })

the value is 3 while in:

          ({ if (x) { 3; } })

there is no value. If the STMT_EXPR does not yield a value, it's type will be void.

BIND_EXPR
These nodes represent local blocks. The first operand is a list of variables, connected via their TREE_CHAIN field. These will never require cleanups. The scope of these variables is just the body of the BIND_EXPR. The body of the BIND_EXPR is the second operand.
LOOP_EXPR
These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the body of the loop. It should be executed forever, unless an EXIT_EXPR is encountered.
EXIT_EXPR
These nodes represent conditional exits from the nearest enclosing LOOP_EXPR. The single operand is the condition; if it is nonzero, then the loop should be exited. An EXIT_EXPR will only appear within a LOOP_EXPR.
CLEANUP_POINT_EXPR
These nodes represent full-expressions. The single operand is an expression to evaluate. Any destructor calls engendered by the creation of temporaries during the evaluation of that expression should be performed immediately after the expression is evaluated.
CONSTRUCTOR
These nodes represent the brace-enclosed initializers for a structure or array. The first operand is reserved for use by the back end. The second operand is a TREE_LIST. If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE or UNION_TYPE, then the TREE_PURPOSE of each node in the TREE_LIST will be a FIELD_DECL and the TREE_VALUE of each node will be the expression used to initialize that field.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the TREE_PURPOSE of each element in the TREE_LIST will be an INTEGER_CST or a RANGE_EXPR of two INTEGER_CSTs. A single INTEGER_CST indicates which element of the array (indexed from zero) is being assigned to. A RANGE_EXPR indicates an inclusive range of elements to initialize. In both cases the TREE_VALUE is the corresponding initializer. It is re-evaluated for each element of a RANGE_EXPR. If the TREE_PURPOSE is NULL_TREE, then the initializer is for the next available array element.

In the front end, you should not depend on the fields appearing in any particular order. However, in the middle end, fields must appear in declaration order. You should not assume that all fields will be represented. Unrepresented fields will be set to zero.

COMPOUND_LITERAL_EXPR
These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_EXPR_DECL_STMT is a DECL_STMT containing an anonymous VAR_DECL for the unnamed object represented by the compound literal; the DECL_INITIAL of that VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in the compound literal. That anonymous VAR_DECL can also be accessed directly by the COMPOUND_LITERAL_EXPR_DECL macro.
SAVE_EXPR
A SAVE_EXPR represents an expression (possibly involving side-effects) that is used more than once. The side-effects should occur only the first time the expression is evaluated. Subsequent uses should just reuse the computed value. The first operand to the SAVE_EXPR is the expression to evaluate. The side-effects should be executed where the SAVE_EXPR is first encountered in a depth-first preorder traversal of the expression tree.
TARGET_EXPR
A TARGET_EXPR represents a temporary object. The first operand is a VAR_DECL for the temporary variable. The second operand is the initializer for the temporary. The initializer is evaluated and, if non-void, copied (bitwise) into the temporary. If the initializer is void, that means that it will perform the initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as the second operand to a comma-expression which is itself the right-hand side of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”; otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary variable should be treated as an alias for the left-hand side of the assignment, rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e., destructor call) for the temporary. If this expression is orphaned, then this expression must be executed when the statement containing this expression is complete. These cleanups must always be executed in the order opposite to that in which they were encountered. Note that if a temporary is created on one branch of a conditional operator (i.e., in the second or third operand to a COND_EXPR), the cleanup must be run only if that branch is actually executed.

See STMT_IS_FULL_EXPR_P for more information about running these cleanups.

AGGR_INIT_EXPR
An AGGR_INIT_EXPR represents the initialization as the return value of a function call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear as a full-expression, or as the second operand of a TARGET_EXPR. AGGR_INIT_EXPRs have a representation similar to that of CALL_EXPRs. You can use the AGGR_INIT_EXPR_FN and AGGR_INIT_EXPR_ARG macros to access the function to call and the arguments to pass.

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization is via a constructor call. The address of the AGGR_INIT_EXPR_SLOT operand, which is always a VAR_DECL, is taken, and this value replaces the first argument in the argument list.

In either case, the expression is void.

VA_ARG_EXPR
This node is used to implement support for the C/C++ variable argument-list mechanism. It represents expressions like va_arg (ap, type). Its TREE_TYPE yields the tree representation for type and its sole argument yields the representation for ap.
CHANGE_DYNAMIC_TYPE_EXPR
Indicates the special aliasing required by C++ placement new. It has two operands: a type and a location. It means that the dynamic type of the location is changing to be the specified type. The alias analysis code takes this into account when doing type based alias analysis.
OMP_PARALLEL
Represents #pragma omp parallel [clause1 ... clauseN]. It has four operands:

Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE forms. It contains the body of code to be executed by all the threads. During GIMPLE lowering, this operand becomes NULL and the body is emitted linearly after OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the directive.

Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the FUNCTION_DECL for the function that will contain the body of the parallel region.

Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there are shared variables to be communicated to the children threads, this operand will contain the VAR_DECL that contains all the shared values and variables.

OMP_FOR
Represents #pragma omp for [clause1 ... clauseN]. It has 5 operands:

Operand OMP_FOR_BODY contains the loop body.

Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.

Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop conditional expression of the form VAR {<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=} INCR.

Operand OMP_FOR_PRE_BODY contains side-effect code from operands OMP_FOR_INIT, OMP_FOR_COND and OMP_FOR_INC. These side-effects are part of the OMP_FOR block but must be evaluated before the start of loop body.

The loop index variable VAR must be a signed integer variable, which is implicitly private to each thread. Bounds N1 and N2 and the increment expression INCR are required to be loop invariant integer expressions that are evaluated without any synchronization. The evaluation order, frequency of evaluation and side-effects are unspecified by the standard.

OMP_SECTIONS
Represents #pragma omp sections [clause1 ... clauseN].

Operand OMP_SECTIONS_BODY contains the sections body, which in turn contains a set of OMP_SECTION nodes for each of the concurrent sections delimited by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the directive.

OMP_SECTION
Section delimiter for OMP_SECTIONS.
OMP_SINGLE
Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains the body of code to be executed by a single thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the directive.

OMP_MASTER
Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the master thread.

OMP_ORDERED
Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the sequential order dictated by the loop index variable.

OMP_CRITICAL
Represents #pragma omp critical [name].

Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identifier to label the critical section.

OMP_RETURN
This does not represent any OpenMP directive, it is an artificial marker to indicate the end of the body of an OpenMP. It is used by the flow graph (tree-cfg.c) and OpenMP region building code (omp-low.c).
OMP_CONTINUE
Similarly, this instruction does not represent an OpenMP directive, it is used by OMP_FOR and OMP_SECTIONS to mark the place where the code needs to loop to the next iteration (in the case of OMP_FOR) or the next section (in the case of OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there are cleanups that need to occur right after the looping body, it will be emitted between OMP_CONTINUE and OMP_RETURN.

OMP_ATOMIC
Represents #pragma omp atomic.

Operand 0 is the address at which the atomic operation is to be performed.

Operand 1 is the expression to evaluate. The gimplifier tries three alternative code generation strategies. Whenever possible, an atomic update built-in is used. If that fails, a compare-and-swap loop is attempted. If that also fails, a regular critical section around the expression is used.

OMP_CLAUSE
Represents clauses associated with one of the OMP_ directives. Clauses are represented by separate sub-codes defined in tree.h. Clauses codes can be one of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE, OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE, OMP_CLAUSE_IF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE, OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT, and OMP_CLAUSE_REDUCTION. Each code represents the corresponding OpenMP clause.

Clauses associated with the same directive are chained together via OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables under the same clause C need to be represented as multiple C clauses chained together. This facilitates adding new clauses during compilation.

VEC_LSHIFT_EXPR
VEC_RSHIFT_EXPR
These nodes represent whole vector left and right shifts, respectively. The first operand is the vector to shift; it will always be of vector type. The second operand is an expression for the number of bits by which to shift. Note that the result is undefined if the second operand is larger than or equal to the first operand's type size.
VEC_WIDEN_MULT_HI_EXPR
VEC_WIDEN_MULT_LO_EXPR
These nodes represent widening vector multiplication of the high and low parts of the two input vectors, respectively. Their operands are vectors that contain the same number of elements (N) of the same integral type. The result is a vector that contains half as many elements, of an integral type whose size is twice as wide. In the case of VEC_WIDEN_MULT_HI_EXPR the high N/2 elements of the two vector are multiplied to produce the vector of N/2 products. In the case of VEC_WIDEN_MULT_LO_EXPR the low N/2 elements of the two vector are multiplied to produce the vector of N/2 products.
VEC_UNPACK_HI_EXPR
VEC_UNPACK_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector, respectively. The single operand is a vector that contains N elements of the same integral or floating point type. The result is a vector that contains half as many elements, of an integral or floating point type whose size is twice as wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector are extracted and widened (promoted). In the case of VEC_UNPACK_LO_EXPR the low N/2 elements of the vector are extracted and widened (promoted).
VEC_UNPACK_FLOAT_HI_EXPR
VEC_UNPACK_FLOAT_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector, where the values are converted from fixed point to floating point. The single operand is a vector that contains N elements of the same integral type. The result is a vector that contains half as many elements of a floating point type whose size is twice as wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector are extracted, converted and widened. In the case of VEC_UNPACK_LO_EXPR the low N/2 elements of the vector are extracted, converted and widened.
VEC_PACK_TRUNC_EXPR
This node represents packing of truncated elements of the two input vectors into the output vector. Input operands are vectors that contain the same number of elements of the same integral or floating point type. The result is a vector that contains twice as many elements of an integral or floating point type whose size is half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector.
VEC_PACK_SAT_EXPR
This node represents packing of elements of the two input vectors into the output vector using saturation. Input operands are vectors that contain the same number of elements of the same integral type. The result is a vector that contains twice as many elements of an integral type whose size is half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector.
VEC_PACK_FIX_TRUNC_EXPR
This node represents packing of elements of the two input vectors into the output vector, where the values are converted from floating point to fixed point. Input operands are vectors that contain the same number of elements of a floating point type. The result is a vector that contains twice as many elements of an integral type whose size is half as wide. The elements of the two vectors are merged (concatenated) to form the output vector.
VEC_EXTRACT_EVEN_EXPR
VEC_EXTRACT_ODD_EXPR
These nodes represent extracting of the even/odd elements of the two input vectors, respectively. Their operands and result are vectors that contain the same number of elements of the same type.
VEC_INTERLEAVE_HIGH_EXPR
VEC_INTERLEAVE_LOW_EXPR
These nodes represent merging and interleaving of the high/low elements of the two input vectors, respectively. The operands and the result are vectors that contain the same number of elements (N) of the same type. In the case of VEC_INTERLEAVE_HIGH_EXPR, the high N/2 elements of the first input vector are interleaved with the high N/2 elements of the second input vector. In the case of VEC_INTERLEAVE_LOW_EXPR, the low N/2 elements of the first input vector are interleaved with the low N/2 elements of the second input vector.


Next: , Previous: Tree SSA, Up: Top

10 RTL Representation

The last part of the compiler work is done on a low-level intermediate representation called Register Transfer Language. In this language, the instructions to be output are described, pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that point at other structures, and a textual form that is used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form.


Next: , Up: RTL

10.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C structure, but it is usually referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C fashion, and it is written in C syntax as well. However, strings in RTL may never be null. If you write an empty string in a machine description, it is represented in core as a null pointer rather than as a pointer to a null character. In certain contexts, these null pointers instead of strings are valid. Within RTL code, strings are most commonly found inside symbol_ref expressions, but they appear in other contexts in the RTL expressions that make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would in C. However, strings in machine descriptions may extend over many lines, which is invalid C, and adjacent string constants are not concatenated as they are in C. Any string constant may be surrounded with a single set of parentheses. Sometimes this makes the machine description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded in a machine description. Wherever a string can appear, it is also valid to write a C-style brace block. The entire brace block, including the outermost pair of braces, is considered to be the string constant. Double quote characters inside the braces are not special. Therefore, if you write string constants in the C code, you need not escape each quote character with a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. The written form of a vector consists of square brackets (‘[...]’) surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression code is a name defined in rtl.def, which is also (in uppercase) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x, newcode).

The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. Instead, you must know from its context—from the expression code of the containing expression. For example, in an expression of code subreg, the first operand is to be regarded as an expression and the second operand as an integer. In an expression of code plus, there are two operands, both of which are to be regarded as expressions. In a symbol_ref expression, there is one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The written form of this is (nil).


Next: , Previous: RTL Objects, Up: RTL

10.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS (code). Currently, rtl.def defines these classes:

RTX_OBJ
An RTX code that represents an actual object, such as a register (REG) or a memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG and STRICT_LOW_PART are not in this class, but in class x.
RTX_CONST_OBJ
An RTX code that represents a constant object. HIGH is also included in this class.
RTX_COMPARE
An RTX code for a non-symmetric comparison, such as GEU or LT.
RTX_COMM_COMPARE
An RTX code for a symmetric (commutative) comparison, such as EQ or ORDERED.
RTX_UNARY
An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This category also includes value extension (sign or zero) and conversions between integer and floating point.
RTX_COMM_ARITH
An RTX code for a commutative binary operation, such as PLUS or AND. NE and EQ are comparisons, so they have class <.
RTX_BIN_ARITH
An RTX code for a non-commutative binary operation, such as MINUS, DIV, or ASHIFTRT.
RTX_BITFIELD_OPS
An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used for insertion as well). See Bit-Fields.
RTX_TERNARY
An RTX code for other three input operations. Currently only IF_THEN_ELSE and VEC_MERGE.
RTX_INSN
An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See Insns.
RTX_MATCH
An RTX code for something that matches in insns, such as MATCH_DUP. These only occur in machine descriptions.
RTX_AUTOINC
An RTX code for an auto-increment addressing mode, such as POST_INC.
RTX_EXTRA
All other RTX codes. This category includes the remaining codes used only in machine descriptions (DEFINE_*, etc.). It also includes all the codes describing side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of this class.

For each expression code, rtl.def specifies the number of contained objects and their kinds using a sequence of characters called the format of the expression code. For example, the format of subreg is ‘ei’.

These are the most commonly used format characters:

e
An expression (actually a pointer to an expression).
i
An integer.
w
A wide integer.
s
A string.
E
A vector of expressions.

A few other format characters are used occasionally:

u
u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps. It is used for pointers to insns.
n
n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps. It is used for the line number or code number of a note insn.
S
S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value of this operand may be omitted. An omitted string is taken to be the null string.
V
V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements.
B
B’ indicates a pointer to basic block structure.
0
0’ means a slot whose contents do not fit any normal category. ‘0’ slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.


GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume that all comparison operations have format ee.

1
All codes of this class have format e.
<
c
2
All codes of these classes have format ee.
b
3
All codes of these classes have format eee.
i
All codes of this class have formats that begin with iuueiee. See Insns. Note that not all RTL objects linked onto an insn chain are of class i.
o
m
x
You can make no assumptions about the format of these codes.


Next: , Previous: RTL Classes, Up: RTL

10.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus,

     XEXP (x, 2)

accesses operand 2 of expression x, as an expression.

     XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a string. You must choose the correct method of access for the kind of value actually stored in the operand. You would do this based on the expression code of the containing expression. That is also how you would know how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can be correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would get the address of the expression operand but cast as an integer; that might occasionally be useful, but it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably result in a crash when accessed. Nothing stops you from writing XEXP (x, 28) either, but this will access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.


XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number idx in exp. This value is an int.


XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN (exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector elements as well as to access them.


Next: , Previous: Accessors, Up: RTL

10.4 Access to Special Operands

Some RTL nodes have special annotations associated with them.

MEM
MEM_ALIAS_SET (x)
If 0, x is not in any alias set, and may alias anything. Otherwise, x can only alias MEMs in a conflicting alias set. This value is set in a language-dependent manner in the front-end, and should not be altered in the back-end. In some front-ends, these numbers may correspond in some way to types, or other language-level entities, but they need not, and the back-end makes no such assumptions. These set numbers are tested with alias_sets_conflict_p.


MEM_EXPR (x)
If this register is known to hold the value of some user-level declaration, this is that tree node. It may also be a COMPONENT_REF, in which case this is some field reference, and TREE_OPERAND (x, 0) contains the declaration, or another COMPONENT_REF, or null if there is no compile-time object associated with the reference.


MEM_OFFSET (x)
The offset from the start of MEM_EXPR as a CONST_INT rtx.


MEM_SIZE (x)
The size in bytes of the memory reference as a CONST_INT rtx. This is mostly relevant for BLKmode references as otherwise the size is implied by the mode.


MEM_ALIGN (x)
The known alignment in bits of the memory reference.

REG
ORIGINAL_REGNO (x)
This field holds the number the register “originally” had; for a pseudo register turned into a hard reg this will hold the old pseudo register number.


REG_EXPR (x)
If this register is known to hold the value of some user-level declaration, this is that tree node.


REG_OFFSET (x)
If this register is known to hold the value of some user-level declaration, this is the offset into that logical storage.

SYMBOL_REF
SYMBOL_REF_DECL (x)
If the symbol_ref x was created for a VAR_DECL or a FUNCTION_DECL, that tree is recorded here. If this value is null, then x was created by back end code generation routines, and there is no associated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class 'c', that is, some sort of constant. In this case, the symbol_ref is an entry in the per-file constant pool; again, there is no associated front end symbol table entry.


SYMBOL_REF_CONSTANT (x)
If ‘CONSTANT_POOL_ADDRESS_P (x)’ is true, this is the constant pool entry for x. It is null otherwise.


SYMBOL_REF_DATA (x)
A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_REF_CONSTANT.


SYMBOL_REF_FLAGS (x)
In a symbol_ref, this is used to communicate various predicates about the symbol. Some of these are common enough to be computed by common code, some are specific to the target. The common bits are:
SYMBOL_FLAG_FUNCTION
Set if the symbol refers to a function.


SYMBOL_FLAG_LOCAL
Set if the symbol is local to this “module”. See TARGET_BINDS_LOCAL_P.


SYMBOL_FLAG_EXTERNAL
Set if this symbol is not defined in this translation unit. Note that this is not the inverse of SYMBOL_FLAG_LOCAL.


SYMBOL_FLAG_SMALL
Set if the symbol is located in the small data section. See TARGET_IN_SMALL_DATA_P.


SYMBOL_REF_TLS_MODEL (x)
This is a multi-bit field accessor that returns the tls_model to be used for a thread-local storage symbol. It returns zero for non-thread-local symbols.


SYMBOL_FLAG_HAS_BLOCK_INFO
Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_REF_BLOCK_OFFSET fields.


SYMBOL_FLAG_ANCHOR
Set if the symbol is used as a section anchor. “Section anchors” are symbols that have a known position within an object_block and that can be used to access nearby members of that block. They are used to implement -fsection-anchors.

If this flag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the target's use.


SYMBOL_REF_BLOCK (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure to which the symbol belongs, or NULL if it has not been assigned a block.


SYMBOL_REF_BLOCK_OFFSET (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been assigned to a block, or it has not been given an offset within that block.


Next: , Previous: Special Accessors, Up: RTL

10.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of expression. Most often they are accessed with the following macros, which expand into lvalues.

CONSTANT_POOL_ADDRESS_P (x)
Nonzero in a symbol_ref if it refers to part of the current function's constant pool. For most targets these addresses are in a .rodata section entirely separate from the function, but for some targets the addresses are close to the beginning of the function. In either case GCC assumes these addresses can be addressed directly, perhaps with the help of base registers. Stored in the unchanging field and printed as ‘/u’.


RTL_CONST_CALL_P (x)
In a call_insn indicates that the insn represents a call to a const function. Stored in the unchanging field and printed as ‘/u’.


RTL_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a call to a pure function. Stored in the return_val field and printed as ‘/i’.


RTL_CONST_OR_PURE_CALL_P (x)
In a call_insn, true if RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.


RTL_LOOPING_CONST_OR_PURE_CALL_P (x)
In a call_insn indicates that the insn represents a possibly infinite looping call to a const or pure function. Stored in the call field and printed as ‘/c’. Only true if one of RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.


INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling one. See the discussion under sequence below. Stored in the unchanging field and printed as ‘/u’.


INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, barrier, or note, nonzero if the insn has been deleted. Stored in the volatil field and printed as ‘/v’.


INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn will only be executed if the branch is taken. For annulled branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will always be executed. Stored in the in_struct field and printed as ‘/s’.


LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data not visible to the RTL of a given function. Labels referenced by a non-local goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.


LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a non-local label. Stored in the volatil field and printed as ‘/v’.


MEM_IN_STRUCT_P (x)
In mem expressions, nonzero for reference to an entire structure, union or array, or to a component of one. Zero for references to a scalar variable or through a pointer to a scalar. If both this flag and MEM_SCALAR_P are clear, then we don't know whether this mem is in a structure or not. Both flags should never be simultaneously set. Stored in the in_struct field and printed as ‘/s’.


MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged when we access a component. Set to 1, for example, when we are already in a non-addressable component of an aggregate. Stored in the jump field and printed as ‘/j’.


MEM_SCALAR_P (x)
In mem expressions, nonzero for reference to a scalar known not to be a member of a structure, union, or array. Zero for such references and for indirections through pointers, even pointers pointing to scalar types. If both this flag and MEM_IN_STRUCT_P are clear, then we don't know whether this mem is in a structure or not. Both flags should never be simultaneously set. Stored in the return_val field and printed as ‘/i’.


MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory references. Stored in the volatil field and printed as ‘/v’.


MEM_NOTRAP_P (x)
In mem, nonzero for memory references that will not trap. Stored in the call field and printed as ‘/c’.


MEM_POINTER (x)
Nonzero in a mem if the memory reference holds a pointer. Stored in the frame_related field and printed as ‘/f’.


REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function's value is going to be returned. (This happens only in a hard register.) Stored in the return_val field and printed as ‘/i’.


REG_POINTER (x)
Nonzero in a reg if the register holds a pointer. Stored in the frame_related field and printed as ‘/f’.


REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by the compiler. Stored in the volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.


RTX_FRAME_RELATED_P (x)
Nonzero in an insn, call_insn, jump_insn, barrier, or set which is part of a function prologue and sets the stack pointer, sets the frame pointer, or saves a register. This flag should also be set on an instruction that sets up a temporary register to use in place of the frame pointer. Stored in the frame_related field and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate constants, it is sometimes impossible to reach the register save area directly from the stack pointer. In that case, a temporary register is used that is near enough to the register save area, and the Canonical Frame Address, i.e., DWARF2's logical frame pointer, register must (temporarily) be changed to be this temporary register. So, the instruction that sets this temporary register must be marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what dwarf2out_frame_debug_expr can handle), you will also have to create a REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note should contain a simple expression of the computation performed by this instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL prologues.


MEM_READONLY_P (x)
Nonzero in a mem, if the memory is statically allocated and read-only.

Read-only in this context means never modified during the lifetime of the program, not necessarily in ROM or in write-disabled pages. A common example of the later is a shared library's global offset table. This table is initialized by the runtime loader, so the memory is technically writable, but after control is transfered from the runtime loader to the application, this memory will never be subsequently modified.

Stored in the unchanging field and printed as ‘/u’.


SCHED_GROUP_P (x)
During instruction scheduling, in an insn, call_insn or jump_insn, indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the instruction scheduling pass, for example, use insns before a call_insn may not be separated from the call_insn. Stored in the in_struct field and printed as ‘/s’.


SET_IS_RETURN_P (x)
For a set, nonzero if it is for a return. Stored in the jump field and printed as ‘/j’.


SIBLING_CALL_P (x)
For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field and printed as ‘/j’.


STRING_POOL_ADDRESS_P (x)
For a symbol_ref expression, nonzero if it addresses this function's string constant pool. Stored in the frame_related field and printed as ‘/f’.


SUBREG_PROMOTED_UNSIGNED_P (x)
Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object being referenced is kept zero-extended, zero if it is kept sign-extended, and less then zero if it is extended some other way via the ptr_extend instruction. Stored in the unchanging field and volatil field, printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to change the value.


SUBREG_PROMOTED_UNSIGNED_SET (x)
Set the unchanging and volatil fields in a subreg to reflect zero, sign, or other extension. If volatil is zero, then unchanging as nonzero means zero extension and as zero means sign extension. If volatil is nonzero then some other type of extension was done via the ptr_extend instruction.


SUBREG_PROMOTED_VAR_P (x)
Nonzero in a subreg if it was made when accessing an object that was promoted to a wider mode in accord with the PROMOTED_MODE machine description macro (see Storage Layout). In this case, the mode of the subreg is the declared mode of the object and the mode of SUBREG_REG is the mode of the register that holds the object. Promoted variables are always either sign- or zero-extended to the wider mode on every assignment. Stored in the in_struct field and printed as ‘/s’.


SYMBOL_REF_USED (x)
In a symbol_ref, indicates that x has been used. This is normally only used to ensure that x is only declared external once. Stored in the used field.


SYMBOL_REF_WEAK (x)
In a symbol_ref, indicates that x has been declared weak. Stored in the return_val field and printed as ‘/i’.


SYMBOL_REF_FLAG (x)
In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in the volatil field and printed as ‘/v’.

Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target requires more than one bit of storage.

These are the fields to which the above macros refer:

call
In a mem, 1 means that the memory reference will not trap.

In a call, 1 means that this pure or const call may possibly infinite loop.

In an RTL dump, this flag is represented as ‘/c’.


frame_related
In an insn or set expression, 1 means that it is part of a function prologue and sets the stack pointer, sets the frame pointer, saves a register, or sets up a temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.

In mem expressions, 1 means that the memory reference holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function's string constant pool.

In an RTL dump, this flag is represented as ‘/f’.


in_struct
In mem expressions, it is 1 if the memory datum referred to is all or part of a structure or array; 0 if it is (or might be) a scalar variable. A reference through a C pointer has 0 because the pointer might point to a scalar variable. This information allows the compiler to determine something about possible cases of aliasing.

In reg expressions, it is 1 if the register has its entire life contained within the test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is used for labels which are the target of non-local gotos. Such a label that would have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch.

In an insn during instruction scheduling, 1 means that this insn must be scheduled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.


return_val
In reg expressions, 1 means the register contains the value to be returned by the current function. On machines that pass parameters in registers, the same register number may be used for parameters as well, but this flag is not set on such uses.

In mem expressions, 1 means the memory reference is to a scalar known not to be a member of a structure, union, or array.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In call expressions, 1 means the call is pure.

In an RTL dump, this flag is represented as ‘/i’.


jump
In a mem expression, 1 means we should keep the alias set for this mem unchanged when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In an RTL dump, this flag is represented as ‘/j’.


unchanging
In reg and mem expressions, 1 means that the value of the expression never changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in the per-function constant pool.

In a call_insn 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.


used
This flag is used directly (without an access macro) at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than once are copied, according to the rules for shared structure (see Sharing).

For a reg, it is used directly (without an access macro) by the leaf register renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has already been written.


volatil
In a mem, asm_operands, or asm_input expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local label.

In an RTL dump, this flag is represented as ‘/v’.


Next: , Previous: Flags, Up: RTL

10.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an enumeration type, enum machine_mode, defined in machmode.def. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate them. The letters ‘mode’ which appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_PER_UNIT bits (see Storage Layout).

BImode
“Bit” mode represents a single bit, for predicate registers.


QImode
“Quarter-Integer” mode represents a single byte treated as an integer.


HImode
“Half-Integer” mode represents a two-byte integer.


PSImode
“Partial Single Integer” mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers.


SImode
“Single Integer” mode represents a four-byte integer.


PDImode
“Partial Double Integer” mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers.


DImode
“Double Integer” mode represents an eight-byte integer.


TImode
“Tetra Integer” (?) mode represents a sixteen-byte integer.


OImode
“Octa Integer” (?) mode represents a thirty-two-byte integer.


QFmode
“Quarter-Floating” mode represents a quarter-precision (single byte) floating point number.


HFmode
“Half-Floating” mode represents a half-precision (two byte) floating point number.


TQFmode
“Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three byte) floating point number.


SFmode
“Single Floating” mode represents a four byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a single-precision IEEE floating point number; it can also be used for double-precision (on processors with 16-bit bytes) and single-precision VAX and IBM types.


DFmode
“Double Floating” mode represents an eight byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a double-precision IEEE floating point number.


XFmode
“Extended Floating” mode represents an IEEE extended floating point number. This mode only has 80 meaningful bits (ten bytes). Some processors require such numbers to be padded to twelve bytes, others to sixteen; this mode is used for either.


SDmode
“Single Decimal Floating” mode represents a four byte decimal floating point number (as distinct from conventional binary floating point).


DDmode
“Double Decimal Floating” mode represents an eight byte decimal floating point number.


TDmode
“Tetra Decimal Floating” mode represents a sixteen byte decimal floating point number all 128 of whose bits are meaningful.


TFmode
“Tetra Floating” mode represents a sixteen byte floating point number all 128 of whose bits are meaningful. One common use is the IEEE quad-precision format.


QQmode
“Quarter-Fractional” mode represents a single byte treated as a signed fractional number. The default format is “s.7”.


HQmode
“Half-Fractional” mode represents a two-byte signed fractional number. The default format is “s.15”.


SQmode
“Single Fractional” mode represents a four-byte signed fractional number. The default format is “s.31”.


DQmode
“Double Fractional” mode represents an eight-byte signed fractional number. The default format is “s.63”.


TQmode
“Tetra Fractional” mode represents a sixteen-byte signed fractional number. The default format is “s.127”.


UQQmode
“Unsigned Quarter-Fractional” mode represents a single byte treated as an unsigned fractional number. The default format is “.8”.


UHQmode
“Unsigned Half-Fractional” mode represents a two-byte unsigned fractional number. The default format is “.16”.


USQmode
“Unsigned Single Fractional” mode represents a four-byte unsigned fractional number. The default format is “.32”.


UDQmode
“Unsigned Double Fractional” mode represents an eight-byte unsigned fractional number. The default format is “.64”.


UTQmode
“Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned fractional number. The default format is “.128”.


HAmode
“Half-Accumulator” mode represents a two-byte signed accumulator. The default format is “s8.7”.


SAmode
“Single Accumulator” mode represents a four-byte signed accumulator. The default format is “s16.15”.


DAmode
“Double Accumulator” mode represents an eight-byte signed accumulator. The default format is “s32.31”.


TAmode
“Tetra Accumulator” mode represents a sixteen-byte signed accumulator. The default format is “s64.63”.


UHAmode
“Unsigned Half-Accumulator” mode represents a two-byte unsigned accumulator. The default format is “8.8”.


USAmode
“Unsigned Single Accumulator” mode represents a four-byte unsigned accumulator. The default format is “16.16”.


UDAmode
“Unsigned Double Accumulator” mode represents an eight-byte unsigned accumulator. The default format is “32.32”.


UTAmode
“Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned accumulator. The default format is “64.64”.


CCmode
“Condition Code” mode represents the value of a condition code, which is a machine-specific set of bits used to represent the result of a comparison operation. Other machine-specific modes may also be used for the condition code. These modes are not used on machines that use cc0 (see see Condition Code).


BLKmode
“Block” mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, BLKmode will not appear in RTL.


VOIDmode
Void mode means the absence of a mode or an unspecified mode. For example, RTL expressions of code const_int have mode VOIDmode because they can be taken to have whatever mode the context requires. In debugging dumps of RTL, VOIDmode is expressed by the absence of any mode.


QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating point values. The floating point values are in QFmode, HFmode, SFmode, DFmode, XFmode, and TFmode, respectively.


CQImode, CHImode, CSImode, CDImode, CTImode, COImode
These modes stand for a complex number represented as a pair of integer values. The integer values are in QImode, HImode, SImode, DImode, TImode, and OImode, respectively.

The machine description defines Pmode as a C macro which expands into the machine mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler will attempt to use DImode for 8-byte structures and unions, but this can be prevented by overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the enumeration type enum mode_class defined in machmode.h. The possible mode classes are:

MODE_INT
Integer modes. By default these are BImode, QImode, HImode, SImode, DImode, TImode, and OImode.


MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.


MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode, DFmode, XFmode and TFmode.


MODE_DECIMAL_FLOAT
Decimal floating point modes. By default these are SDmode, DDmode and TDmode.


MODE_FRACT
Signed fractional modes. By default these are QQmode, HQmode, SQmode, DQmode and TQmode.


MODE_UFRACT
Unsigned fractional modes. By default these are UQQmode, UHQmode, USQmode, UDQmode and UTQmode.


MODE_ACCUM
Signed accumulator modes. By default these are HAmode, SAmode, DAmode and TAmode.


MODE_UACCUM
Unsigned accumulator modes. By default these are UHAmode, USAmode, UDAmode and UTAmode.


MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).


MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode, DCmode, XCmode, and TCmode.


MODE_FUNCTION
Algol or Pascal function variables including a static chain. (These are not currently implemented).


MODE_CC
Modes representing condition code values. These are CCmode plus any CC_MODE modes listed in the machine-modes.def. See Jump Patterns, also see Condition Code.


MODE_RANDOM
This is a catchall mode class for modes which don't fit into the above classes. Currently VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.


PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.


NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode.


GET_MODE_NAME (m)
Returns the name of mode m as a string.


GET_MODE_CLASS (m)
Returns the mode class of mode m.


GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_WIDER_MODE (QImode) returns HImode.


GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.


GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.


GET_MODE_IBIT (m)
Returns the number of integral bits of a datum of fixed-point mode m.


GET_MODE_FBIT (m)
Returns the number of fractional bits of a datum of fixed-point mode m.


GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m. This macro can only be used for modes whose bitsize is less than or equal to HOST_BITS_PER_INT.


GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.


GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the same as GET_MODE_SIZE except in the case of complex modes. For them, the unit size is the size of the real or imaginary part.


GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided by GET_MODE_UNIT_SIZE.


GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit machines, these are QImode and SImode, respectively.


Next: , Previous: Machine Modes, Up: RTL

10.7 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp, 0).

Constants generated for modes with fewer bits than HOST_WIDE_INT must be sign extended to full width (e.g., with gen_int_mode).

There is only one expression object for the integer value zero; it is the value of the variable const0_rtx. Likewise, the only expression for integer value one is found in const1_rtx, the only expression for integer value two is found in const2_rtx, and the only expression for integer value negative one is found in constm1_rtx. Any attempt to create an expression of code const_int and value zero, one, two or negative one will return const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_true_rtx and const1_rtx will point to the same object. If STORE_FLAG_VALUE is −1, const_true_rtx and constm1_rtx will point to the same object.


(const_double:m i0 i1 ...)
Represents either a floating-point constant of mode m or an integer constant too large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice that number of bits (GCC does not provide a mechanism to represent even larger constants). In the latter case, m will be VOIDmode.

If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily accessed with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the size of REAL_VALUE_TYPE (see Floating Point). The integers represent a floating point number, but not precisely in the target machine's or host machine's floating point format. To convert them to the precise bit pattern used by the target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see Data Output).


(const_fixed:m ...)
Represents a fixed-point constant of mode m. The operand is a data structure of type struct fixed_value and is accessed with the macro CONST_FIXED_VALUE. The high part of data is accessed with CONST_FIXED_VALUE_HIGH; the low part is accessed with CONST_FIXED_VALUE_LOW.


(const_vector:m [x0 x1 ...])
Represents a vector constant. The square brackets stand for the vector containing the constant elements. x0, x1 and so on are the const_int, const_double or const_fixed elements.

The number of units in a const_vector is obtained with the macro CONST_VECTOR_NUNITS as in CONST_VECTOR_NUNITS (v).

Individual elements in a vector constant are accessed with the macro CONST_VECTOR_ELT as in CONST_VECTOR_ELT (v, n) where v is the vector constant and n is the element desired.


(const_string str)
Represents a constant string with value str. Currently this is used only for insn attributes (see Insn Attributes) since constant strings in C are placed in memory.


(symbol_ref:mode symbol)
Represents the value of an assembler label for data. symbol is a string that describes the name of the assembler label. If it starts with a ‘*’, the label is the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually prefixed with ‘_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the only mode for which a symbol is directly valid.


(label_ref:mode label)
Represents the value of an assembler label for code. It contains one operand, an expression, which must be a code_label or a note of type NOTE_INSN_DELETED_LABEL that appears in the instruction sequence to identify the place where the label should go.

The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the only mode for which a label is directly valid.


(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic computation. The operand, exp, is an expression that contains only constants (const_int, symbol_ref and label_ref expressions) combined with plus and minus. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols.

m should be Pmode.


(high:m exp)
Represents the high-order bits of exp, usually a symbol_ref. The number of bits is machine-dependent and is normally the number of bits specified in an instruction that initializes the high order bits of a register. It is used with lo_sum to represent the typical two-instruction sequence used in RISC machines to reference a global memory location.

m should be Pmode.

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If mode mode is of mode class MODE_INT, it returns const0_rtx. If mode mode is of mode class MODE_FLOAT, it returns a CONST_DOUBLE expression in mode mode. Otherwise, it returns a CONST_VECTOR expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers to an expression with value 1 in mode mode and similarly for CONST2_RTX. The CONST1_RTX and CONST2_RTX macros are undefined for vector modes.


Next: , Previous: Constants, Up: RTL

10.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main memory.

(reg:m n)
For small values of the integer n (those that are less than FIRST_PSEUDO_REGISTER), this stands for a reference to machine register number n: a hard register. For larger values of n, it stands for a temporary value or pseudo register. The compiler's strategy is to generate code assuming an unlimited number of such pseudo registers, and later convert them into hard registers or into memory references.

m is the machine mode of the reference. It is necessary because machines can generally refer to each register in more than one mode. For example, a register may contain a full word but there may be instructions to refer to it as a half word or as a single byte, as well as instructions to refer to it as a floating point number of various precisions.

Even for a register that the machine can access in only one mode, the mode must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All the machine registers that can be used for storage of data are given hard register numbers, even those that can be used only in certain instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an access to a pseudo register using a nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word of data may actually stand for several consecutive registers. If in addition the register number specifies a hardware register, then it actually represents several consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function's RTL code is represented by a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame that cannot be determined until RTL generation for the function has been completed. The following virtual register numbers are defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed on the stack. Normally these arguments are placed there by the caller, but the callee may have pushed some arguments that were previously passed in registers.

When RTL generation is complete, this virtual register is replaced by the sum of the register given by ARG_POINTER_REGNUM and the value of FIRST_PARM_OFFSET.


VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined to a nonzero value, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the register given by FRAME_POINTER_REGNUM and the value STARTING_FRAME_OFFSET.


VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the stack immediately after the stack pointer has been adjusted by the amount of memory desired.

This virtual register is replaced by the sum of the register given by STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.


VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.


(subreg:m1 reg:m2 bytenum)
subreg expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a multi-part reg that actually refers to several registers.

Each pseudo register has a natural mode. If it is necessary to operate on it in a different mode, the register must be enclosed in a subreg.

There are currently three supported types for the first operand of a subreg:

subregs of subregs are not supported. Using simplify_gen_subreg is the recommended way to avoid this problem.

subregs come in two distinct flavors, each having its own usage and rules:

Paradoxical subregs
When m1 is strictly wider than m2, the subreg expression is called paradoxical. The canonical test for this class of subreg is:
               GET_MODE_SIZE (m1) > GET_MODE_SIZE (m2)

Paradoxical subregs can be used as both lvalues and rvalues. When used as an lvalue, the low-order bits of the source value are stored in reg and the high-order bits are discarded. When used as an rvalue, the low-order bits of the subreg are taken from reg while the high-order bits may or may not be defined.

The high-order bits of rvalues are in the following circumstances:

  • subregs of mem When m2 is smaller than a word, the macro LOAD_EXTEND_OP, can control how the high-order bits are defined.
  • subreg of regs The upper bits are defined when SUBREG_PROMOTED_VAR_P is true. SUBREG_PROMOTED_UNSIGNED_P describes what the upper bits hold. Such subregs usually represent local variables, register variables and parameter pseudo variables that have been promoted to a wider mode.

bytenum is always zero for a paradoxical subreg, even on big-endian targets.

For example, the paradoxical subreg:

               (set (subreg:SI (reg:HI x) 0) y)

stores the lower 2 bytes of y in x and discards the upper 2 bytes. A subsequent:

               (set z (subreg:SI (reg:HI x) 0))

would set the lower two bytes of z to y and set the upper two bytes to an unknown value assuming SUBREG_PROMOTED_VAR_P is false.

Normal subregs
When m1 is at least as narrow as m2 the subreg expression is called normal.

Normal subregs restrict consideration to certain bits of reg. There are two cases. If m1 is smaller than a word, the subreg refers to the least-significant part (or lowpart) of one word of reg. If m1 is word-sized or greater, the subreg refers to one or more complete words.

When used as an lvalue, subreg is a word-based accessor. Storing to a subreg modifies all the words of reg that overlap the subreg, but it leaves the other words of reg alone.

When storing to a normal subreg that is smaller than a word, the other bits of the referenced word are usually left in an undefined state. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in the subreg, use strict_low_part or zero_extract around the subreg.

bytenum must identify the offset of the first byte of the subreg from the start of reg, assuming that reg is laid out in memory order. The memory order of bytes is defined by two target macros, WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN:

  • WORDS_BIG_ENDIAN, if set to 1, says that byte number zero is part of the most significant word; otherwise, it is part of the least significant word.
  • BYTES_BIG_ENDIAN, if set to 1, says that byte number zero is the most significant byte within a word; otherwise, it is the least significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_BIG_ENDIAN. However, most parts of the compiler treat floating point values as if they had the same endianness as integer values. This works because they handle them solely as a collection of integer values, with no particular numerical value. Only real.c and the runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Thus,

               (subreg:HI (reg:SI x) 2)

on a BYTES_BIG_ENDIAN, ‘UNITS_PER_WORD == 4’ target is the same as

               (subreg:HI (reg:SI x) 0)

on a little-endian, ‘UNITS_PER_WORD == 4’ target. Both subregs access the lower two bytes of register x.

A MODE_PARTIAL_INT mode behaves as if it were as wide as the corresponding MODE_INT mode, except that it has an unknown number of undefined bits. For example:

          (subreg:PSI (reg:SI 0) 0)

accesses the whole of ‘(reg:SI 0)’, but the exact relationship between the PSImode value and the SImode value is not defined. If we assume ‘UNITS_PER_WORD <= 4’, then the following two subregs:

          (subreg:PSI (reg:DI 0) 0)
          (subreg:PSI (reg:DI 0) 4)

represent independent 4-byte accesses to the two halves of ‘(reg:DI 0)’. Both subregs have an unknown number of undefined bits.

If ‘UNITS_PER_WORD <= 2’ then these two subregs:

          (subreg:HI (reg:PSI 0) 0)
          (subreg:HI (reg:PSI 0) 2)

represent independent 2-byte accesses that together span the whole of ‘(reg:PSI 0)’. Storing to the first subreg does not affect the value of the second, and vice versa. ‘(reg:PSI 0)’ has an unknown number of undefined bits, so the assignment:

          (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))

does not guarantee that ‘(subreg:HI (reg:PSI 0) 0)’ has the value ‘(reg:HI 4)’.

The rules above apply to both pseudo regs and hard regs. If the semantics are not correct for particular combinations of m1, m2 and hard reg, the target-specific code must ensure that those combinations are never used. For example:

          CANNOT_CHANGE_MODE_CLASS (m2, m1, class)

must be true for every class class that includes reg.

The first operand of a subreg expression is customarily accessed with the SUBREG_REG macro and the second operand is customarily accessed with the SUBREG_BYTE macro.

It has been several years since a platform in which BYTES_BIG_ENDIAN not equal to WORDS_BIG_ENDIAN has been tested. Anyone wishing to support such a platform in the future may be confronted with code rot.


(scratch:m)
This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is converted into a reg by either the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Side Effects).


(cc0)
This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it:

There is only one expression object of code cc0; it is the value of the variable cc0_rtx. Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the instructions that do so (by means of the macro NOTICE_UPDATE_CC). See Condition Code. Only instructions whose sole purpose is to set the condition code, and instructions that use the condition code, need mention (cc0).

On some machines, the condition code register is given a register number and a reg is used instead of (cc0). This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic instructions, one that sets and one that does not set the condition code. This is best handled by normally generating the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition code register (which would not be (cc0) in this case). For examples, search for ‘addcc’ and ‘andcc’ in sparc.md.


(pc)
This represents the machine's program counter. It has no operands and may not have a machine mode. (pc) may be validly used only in certain specific contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by incrementing it, but there is no need to mention this in the RTL.


(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by the expression addr. m specifies how large a unit of memory is accessed. alias specifies an alias set for the reference. In general two items are in different alias sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories. Thus it may be used as a memory barrier in epilogue stack deallocation patterns.


(concatm rtx rtx)
This RTX represents the concatenation of two other RTXs. This is used for complex values. It should only appear in the RTL attached to declarations and during RTL generation. It should not appear in the ordinary insn chain.


(concatnm [rtx ...])
This RTX represents the concatenation of all the rtx to make a single value. Like concat, this should only appear in declarations, and not in the insn chain.


Next: , Previous: Regs and Memory, Up: RTL

10.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)
(ss_plus:m x y)
(us_plus:m x y)
These three expressions all represent the sum of the values represented by x and y carried out in machine mode m. They differ in their behavior on overflow of integer modes. plus wraps round modulo the width of m; ss_plus saturates at the maximum signed value representable in m; us_plus saturates at the maximum unsigned value.


(lo_sum:m x y)
This expression represents the sum of x and the low-order bits of y. It is used with high (see Constants) to represent the typical two-instruction sequence used in RISC machines to reference a global memory location.

The number of low order bits is machine-dependent but is normally the number of bits in a Pmode item minus the number of bits set by high.

m should be Pmode.


(minus:m x y)
(ss_minus:m x y)
(us_minus:m x y)
These three expressions represent the result of subtracting y from x, carried out in mode M. Behavior on overflow is the same as for the three variants of plus (see above).


(compare:m x y)
Represents the result of subtracting y from x for purposes of comparison. The result is computed without overflow, as if with infinite precision.

Of course, machines can't really subtract with infinite precision. However, they can pretend to do so when only the sign of the result will be used, which is the case when the result is stored in the condition code. And that is the only way this kind of expression may validly be used: as a value to be stored in the condition codes, either (cc0) or a register. See Comparisons.

The mode m is not related to the modes of x and y, but instead is the mode of the condition code value. If (cc0) is used, it is VOIDmode. Otherwise it is some mode in class MODE_CC, often CCmode. See Condition Code. If m is VOIDmode or CCmode, the operation returns sufficient information (in an unspecified format) so that any comparison operator can be applied to the result of the COMPARE operation. For other modes in class MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only if the mode of x is in class MODE_INT and y is a const_int or const_double with mode VOIDmode. The mode of x determines what mode the comparison is to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known.


(neg:m x)
(ss_neg:m x)
(us_neg:m x)
These two expressions represent the negation (subtraction from zero) of the value represented by x, carried out in mode m. They differ in the behavior on overflow of integer modes. In the case of neg, the negation of the operand may be a number not representable in mode m, in which case it is truncated to m. ss_neg and us_neg ensure that an out-of-bounds result saturates to the maximum or minimum signed or unsigned value.


(mult:m x y)
(ss_mult:m x y)
(us_mult:m x y)
Represents the signed product of the values represented by x and y carried out in machine mode m. ss_mult and us_mult ensure that an out-of-bounds result saturates to the maximum or minimum signed or unsigned value.

Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as

          (mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_extend instead of sign_extend.


(div:m x y)
(ss_div:m x y)
Represents the quotient in signed division of x by y, carried out in machine mode m. If m is a floating point mode, it represents the exact quotient; otherwise, the integerized quotient. ss_div ensures that an out-of-bounds result saturates to the maximum or minimum signed value.

Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such instructions using truncate and sign_extend as in,

          (truncate:m1 (div:m2 x (sign_extend:m2 y)))


(udiv:m x y)
(us_div:m x y)
Like div but represents unsigned division. us_div ensures that an out-of-bounds result saturates to the maximum or minimum unsigned value.


(mod:m x y)
(umod:m x y)
Like div and udiv but represent the remainder instead of the quotient.


(smin:m x y)
(smax:m x y)
Represents the smaller (for smin) or larger (for smax) of x and y, interpreted as signed values in mode m. When used with floating point, if both operands are zeros, or if either operand is NaN, then it is unspecified which of the two operands is returned as the result.


(umin:m x y)
(umax:m x y)
Like smin and smax, but the values are interpreted as unsigned integers.


(not:m x)
Represents the bitwise complement of the value represented by x, carried out in mode m, which must be a fixed-point machine mode.


(and:m x y)
Represents the bitwise logical-and of the values represented by x and y, carried out in machine mode m, which must be a fixed-point machine mode.


(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried out in machine mode m, which must be a fixed-point mode.


(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried out in machine mode m, which must be a fixed-point mode.


(ashift:m x c)
(ss_ashift:m x c)
(us_ashift:m x c)
These three expressions represent the result of arithmetically shifting x left by c places. They differ in their behavior on overflow of integer modes. An ashift operation is a plain shift with no special behavior in case of a change in the sign bit; ss_ashift and us_ashift saturates to the minimum or maximum representable value if any of the bits shifted out differs from the final sign bit.

x have mode m, a fixed-point machine mode. c be a fixed-point mode or be a constant with mode VOIDmode; which mode is determined by the mode called for in the machine description entry for the left-shift instruction. For example, on the VAX, the mode of c is QImode regardless of m.


(lshiftrt:m x c)
(ashiftrt:m x c)
Like ashift but for right shift. Unlike the case for left shift, these two operations are distinct.


(rotate:m x c)
(rotatert:m x c)
Similar but represent left and right rotate. If c is a constant, use rotate.


(abs:m x)
Represents the absolute value of x, computed in mode m.


(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a floating point mode.


(ffs:m x)
Represents one plus the index of the least significant 1-bit in x, represented as an integer of mode m. (The value is zero if x is zero.) The mode of x need not be m; depending on the target machine, various mode combinations may be valid.


(clz:m x)
Represents the number of leading 0-bits in x, represented as an integer of mode m, starting at the most significant bit position. If x is zero, the value is determined by CLZ_DEFINED_VALUE_AT_ZERO (see Misc). Note that this is one of the few expressions that is not invariant under widening. The mode of x will usually be an integer mode.


(ctz:m x)
Represents the number of trailing 0-bits in x, represented as an integer of mode m, starting at the least significant bit position. If x is zero, the value is determined by CTZ_DEFINED_VALUE_AT_ZERO (see Misc). Except for this case, ctz(x) is equivalent to ffs(x) - 1. The mode of x will usually be an integer mode.


(popcount:m x)
Represents the number of 1-bits in x, represented as an integer of mode m. The mode of x will usually be an integer mode.


(parity:m x)
Represents the number of 1-bits modulo 2 in x, represented as an integer of mode m. The mode of x will usually be an integer mode.


(bswap:m x)
Represents the value x with the order of bytes reversed, carried out in mode m, which must be a fixed-point machine mode.


Next: , Previous: Arithmetic, Up: RTL

10.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_VALUE (see Misc) if the relation holds, or zero if it does not, for comparison operators whose results have a `MODE_INT' mode, FLOAT_STORE_FLAG_VALUE (see Misc) if the relation holds, or zero if it does not, for comparison operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_VALUE (see Misc) if the relation holds, or of zeros if it does not, for comparison operators that return vector results. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_int 0)). Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instruction setting the condition code must be adjacent to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they must both be valid for a common machine mode. A comparison with both operands constant would be invalid as the machine mode could not be deduced from it, but such a comparison should never exist in RTL due to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation is identical to (eq x y). Usually only one style of comparisons is supported on a particular machine, but the combine pass will try to merge the operations to produce the eq shown in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct expression codes gt and gtu for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than −1 but not unsigned greater-than, because −1 when regarded as unsigned is actually 0xffffffff which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons are distinguished by the machine modes of the operands.

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.


(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise 0.


(gt:m x y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the comparison is done in a signed sense.


(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.


(lt:m x y)
(ltu:m x y)
Like gt and gtu but test for “less than”.


(ge:m x y)
(geu:m x y)
Like gt and gtu but test for “greater than or equal”.


(le:m x y)
(leu:m x y)
Like gt and gtu but test for “less than or equal”.


(if_then_else cond then else)
This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, cond is a comparison expression. This expression represents a choice, according to cond, between the value represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express conditional jumps.


(cond [test1 value1 test2 value2 ...] default)
Similar to if_then_else, but more general. Each of test1, test2, ... is performed in turn. The result of this expression is the value corresponding to the first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for insn attributes. See Insn Attributes.


Next: , Previous: Comparisons, Up: RTL

10.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in loc (a memory or register reference). The bit-field is size bits wide and starts at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the memory unit pos counts from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a register, the mode to use is specified by the operand of the insv or extv pattern (see Standard Names) and is usually a full-word integer mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv pattern.

The mode m is the same as the mode that would be used for loc if it were a register.

A sign_extract can not appear as an lvalue, or part thereof, in RTL.


(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension.

Unlike sign_extract, this type of expressions can be lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit-field.


Next: , Previous: Bit-Fields, Up: RTL

10.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operating on each part of the vector independently. Additionally, there are a few new expressions to describe specific vector operations.

(vec_merge:m vec1 vec2 items)
This describes a merge operation between two vectors. The result is a vector of mode m; its elements are selected from either vec1 or vec2. Which elements are selected is described by items, which is a bit mask represented by a const_int; a zero bit indicates the corresponding element in the result vector is taken from vec2 while a set bit indicates it is taken from vec1.


(vec_select:m vec1 selection)
This describes an operation that selects parts of a vector. vec1 is the source vector, selection is a parallel that contains a const_int for each of the subparts of the result vector, giving the number of the source subpart that should be stored into it.


(vec_concat:m vec1 vec2)
Describes a vector concat operation. The result is a concatenation of the vectors vec1 and vec2; its length is the sum of the lengths of the two inputs.


(vec_duplicate:m vec)
This operation converts a small vector into a larger one by duplicating the input values. The output vector mode must have the same submodes as the input vector mode, and the number of output parts must be an integer multiple of the number of input parts.


Next: , Previous: Vector Operations, Up: RTL

10.13 Conversions

All conversions between machine modes must be represented by explicit conversion operations. For example, an expression which is the sum of a byte and a full word cannot be written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in

     (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m must be a fixed-point mode and x a fixed-point value of a mode narrower than m.


(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m must be a fixed-point mode and x a fixed-point value of a mode narrower than m.


(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be a floating point mode and x a floating point value of a mode narrower than m.


(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must be a fixed-point mode and x a fixed-point value of a mode wider than m.


(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using signed saturation in the case of overflow. Both m and the mode of x must be fixed-point modes.


(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using unsigned saturation in the case of overflow. Both m and the mode of x must be fixed-point modes.


(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must be a floating point mode and x a floating point value of a mode wider than m.


(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to floating point mode m.


(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned, to floating point mode m.


(fix:m x)
When m is a floating-point mode, represents the result of converting floating point value x (valid for mode m) to an integer, still represented in floating point mode m, by rounding towards zero.

When m is a fixed-point mode, represents the result of converting floating point value x to mode m, regarded as signed. How rounding is done is not specified, so this operation may be used validly in compiling C code only for integer-valued operands.


(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode m, regarded as unsigned. How rounding is done is not specified.


(fract_convert:m x)
Represents the result of converting fixed-point value x to fixed-point mode m, signed integer value x to fixed-point mode m, floating-point value x to fixed-point mode m, fixed-point value x to integer mode m regarded as signed, or fixed-point value x to floating-point mode m. When overflows or underflows happen, the results are undefined.


(sat_fract:m x)
Represents the result of converting fixed-point value x to fixed-point mode m, signed integer value x to fixed-point mode m, or floating-point value x to fixed-point mode m. When overflows or underflows happen, the results are saturated to the maximum or the minimum.


(unsigned_fract_convert:m x)
Represents the result of converting fixed-point value x to integer mode m regarded as unsigned, or unsigned integer value x to fixed-point mode m. When overflows or underflows happen, the results are undefined.


(unsigned_sat_fract:m x)
Represents the result of converting unsigned integer value x to fixed-point mode m. When overflows or underflows happen, the results are saturated to the maximum or the minimum.


Next: , Previous: Conversions, Up: RTL

10.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand of a set expression. In addition, the operand of this expression must be a non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is meaningful in mode n, but is not part of mode m, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when m is less than a word.


Next: , Previous: RTL Declarations, Up: RTL

10.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instructions never produce values; they are meaningful only for their side effects on the state of the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described above, which represent values, appear only as the operands of these.

(set lval x)
Represents the action of storing the value of x into the place represented by lval. lval must be an expression representing a place that can be stored in: reg (or subreg, strict_low_part or zero_extract), mem, pc, parallel, or cc0.

If lval is a reg, subreg or mem, it has a machine mode; then x must be valid for that mode.

If lval is a reg whose machine mode is less than the full width of the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if lval is a subreg whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way.

If lval is a strict_low_part of a subreg, then the part of the register specified by the machine mode of the subreg is given the value x and the rest of the register is not changed.

If lval is a zero_extract, then the referenced part of the bit-field (a memory or register reference) specified by the zero_extract is given the value x and the rest of the bit-field is not changed. Note that sign_extract can not appear in lval.

If lval is (cc0), it has no machine mode, and x may be either a compare expression or a value that may have any mode. The latter case represents a “test” instruction. The expression (set (cc0) (reg:m n)) is equivalent to (set (cc0) (compare (reg:m n) (const_int 0))). Use the former expression to save space during the compilation.

If lval is a parallel, it is used to represent the case of a function returning a structure in multiple registers. Each element of the parallel is an expr_list whose first operand is a reg and whose second operand is a const_int representing the offset (in bytes) into the structure at which the data in that register corresponds. The first element may be null to indicate that the structure is also passed partly in memory.

If lval is (pc), we have a jump instruction, and the possibilities for x are very limited. It may be a label_ref expression (unconditional jump). It may be an if_then_else (conditional jump), in which case either the second or the third operand must be (pc) (for the case which does not jump) and the other of the two must be a label_ref (for the case which does jump). x may also be a mem or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns are used to represent jumps through branch tables.

If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and the mode of x must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with the SET_SRC macro.


(return)
As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as VAXen. On machines where a multi-instruction “epilogue” must be executed in order to return from the function, returning is done by jumping to a label which precedes the epilogue, and the return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc) (return)), but the latter form is never used.


(call function nargs)
Represents a function call. function is a mem expression whose address is the address of the function to be called. nargs is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers.

Each machine has a standard machine mode which function must have. The machine description defines macro FUNCTION_MODE to expand into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed.


(clobber x)
Represents the storing or possible storing of an unpredictable, undescribed value into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into particular hard registers. It may not be worth the trouble to describe the values that are stored, but it is essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all memory locations must be presumed clobbered. If x is a parallel, it has the same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-clobbered”. All function call instructions are assumed by default to clobber these registers, so there is no need to use clobber expressions to indicate this fact. Also, each function call is assumed to have the potential to alter any memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression whose arguments are reg or match_scratch (see RTL Template) expressions, the combiner phase can add the appropriate clobber expressions to an insn it has constructed when doing so will cause a pattern to be matched.

This feature can be used, for example, on a machine that whose multiply and add instructions don't use an MQ register but which has an add-accumulate instruction that does clobber the MQ register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn if it is a hard register clobber. For pseudo-register clobber, the register allocator and the reload pass do not assign the same hard register to the clobber and the input operands if there is an insn alternative containing the ‘&’ constraint (see Modifiers) for the clobber and the hard register is in register classes of the clobber in the alternative. You can clobber either a specific hard register, a pseudo register, or a scratch expression; in the latter two cases, GCC will allocate a hard register that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch instead of a pseudo-register because this will allow the combiner phase to add the clobber when required. You do this by coding (clobber (match_scratch ...)). If you do clobber a pseudo register, use one which appears nowhere else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel: when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results.


(use x)
Represents the use of the value of x. It indicates that the value in x at this point in the program is needed, even though it may not be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel to describe a situation where the value of a special register will modify the behavior of the instruction. An hypothetical example might be a pattern for an addition that can either wrap around or use saturating addition depending on the value of a special control register:

          (parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
                                                 (reg:SI 4)] 0))
                     (use (reg:SI 1))])

This will not work, several of the optimizers only look at expressions locally; it is very likely that if you have multiple insns with identical inputs to the unspec, they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You should think twice before adding use statements, more often you will want to use unspec instead. The use RTX is most commonly useful to describe that a fixed register is implicitly used in an insn. It is also safe to use in patterns where the compiler knows for other reasons that the result of the whole pattern is variable, such as ‘movmemm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg_equal note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates that x previously was located at this place in the code and its data dependencies need to be taken into account. These use insns will be deleted before the delayed branch scheduling phase exits.


(parallel [x0 x1 ...])
Represents several side effects performed in parallel. The square brackets stand for a vector; the operand of parallel is a vector of expressions. x0, x1 and so on are individual side effect expressions—expressions of code set, call, return, clobber or use.

“In parallel” means that first all the values used in the individual side-effects are computed, and second all the actual side-effects are performed. For example,

          (parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
                     (set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places where (reg:SI 1) appears as a memory address it refers to the value in register 1 before the execution of the insn.

It follows that it is incorrect to use parallel and expect the result of one set to be available for the next one. For example, people sometimes attempt to represent a jump-if-zero instruction this way:

          (parallel [(set (cc0) (reg:SI 34))
                     (set (pc) (if_then_else
                                  (eq (cc0) (const_int 0))
                                  (label_ref ...)
                                  (pc)))])

But this is incorrect, because it says that the jump condition depends on the condition code value before this instruction, not on the new value that is set by this instruction.

Peephole optimization, which takes place together with final assembly code output, can produce insns whose patterns consist of a parallel whose elements are the operands needed to output the resulting assembler code—often reg, mem or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is ok then because no further optimization remains to be done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must deal with such insns if you define any peephole optimizations.


(cond_exec [cond expr])
Represents a conditionally executed expression. The expr is executed only if the cond is nonzero. The cond expression must not have side-effects, but the expr may very well have side-effects.


(sequence [insns ...])
Represents a sequence of insns. Each of the insns that appears in the vector is suitable for appearing in the chain of insns, so it must be an insn, jump_insn, call_insn, code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It represents the sequence of insns that result from a define_expand before those insns are passed to emit_insn to insert them in the chain of insns. When actually inserted, the individual sub-insns are separated out and the sequence is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside in its delay slots are grouped together into a sequence. The insn requiring the delay slot is the first insn in the vector; subsequent insns are to be placed in the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. See Delay Slots.

These expression codes appear in place of a side effect, as the body of an insn, though strictly speaking they do not always describe side effects as such:

(asm_input s)
Represents literal assembler code as described by the string s.


(unspec [operands ...] index)
(unspec_volatile [operands ...] index)
Represents a machine-specific operation on operands. index selects between multiple machine-specific operations. unspec_volatile is used for volatile operations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or inside an expression.


(addr_vec:m [lr0 lr1 ...])
Represents a table of jump addresses. The vector elements lr0, etc., are label_ref expressions. The mode m specifies how much space is given to each address; normally m would be Pmode.


(addr_diff_vec:m base [lr0 lr1 ...] min max flags)
Represents a table of jump addresses expressed as offsets from base. The vector elements lr0, etc., are label_ref expressions and so is base. The mode m specifies how much space is given to each address-difference. min and max are set up by branch shortening and hold a label with a minimum and a maximum address, respectively. flags indicates the relative position of base, min and max to the containing insn and of min and max to base. See rtl.def for details.


(prefetch:m addr rw locality)
Represents prefetch of memory at address addr. Operand rw is 1 if the prefetch is for data to be written, 0 otherwise; targets that do not support write prefetches should treat this as a normal prefetch. Operand locality specifies the amount of temporal locality; 0 if there is none or 1, 2, or 3 for increasing levels of temporal locality; targets that do not support locality hints should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache before it is accessed. It should use only non-faulting data prefetch instructions.


Next: , Previous: Side Effects, Up: RTL

10.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)
Represents the side effect of decrementing x by a standard amount and represents also the value that x has after being decremented. x must be a reg or mem, but most machines allow only a reg. m must be the machine mode for pointers on the machine in use. The amount x is decremented by is the length in bytes of the machine mode of the containing memory reference of which this expression serves as the address. Here is an example of its use:
          (mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and use the result to address a DFmode value.


(pre_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.


(post_dec:m x)
Represents the same side effect as pre_dec but a different value. The value represented here is the value x has before being decremented.


(post_inc:m x)
Similar, but specifies incrementing x instead of decrementing it.


(post_modify:m x y)
Represents the side effect of setting x to y and represents x before x is modified. x must be a reg or mem, but most machines allow only a reg. m must be the machine mode for pointers on the machine in use.

The expression y must be one of three forms: (plus:m x z), (minus:m x z), or (plus:m x i), where z is an index register and i is a constant.

Here is an example of its use:

          (mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
                                                    (reg:SI 48))))

This says to modify pseudo register 42 by adding the contents of pseudo register 48 to it, after the use of what ever 42 points to.


(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented in one instruction and used as an address shortly before or after; these cases are then transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. Uses of the register outside of an address are not permitted within the same insn as a use in an embedded side effect expression because such insns behave differently on different machines and hence must be treated as ambiguous and disallowed.

An instruction that can be represented with an embedded side effect could also be represented using parallel containing an additional set to describe how the address register is altered. This is not done because machines that allow these operations at all typically allow them wherever a memory address is called for. Describing them as additional parallel stores would require doubling the number of entries in the machine description.


Next: , Previous: Incdec, Up: RTL

10.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler instruction. It is used to represent an asm statement with arguments. An asm statement with a single output operand, like this:

     asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored in outputvar:

     (set rtx-for-outputvar
          (asm_operands "foo %1,%2,%0" "a" 0
                        [rtx-for-addition-result rtx-for-*z]
                        [(asm_input:m1 "g")
                         (asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand RTX's, and a vector of input-operand modes and constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX's inside of a parallel. Each set contains a asm_operands; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands.


Next: , Previous: Assembler, Up: RTL

10.18 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called insns. Insns are expressions with special codes that are used for no other purpose. Some insns are actual instructions; others represent dispatch tables for switch statements; others represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that distinguishes it from all other insns in the current function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a sequence), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent of the expression code of the insn. They could be accessed with XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.


PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is a null pointer.


NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and PREV_INSN pointers must always correspond: if insn is not the first insn,

     NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,

     PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions, which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN (insn)) is the insn containing the sequence expression, as is the value of PREV_INSN (NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these expressions to find the containing sequence expression.

Every insn has one of the following six expression codes:

insn
The expression code insn is used for instructions that do not jump and do not do function calls. sequence expressions are always contained in insns with code insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory ones listed above. These four are described in a table below.


jump_insn
The expression code jump_insn is used for instructions that may jump (or, more generally, may contain label_ref expressions to which pc can be set in that instruction). If there is an instruction to return from the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same way and in addition contain a field JUMP_LABEL which is defined once jump optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_label to which this insn will (possibly conditionally) branch. In a more complex jump, JUMP_LABEL records one of the labels that the insn refers to; other jump target labels are recorded as REG_LABEL_TARGET notes. The exception is addr_vec and addr_diff_vec, where JUMP_LABEL is NULL_RTX and the only way to find the labels is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any labels, their JUMP_LABEL is NULL_RTX.


call_insn
The expression code call_insn is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains a list (chain of expr_list expressions) containing use and clobber expressions that denote hard registers and MEMs used or clobbered by the called function.

A MEM generally points to a stack slots in which arguments passed to the libcall by reference (see TARGET_PASS_BY_REFERENCE) are stored. If the argument is caller-copied (see TARGET_CALLEE_COPIES), the stack slot will be mentioned in CLOBBER and USE entries; if it's callee-copied, only a USE will appear, and the MEM may point to addresses that are not stack slots.

CLOBBERed registers in this list augment registers specified in CALL_USED_REGISTERS (see Register Basics).


code_label
A code_label insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the three standard ones. CODE_LABEL_NUMBER is used to hold the label number, a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler output as an assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is completed. It contains the number of times this label is referenced in the current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY. The only labels that do not have type LABEL_NORMAL are alternate entry points to the current function. These may be static (visible only in the containing translation unit), global (exposed to all translation units), or weak (global, but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs to know whether or not a label is an alternate entry point; for this purpose, the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether ‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the distinction between static, global, and weak alternate entry points, besides the front-end code that creates them, is the function output_alternate_entry_point, in final.c.

To set the kind of a label, use the SET_LABEL_KIND macro.


barrier
Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump instructions to indicate that the jumps are unconditional and after calls to volatile functions, which do not return (e.g., exit). They contain no information beyond the three standard fields.


note
note insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an integer which is accessed with the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source line and NOTE_SOURCE_FILE is the source file name that the line came from. These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind.


NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for other purposes than taking its address and was transformed to mark that no code jumps to it.


NOTE_INSN_BLOCK_BEG
NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end of a level of scoping of variable names. They control the output of debugging information.


NOTE_INSN_EH_REGION_BEG
NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and end of a level of scoping for exception handling. NOTE_BLOCK_NUMBER identifies which CODE_LABEL or note of type NOTE_INSN_DELETED_LABEL is associated with the given region.


NOTE_INSN_LOOP_BEG
NOTE_INSN_LOOP_END
These types of notes indicate the position of the beginning and end of a while or for loop. They enable the loop optimizer to find loops quickly.


NOTE_INSN_LOOP_CONT
Appears at the place in a loop that continue statements jump to.


NOTE_INSN_LOOP_VTOP
This note indicates the place in a loop where the exit test begins for those loops in which the exit test has been duplicated. This position becomes another virtual start of the loop when considering loop invariants.


NOTE_INSN_FUNCTION_BEG
Appears at the start of the function body, after the function prologue.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of an insn to TImode when it is believed that the instruction begins an issue group. That is, when the instruction cannot issue simultaneously with the previous. This may be relied on by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)
An expression for the side effect performed by this insn. This must be one of the following codes: set, call, use, clobber, return, asm_input, asm_output, addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel, cond_exec, or sequence. If it is a parallel, each element of the parallel must be one these codes, except that parallel expressions cannot be nested and addr_vec and addr_diff_vec are not permitted inside a parallel expression.


INSN_CODE (i)
An integer that says which pattern in the machine description matches this insn, or −1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains −1 on an insn whose pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_vec expression.

Matching is also never attempted on insns that result from an asm statement. These contain at least one asm_operands expression. The function asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic representation that locates the pattern in the md file as some small positive or negative offset from a named pattern.


LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns. These are only used by the schedulers and by combine. This is a deprecated data structure. Def-use and use-def chains are now preferred.


REG_NOTES (i)
A list (chain of expr_list and insn_list expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two operands: the first is an insn, and the second is another insn_list expression (the next one in the chain). The last insn_list in the chain has a null pointer as second operand. The significant thing about the chain is which insns appear in it (as first operands of insn_list expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies which can be used for instruction combination. For each insn, the flow analysis pass adds a link to insns which store into registers values that are used for the first time in this insn.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes expr_list expressions in addition to insn_list expressions. There are several kinds of register notes, which are distinguished by the machine mode, which in a register note is really understood as being an enum reg_note. The first operand op of the note is data whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD
The value in op dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since op is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of op.


REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn. This differs from a REG_DEAD note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register.


REG_INC
The register op is incremented (or decremented; at this level there is no distinction) by an embedded side effect inside this insn. This means it appears in a post_inc, pre_inc, post_dec or pre_dec expression.


REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached. This is used so that decrement and branch until zero instructions, such as the m68k dbra, can be matched.

The REG_NONNEG note is added to insns only if the machine description has a ‘decrement_and_branch_until_zero’ pattern.


REG_LABEL_OPERAND
This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL, but is not a jump_insn, or it is a jump_insn that refers to the operand as an ordinary operand. The label may still eventually be a jump target, but if so in an indirect jump in a subsequent insn. The presence of this note allows jump optimization to be aware that op is, in fact, being used, and flow optimization to build an accurate flow graph.


REG_LABEL_TARGET
This insn is a jump_insn but not a addr_vec or addr_diff_vec. It uses op, a code_label as a direct or indirect jump target. Its purpose is similar to that of REG_LABEL_OPERAND. This note is only present if the insn has multiple targets; the last label in the insn (in the highest numbered insn-field) goes into the JUMP_LABEL field and does not have a REG_LABEL_TARGET note. See JUMP_LABEL.


REG_CROSSING_JUMP
This insn is an branching instruction (either an unconditional jump or an indirect jump) which crosses between hot and cold sections, which could potentially be very far apart in the executable. The presence of this note indicates to other optimizations that this branching instruction should not be “collapsed” into a simpler branching construct. It is used when the optimization to partition basic blocks into hot and cold sections is turned on.


REG_SETJMP
Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL
This note is only valid on an insn that sets only one register and indicates that that register will be equal to op at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from op, but they will be equal at run time. If the output of the single set is a strict_low_part expression, the note refers to the register that is contained in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function, and could validly be replaced in all its occurrences by op. (“Validly” here refers to the data flow of the program; simple replacement may make some insns invalid.) For example, when a constant is loaded into a register that is never assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. Although in this case the register may be set by other insns, it is still valid to replace the register by the stack slot throughout the function.

A REG_EQUIV note is also used on an instruction which copies a register parameter into a pseudo-register at entry to a function, if there is a stack slot where that parameter could be stored. Although other insns may set the pseudo-register, it is valid for the compiler to replace the pseudo-register by stack slot throughout the function, provided the compiler ensures that the stack slot is properly initialized by making the replacement in the initial copy instruction as well. This is used on machines for which the calling convention allocates stack space for register parameters. See REG_PARM_STACK_SPACE in Stack Arguments.

In the case of REG_EQUAL, the register that is set by this insn will be equal to op at run time at the end of this insn but not necessarily elsewhere in the function. In this case, op is typically an arithmetic expression. For example, when a sequence of insns such as a library call is used to perform an arithmetic operation, this kind of note is attached to the insn that produces or copies the final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell them how to think of that value. REG_EQUIV notes are used by register allocation to indicate that there is an available substitute expression (either a constant or a mem expression for the location of a parameter on the stack) that may be used in place of a register if insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout their entire life, which is not detected until later in the compilation, all equivalences are initially indicated by an attached REG_EQUAL note. In the early stages of register allocation, a REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_EQUAL notes and passes subsequent to register allocation need only check for REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn.

REG_CC_SETTER
REG_CC_USER
On machines that use cc0, the insns which set and use cc0 set and use cc0 are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a REG_CC_USER note will be placed on the insn setting cc0 to point to the insn using cc0 and a REG_CC_SETTER note will be placed on the insn using cc0 to point to the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, they simply have mode VOIDmode, and are printed without any descriptive text.

REG_DEP_TRUE
This indicates a true dependence (a read after write dependence).


REG_DEP_OUTPUT
This indicates an output dependence (a write after write dependence).


REG_DEP_ANTI
This indicates an anti dependence (a write after read dependence).

These notes describe information gathered from gcov profile data. They are stored in the REG_NOTES field of an insn as an expr_list.

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn according to the profile data. The value is stored as a value between 0 and REG_BR_PROB_BASE; larger values indicate a higher probability that the branch will be taken.


REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values.


REG_FRAME_RELATED_EXPR
This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading.

For convenience, the machine mode in an insn_list or expr_list is printed using these symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the first operand of an insn_list is assumed to be an insn and is printed in debugging dumps as the insn's unique id; the first operand of an expr_list is printed in the ordinary way as an expression.


Next: , Previous: Insns, Up: RTL

10.19 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must satisfy special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

     (call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being passed to the subroutine, fm is a machine mode (which must equal as the definition of the FUNCTION_MODE macro in the machine description) and addr represents the address of the subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire body of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned in a hard register. If this register's number is r, then the body of the call insn looks like this:

     (set (reg:m r)
          (call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not “return” any value, and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain the return address. call_insn insns on these machines should have a body which is a parallel that contains both the call expression and clobber expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration macro CALL_USED_REGISTERS (see Register Basics) and, with the exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single clobber follow immediately after the call to indicate which registers.


Next: , Previous: Calls, Up: RTL

10.20 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist two distinct objects representing the same value. In other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe global variables and external functions, and a few standard objects such as small integer constants, no RTL objects are common to two functions.


Previous: Sharing, Up: RTL

10.21 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream, and returns a single RTL object. This routine is defined in read-rtl.c. It is not available in the compiler itself, only the various programs that generate the compiler back end from the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is very dependent on the particular target machine. And the RTL does not contain all the information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data structure, described in the files tree.h and tree.def. The documentation for this structure (see Trees) is incomplete.


Next: , Previous: Trees, Up: Top

11 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing an entire function in trees. To this end, it was necessary to add a few new tree codes to the back end, but most everything was already there. If you can express it with the codes in gcc/tree.def, it's GENERIC.

Early on, there was a great deal of debate about how to think about statements in a tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded), but a non-statement expression may also have side effects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a function; indeed, the adapted tree inliner works fine on GENERIC, but the current compiler performs inlining after lowering to GIMPLE (a restricted form described in the next section). Indeed, currently the frontends perform this lowering before handing off to tree_rest_of_compilation, but this seems inelegant.

If necessary, a front end can use some language-dependent tree codes in its GENERIC representation, so long as it provides a hook for converting them to GIMPLE and doesn't expect them to work with any (hypothetical) optimizers that run before the conversion to GIMPLE. The intermediate representation used while parsing C and C++ looks very little like GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take it as input and spit out GIMPLE.


Up: GENERIC

11.1 Statements

Most statements in GIMPLE are assignment statements, represented by GIMPLE_ASSIGN. No other C expressions can appear at statement level; a reference to a volatile object is converted into a GIMPLE_ASSIGN.

There are also several varieties of complex statements.


Next: , Up: Statements

11.1.1 Blocks

Block scopes and the variables they declare in GENERIC are expressed using the BIND_EXPR code, which in previous versions of GCC was primarily used for the C statement-expression extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order. Any runtime initialization is moved out of DECL_INITIAL and into a statement in the controlled block. When gimplifying from C or C++, this initialization replaces the DECL_STMT.

Variable-length arrays (VLAs) complicate this process, as their size often refers to variables initialized earlier in the block. To handle this, we currently split the block at that point, and move the VLA into a new, inner BIND_EXPR. This strategy may change in the future.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in the source code, since several C++ constructs have implicit scopes associated with them. On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for objects with destructors, these don't translate into the GIMPLE form; multiple declarations at the same level use the same BIND_EXPR.


Next: , Previous: Blocks, Up: Statements

11.1.2 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. Statement lists are modified and traversed using the interface in ‘tree-iterator.h’.


Next: , Previous: Statement Sequences, Up: Statements

11.1.3 Empty Statements

Whenever possible, statements with no effect are discarded. But if they are nested within another construct which cannot be discarded for some reason, they are instead replaced with an empty statement, generated by build_empty_stmt. Initially, all empty statements were shared, after the pattern of the Java front end, but this caused a lot of trouble in practice.

An empty statement is represented as (void)0.


Next: , Previous: Empty Statements, Up: Statements

11.1.4 Jumps

Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.

The operand of a GOTO_EXPR must be either a label or a variable containing the address to jump to.

The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR which sets the return value. It would be nice to move the MODIFY_EXPR into a separate statement, but the special return semantics in expand_return make that difficult. It may still happen in the future, perhaps by moving most of that logic into expand_assignment.


Previous: Jumps, Up: Statements

11.1.5 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIMPLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a sequence of statements to execute. The first sequence is executed. When it completes the second sequence is executed.

The first sequence may complete in the following ways:

  1. Execute the last statement in the sequence and fall off the end.
  2. Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.
  3. Execute a return statement (RETURN_EXPR).
  4. Throw an exception. This is currently not explicitly represented in GIMPLE.

The second sequence is not executed if the first sequence completes by calling setjmp or exit or any other function that does not return. The second sequence is also not executed if the first sequence completes via a non-local goto or a computed goto (in general the compiler does not know whether such a goto statement exits the first sequence or not, so we assume that it doesn't).

After the second sequence is executed, if it completes normally by falling off the end, execution continues wherever the first sequence would have continued, by falling off the end, or doing a goto, etc.

TRY_FINALLY_EXPR complicates the flow graph, since the cleanup needs to appear on every edge out of the controlled block; this reduces the freedom to move code across these edges. Therefore, the EH lowering pass which runs before most of the optimization passes eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the exception is represented using RESX_EXPR.


Next: , Previous: GENERIC, Up: Top

12 GIMPLE

GIMPLE is a three-address representation derived from GENERIC by breaking down GENERIC expressions into tuples of no more than 3 operands (with some exceptions like function calls). GIMPLE was heavily influenced by the SIMPLE IL used by the McCAT compiler project at McGill University, though we have made some different choices. For one thing, SIMPLE doesn't support goto.

Temporaries are introduced to hold intermediate values needed to compute complex expressions. Additionally, all the control structures used in GENERIC are lowered into conditional jumps, lexical scopes are removed and exception regions are converted into an on the side exception region tree.

The compiler pass which converts GENERIC into GIMPLE is referred to as the ‘gimplifier’. The gimplifier works recursively, generating GIMPLE tuples out of the original GENERIC expressions.

One of the early implementation strategies used for the GIMPLE representation was to use the same internal data structures used by front ends to represent parse trees. This simplified implementation because we could leverage existing functionality and interfaces. However, GIMPLE is a much more restrictive representation than abstract syntax trees (AST), therefore it does not require the full structural complexity provided by the main tree data structure.

The GENERIC representation of a function is stored in the DECL_SAVED_TREE field of the associated FUNCTION_DECL tree node. It is converted to GIMPLE by a call to gimplify_function_tree.

If a front end wants to include language-specific tree codes in the tree representation which it provides to the back end, it must provide a definition of LANG_HOOKS_GIMPLIFY_EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will involve much of the same code for expanding front end trees to RTL. This function can return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is known as “High GIMPLE” and consists of the IL before the pass pass_lower_cf. High GIMPLE contains some container statements like lexical scopes (represented by GIMPLE_BIND) and nested expressions (e.g., GIMPLE_TRY), while “Low GIMPLE” exposes all of the implicit jumps for control and exception expressions directly in the IL and EH region trees.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and hand that off to the back end rather than first converting to GENERIC. Their gimplifier hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There was some work done on a genericization pass which would run first, but the existence of STMT_EXPR meant that in order to convert all of the C statements into GENERIC equivalents would involve walking the entire tree anyway, so it was simpler to lower all the way. This might change in the future if someone writes an optimization pass which would work better with higher-level trees, but currently the optimizers all expect GIMPLE.

You can request to dump a C-like representation of the GIMPLE form with the flag -fdump-tree-gimple.


Next: , Up: GIMPLE

12.1 Tuple representation

GIMPLE instructions are tuples of variable size divided in two groups: a header describing the instruction and its locations, and a variable length body with all the operands. Tuples are organized into a hierarchy with 3 main classes of tuples.

12.1.1 gimple_statement_base (gsbase)

This is the root of the hierarchy, it holds basic information needed by most GIMPLE statements. There are some fields that may not be relevant to every GIMPLE statement, but those were moved into the base structure to take advantage of holes left by other fields (thus making the structure more compact). The structure takes 4 words (32 bytes) on 64 bit hosts:

Field Size (bits)
code 8
subcode 16
no_warning 1
visited 1
nontemporal_move 1
plf 2
modified 1
has_volatile_ops 1
references_memory_p 1
uid 32
location 32
num_ops 32
bb 64
block 63
Total size 32 bytes

12.1.2 gimple_statement_with_ops

This tuple is actually split in two: gimple_statement_with_ops_base and gimple_statement_with_ops. This is needed to accommodate the way the operand vector is allocated. The operand vector is defined to be an array of 1 element. So, to allocate a dynamic number of operands, the memory allocator (gimple_alloc) simply allocates enough memory to hold the structure itself plus N - 1 operands which run “off the end” of the structure. For example, to allocate space for a tuple with 3 operands, gimple_alloc reserves sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree) bytes.

On the other hand, several fields in this tuple need to be shared with the gimple_statement_with_memory_ops tuple. So, these common fields are placed in gimple_statement_with_ops_base which is then inherited from the other two tuples.

gsbase 256
addresses_taken 64
def_ops 64
use_ops 64
op num_ops * 64
Total size 56 + 8 * num_ops bytes

12.1.3 gimple_statement_with_memory_ops

This tuple is essentially identical to gimple_statement_with_ops, except that it contains 4 additional fields to hold vectors related memory stores and loads. Similar to the previous case, the structure is split in two to accommodate for the operand vector (gimple_statement_with_memory_ops_base and gimple_statement_with_memory_ops).

Field Size (bits)
gsbase 256
addresses_taken 64
def_ops 64
use_ops 64
vdef_ops 64
vuse_ops 64
stores 64
loads 64
op num_ops * 64
Total size 88 + 8 * num_ops bytes

All the other tuples are defined in terms of these three basic ones. Each tuple will add some fields. The main gimple type is defined to be the union of all these structures (GTY markers elided for clarity):

     union gimple_statement_d
     {
       struct gimple_statement_base gsbase;
       struct gimple_statement_with_ops gsops;
       struct gimple_statement_with_memory_ops gsmem;
       struct gimple_statement_omp omp;
       struct gimple_statement_bind gimple_bind;
       struct gimple_statement_catch gimple_catch;
       struct gimple_statement_eh_filter gimple_eh_filter;
       struct gimple_statement_phi gimple_phi;
       struct gimple_statement_resx gimple_resx;
       struct gimple_statement_try gimple_try;
       struct gimple_statement_wce gimple_wce;
       struct gimple_statement_asm gimple_asm;
       struct gimple_statement_omp_critical gimple_omp_critical;
       struct gimple_statement_omp_for gimple_omp_for;
       struct gimple_statement_omp_parallel gimple_omp_parallel;
       struct gimple_statement_omp_task gimple_omp_task;
       struct gimple_statement_omp_sections gimple_omp_sections;
       struct gimple_statement_omp_single gimple_omp_single;
       struct gimple_statement_omp_continue gimple_omp_continue;
       struct gimple_statement_omp_atomic_load gimple_omp_atomic_load;
       struct gimple_statement_omp_atomic_store gimple_omp_atomic_store;
     };


Next: , Previous: Tuple representation, Up: GIMPLE

12.2 GIMPLE instruction set

The following table briefly describes the GIMPLE instruction set.

Instruction High GIMPLE Low GIMPLE
GIMPLE_ASM x x
GIMPLE_ASSIGN x x
GIMPLE_BIND x
GIMPLE_CALL x x
GIMPLE_CATCH x
GIMPLE_CHANGE_DYNAMIC_TYPE x x
GIMPLE_COND x x
GIMPLE_EH_FILTER x
GIMPLE_GOTO x x
GIMPLE_LABEL x x
GIMPLE_NOP x x
GIMPLE_OMP_ATOMIC_LOAD x x
GIMPLE_OMP_ATOMIC_STORE x x
GIMPLE_OMP_CONTINUE x x
GIMPLE_OMP_CRITICAL x x
GIMPLE_OMP_FOR x x
GIMPLE_OMP_MASTER x x
GIMPLE_OMP_ORDERED x x
GIMPLE_OMP_PARALLEL x x
GIMPLE_OMP_RETURN x x
GIMPLE_OMP_SECTION x x
GIMPLE_OMP_SECTIONS x x
GIMPLE_OMP_SECTIONS_SWITCH x x
GIMPLE_OMP_SINGLE x x
GIMPLE_PHI x
GIMPLE_RESX x
GIMPLE_RETURN x x
GIMPLE_SWITCH x x
GIMPLE_TRY x


Next: , Previous: GIMPLE instruction set, Up: GIMPLE

12.3 Exception Handling

Other exception handling constructs are represented using GIMPLE_TRY_CATCH. GIMPLE_TRY_CATCH has two operands. The first operand is a sequence of statements to execute. If executing these statements does not throw an exception, then the second operand is ignored. Otherwise, if an exception is thrown, then the second operand of the GIMPLE_TRY_CATCH is checked. The second operand may have the following forms:

  1. A sequence of statements to execute. When an exception occurs, these statements are executed, and then the exception is rethrown.
  2. A sequence of GIMPLE_CATCH statements. Each GIMPLE_CATCH has a list of applicable exception types and handler code. If the thrown exception matches one of the caught types, the associated handler code is executed. If the handler code falls off the bottom, execution continues after the original GIMPLE_TRY_CATCH.
  3. An GIMPLE_EH_FILTER statement. This has a list of permitted exception types, and code to handle a match failure. If the thrown exception does not match one of the allowed types, the associated match failure code is executed. If the thrown exception does match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is implemented by calling a function. At some point in the future we will want to add some way to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs above into a set of ‘goto’s, magic labels, and EH regions. Continuing to unwind at the end of a cleanup is represented with a GIMPLE_RESX.


Next: , Previous: GIMPLE Exception Handling, Up: GIMPLE

12.4 Temporaries

When gimplification encounters a subexpression that is too complex, it creates a new temporary variable to hold the value of the subexpression, and adds a new statement to initialize it before the current statement. These special temporaries are known as ‘expression temporaries’, and are allocated using get_formal_tmp_var. The compiler tries to always evaluate identical expressions into the same temporary, to simplify elimination of redundant calculations.

We can only use expression temporaries when we know that it will not be reevaluated before its value is used, and that it will not be otherwise modified3. Other temporaries can be allocated using get_initialized_tmp_var or create_tmp_var.

Currently, an expression like a = b + 5 is not reduced any further. We tried converting it to something like

       T1 = b + 5;
       a = T1;

but this bloated the representation for minimal benefit. However, a variable which must live in memory cannot appear in an expression; its value is explicitly loaded into a temporary first. Similarly, storing the value of an expression to a memory variable goes through a temporary.


Next: , Previous: Temporaries, Up: GIMPLE

12.5 Operands

In general, expressions in GIMPLE consist of an operation and the appropriate number of simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a constant or a register variable. More complex operands are factored out into temporaries, so that

       a = b + c + d

becomes

       T1 = b + c;
       a = T1 + d;

The same rule holds for arguments to a GIMPLE_CALL.

The target of an assignment is usually a variable, but can also be an INDIRECT_REF or a compound lvalue as described below.


Next: , Up: Operands

12.5.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.


Next: , Previous: Compound Expressions, Up: Operands

12.5.2 Compound Lvalues

Currently compound lvalues involving array and structure field references are not broken down; an expression like a.b[2] = 42 is not reduced any further (though complex array subscripts are). This restriction is a workaround for limitations in later optimizers; if we were to convert this to

       T1 = &a.b;
       T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so it would think that the assignment could alias another member of a; this broke struct-alias-1.c. Future optimizer improvements may make this limitation unnecessary.


Next: , Previous: Compound Lvalues, Up: Operands

12.5.3 Conditional Expressions

A C ?: expression is converted into an if statement with each branch assigning to the same temporary. So,

       a = b ? c : d;

becomes

       if (b == 1)
         T1 = c;
       else
         T1 = d;
       a = T1;

The GIMPLE level if-conversion pass re-introduces ?: expression, if appropriate. It is used to vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are represented using GIMPLE_COND, as described below.


Previous: Conditional Expressions, Up: Operands

12.5.4 Logical Operators

Except when they appear in the condition operand of a GIMPLE_COND, logical `and' and `or' operators are simplified as follows: a = b && c becomes

       T1 = (bool)b;
       if (T1 == true)
         T1 = (bool)c;
       a = T1;

Note that T1 in this example cannot be an expression temporary, because it has two different assignments.

12.5.5 Manipulating operands

All gimple operands are of type tree. But only certain types of trees are allowed to be used as operand tuples. Basic validation is controlled by the function get_gimple_rhs_class, which given a tree code, returns an enum with the following values of type enum gimple_rhs_class

For tree nodes in the categories GIMPLE_BINARY_RHS and GIMPLE_UNARY_RHS, they cannot be stored inside tuples directly. They first need to be flattened and separated into individual components. For instance, given the GENERIC expression

     a = b + c

its tree representation is:

     MODIFY_EXPR <VAR_DECL  <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>

In this case, the GIMPLE form for this statement is logically identical to its GENERIC form but in GIMPLE, the PLUS_EXPR on the RHS of the assignment is not represented as a tree, instead the two operands are taken out of the PLUS_EXPR sub-tree and flattened into the GIMPLE tuple as follows:

     GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>

12.5.6 Operand vector allocation

The operand vector is stored at the bottom of the three tuple structures that accept operands. This means, that depending on the code of a given statement, its operand vector will be at different offsets from the base of the structure. To access tuple operands use the following accessors

— GIMPLE function: unsigned gimple_num_ops (gimple g)

Returns the number of operands in statement G.

— GIMPLE function: tree gimple_op (gimple g, unsigned i)

Returns operand I from statement G.

— GIMPLE function: tree *gimple_ops (gimple g)

Returns a pointer into the operand vector for statement G. This is computed using an internal table called gimple_ops_offset_[]. This table is indexed by the gimple code of G.

When the compiler is built, this table is filled-in using the sizes of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the structure, for a gimple code C the offset is computed as sizeof (struct-of C) - sizeof (tree).

This mechanism adds one memory indirection to every access when using gimple_op(), if this becomes a bottleneck, a pass can choose to memoize the result from gimple_ops() and use that to access the operands.

12.5.7 Operand validation

When adding a new operand to a gimple statement, the operand will be validated according to what each tuple accepts in its operand vector. These predicates are called by the gimple_<name>_set_...(). Each tuple will use one of the following predicates (Note, this list is not exhaustive):

— GIMPLE function: is_gimple_operand (tree t)

This is the most permissive of the predicates. It essentially checks whether t has a gimple_rhs_class of GIMPLE_SINGLE_RHS.

— GIMPLE function: is_gimple_val (tree t)

Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which is_gimple_reg returns true) and constants (expressions for which is_gimple_min_invariant returns true).

— GIMPLE function: is_gimple_addressable (tree t)

Returns true if t is a symbol or memory reference whose address can be taken.

— GIMPLE function: is_gimple_asm_val (tree t)

Similar to is_gimple_val but it also accepts hard registers.

— GIMPLE function: is_gimple_call_addr (tree t)

Return true if t is a valid expression to use as the function called by a GIMPLE_CALL.

— GIMPLE function: is_gimple_constant (tree t)

Return true if t is a valid gimple constant.

— GIMPLE function: is_gimple_min_invariant (tree t)

Return true if t is a valid minimal invariant. This is different from constants, in that the specific value of t may not be known at compile time, but it is known that it doesn't change (e.g., the address of a function local variable).

— GIMPLE function: is_gimple_min_invariant_address (tree t)

Return true if t is an ADDR_EXPR that does not change once the program is running.

12.5.8 Statement validation

— GIMPLE function: is_gimple_assign (gimple g)

Return true if the code of g is GIMPLE_ASSIGN.

— GIMPLE function: is_gimple_call (gimple g)

Return true if the code of g is GIMPLE_CALL

— GIMPLE function: gimple_assign_cast_p (gimple g)

Return true if g is a GIMPLE_ASSIGN that performs a type cast operation


Next: , Previous: Operands, Up: GIMPLE

12.6 Manipulating GIMPLE statements

This section documents all the functions available to handle each of the GIMPLE instructions.

12.6.1 Common accessors

The following are common accessors for gimple statements.

— GIMPLE function: enum gimple_code gimple_code (gimple g)

Return the code for statement G.

— GIMPLE function: basic_block gimple_bb (gimple g)

Return the basic block to which statement G belongs to.

— GIMPLE function: tree gimple_block (gimple g)

Return the lexical scope block holding statement G.

— GIMPLE function: tree gimple_expr_type (gimple stmt)

Return the type of the main expression computed by STMT. Return void_type_node if STMT computes nothing. This will only return something meaningful for GIMPLE_ASSIGN, GIMPLE_COND and GIMPLE_CALL. For all other tuple codes, it will return void_type_node.

— GIMPLE function: enum tree_code gimple_expr_code (gimple stmt)

Return the tree code for the expression computed by STMT. This is only meaningful for GIMPLE_CALL, GIMPLE_ASSIGN and GIMPLE_COND. If STMT is GIMPLE_CALL, it will return CALL_EXPR. For GIMPLE_COND, it returns the code of the comparison predicate. For GIMPLE_ASSIGN it returns the code of the operation performed by the RHS of the assignment.

— GIMPLE function: void gimple_set_block (gimple g, tree block)

Set the lexical scope block of G to BLOCK.

— GIMPLE function: location_t gimple_locus (gimple g)

Return locus information for statement G.

— GIMPLE function: void gimple_set_locus (gimple g, location_t locus)

Set locus information for statement G.

— GIMPLE function: bool gimple_locus_empty_p (gimple g)

Return true if G does not have locus information.

— GIMPLE function: bool gimple_no_warning_p (gimple stmt)

Return true if no warnings should be emitted for statement STMT.

— GIMPLE function: void gimple_set_visited (gimple stmt, bool visited_p)

Set the visited status on statement STMT to VISITED_P.

— GIMPLE function: bool gimple_visited_p (gimple stmt)

Return the visited status on statement STMT.

— GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)

Set pass local flag PLF on statement STMT to VAL_P.

— GIMPLE function: unsigned int gimple_plf (gimple stmt, enum plf_mask plf)

Return the value of pass local flag PLF on statement STMT.

— GIMPLE function: bool gimple_has_ops (gimple g)

Return true if statement G has register or memory operands.

— GIMPLE function: bool gimple_has_mem_ops (gimple g)

Return true if statement G has memory operands.

— GIMPLE function: unsigned gimple_num_ops (gimple g)

Return the number of operands for statement G.

— GIMPLE function: tree *gimple_ops (gimple g)

Return the array of operands for statement G.

— GIMPLE function: tree gimple_op (gimple g, unsigned i)

Return operand I for statement G.

— GIMPLE function: tree *gimple_op_ptr (gimple g, unsigned i)

Return a pointer to operand I for statement G.

— GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op)

Set operand I of statement G to OP.

— GIMPLE function: bitmap gimple_addresses_taken (gimple stmt)

Return the set of symbols that have had their address taken by STMT.

— GIMPLE function: struct def_optype_d *gimple_def_ops (gimple g)

Return the set of DEF operands for statement G.

— GIMPLE function: void gimple_set_def_ops (gimple g, struct def_optype_d *def)

Set DEF to be the set of DEF operands for statement G.

— GIMPLE function: struct use_optype_d *gimple_use_ops (gimple g)

Return the set of USE operands for statement G.

— GIMPLE function: void gimple_set_use_ops (gimple g, struct use_optype_d *use)

Set USE to be the set of USE operands for statement G.

— GIMPLE function: struct voptype_d *gimple_vuse_ops (gimple g)

Return the set of VUSE operands for statement G.

— GIMPLE function: void gimple_set_vuse_ops (gimple g, struct voptype_d *ops)

Set OPS to be the set of VUSE operands for statement G.

— GIMPLE function: struct voptype_d *gimple_vdef_ops (gimple g)

Return the set of VDEF operands for statement G.

— GIMPLE function: void gimple_set_vdef_ops (gimple g, struct voptype_d *ops)

Set OPS to be the set of VDEF operands for statement G.

— GIMPLE function: bitmap gimple_loaded_syms (gimple g)

Return the set of symbols loaded by statement G. Each element of the set is the DECL_UID of the corresponding symbol.

— GIMPLE function: bitmap gimple_stored_syms (gimple g)

Return the set of symbols stored by statement G. Each element of the set is the DECL_UID of the corresponding symbol.

— GIMPLE function: bool gimple_modified_p (gimple g)

Return true if statement G has operands and the modified field has been set.

— GIMPLE function: bool gimple_has_volatile_ops (gimple stmt)

Return true if statement STMT contains volatile operands.

— GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, bool volatilep)

Return true if statement STMT contains volatile operands.

— GIMPLE function: void update_stmt (gimple s)

Mark statement S as modified, and update it.

— GIMPLE function: void update_stmt_if_modified (gimple s)

Update statement S if it has been marked modified.

— GIMPLE function: gimple gimple_copy (gimple stmt)

Return a deep copy of statement STMT.


Next: , Previous: Manipulating GIMPLE statements, Up: GIMPLE

12.7 Tuple specific accessors


Next: , Up: Tuple specific accessors

12.7.1 GIMPLE_ASM

— GIMPLE function: gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...)

Build a GIMPLE_ASM statement. This statement is used for building in-line assembly constructs. STRING is the assembly code. NINPUT is the number of register inputs. NOUTPUT is the number of register outputs. NCLOBBERS is the number of clobbered registers. The rest of the arguments trees for each input, output, and clobbered registers.

— GIMPLE function: gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *)

Identical to gimple_build_asm, but the arguments are passed in VECs.

— GIMPLE function: gimple_asm_ninputs (gimple g)

Return the number of input operands for GIMPLE_ASM G.

— GIMPLE function: gimple_asm_noutputs (gimple g)

Return the number of output operands for GIMPLE_ASM G.

— GIMPLE function: gimple_asm_nclobbers (gimple g)

Return the number of clobber operands for GIMPLE_ASM G.

— GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index)

Return input operand INDEX of GIMPLE_ASM G.

— GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op)

Set IN_OP to be input operand INDEX in GIMPLE_ASM G.

— GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned index)

Return output operand INDEX of GIMPLE_ASM G.

— GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned index, tree out_op)

Set OUT_OP to be output operand INDEX in GIMPLE_ASM G.

— GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned index)

Return clobber operand INDEX of GIMPLE_ASM G.

— GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op)

Set CLOBBER_OP to be clobber operand INDEX in GIMPLE_ASM G.

— GIMPLE function: const char *gimple_asm_string (gimple g)

Return the string representing the assembly instruction in GIMPLE_ASM G.

— GIMPLE function: bool gimple_asm_volatile_p (gimple g)

Return true if G is an asm statement marked volatile.

— GIMPLE function: void gimple_asm_set_volatile (gimple g)

Mark asm statement G as volatile.

— GIMPLE function: void gimple_asm_clear_volatile (gimple g)

Remove volatile marker from asm statement G.


Next: , Previous: <code>GIMPLE_ASM</code>, Up: Tuple specific accessors

12.7.2 GIMPLE_ASSIGN

— GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs)

Build a GIMPLE_ASSIGN statement. The left-hand side is an lvalue passed in lhs. The right-hand side can be either a unary or binary tree expression. The expression tree rhs will be flattened and its operands assigned to the corresponding operand slots in the new statement. This function is useful when you already have a tree expression that you want to convert into a tuple. However, try to avoid building expression trees for the sole purpose of calling this function. If you already have the operands in separate trees, it is better to use gimple_build_assign_with_ops.

— GIMPLE function: gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p)

Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.

DST/SRC are the destination and source respectively. You can pass ungimplified trees in DST or SRC, in which case they will be converted to a gimple operand if necessary.

This function returns the newly created GIMPLE_ASSIGN tuple.

— GIMPLE function: gimple gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1, tree op2)

This function is similar to gimple_build_assign, but is used to build a GIMPLE_ASSIGN statement when the operands of the right-hand side of the assignment are already split into different operands.

The left-hand side is an lvalue passed in lhs. Subcode is the tree_code for the right-hand side of the assignment. Op1 and op2 are the operands. If op2 is null, subcode must be a tree_code for a unary expression.

— GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g)

Return the code of the expression computed on the RHS of assignment statement G.

— GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class (gimple g)

Return the gimple rhs class of the code for the expression computed on the rhs of assignment statement G. This will never return GIMPLE_INVALID_RHS.

— GIMPLE function: tree gimple_assign_lhs (gimple g)

Return the LHS of assignment statement G.

— GIMPLE function: tree *gimple_assign_lhs_ptr (gimple g)

Return a pointer to the LHS of assignment statement G.

— GIMPLE function: tree gimple_assign_rhs1 (gimple g)

Return the first operand on the RHS of assignment statement G.

— GIMPLE function: tree *gimple_assign_rhs1_ptr (gimple g)

Return the address of the first operand on the RHS of assignment statement G.

— GIMPLE function: tree gimple_assign_rhs2 (gimple g)

Return the second operand on the RHS of assignment statement G.

— GIMPLE function: tree *gimple_assign_rhs2_ptr (gimple g)

Return the address of the second operand on the RHS of assignment statement G.

— GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs)

Set LHS to be the LHS operand of assignment statement G.

— GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs)

Set RHS to be the first operand on the RHS of assignment statement G.

— GIMPLE function: tree gimple_assign_rhs2 (gimple g)

Return the second operand on the RHS of assignment statement G.

— GIMPLE function: tree *gimple_assign_rhs2_ptr (gimple g)

Return a pointer to the second operand on the RHS of assignment statement G.

— GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs)

Set RHS to be the second operand on the RHS of assignment statement G.

— GIMPLE function: bool gimple_assign_cast_p (gimple s)

Return true if S is an type-cast assignment.


Next: , Previous: <code>GIMPLE_ASSIGN</code>, Up: Tuple specific accessors

12.7.3 GIMPLE_BIND

— GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq body)

Build a GIMPLE_BIND statement with a list of variables in VARS and a body of statements in sequence BODY.

— GIMPLE function: tree gimple_bind_vars (gimple g)

Return the variables declared in the GIMPLE_BIND statement G.

— GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars)

Set VARS to be the set of variables declared in the GIMPLE_BIND statement G.

— GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars)

Append VARS to the set of variables declared in the GIMPLE_BIND statement G.

— GIMPLE function: gimple_seq gimple_bind_body (gimple g)

Return the GIMPLE sequence contained in the GIMPLE_BIND statement G.

— GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq seq)

Set SEQ to be sequence contained in the GIMPLE_BIND statement G.

— GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt)

Append a statement to the end of a GIMPLE_BIND's body.

— GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq seq)

Append a sequence of statements to the end of a GIMPLE_BIND's body.

— GIMPLE function: tree gimple_bind_block (gimple g)

Return the TREE_BLOCK node associated with GIMPLE_BIND statement G. This is analogous to the BIND_EXPR_BLOCK field in trees.

— GIMPLE function: void gimple_bind_set_block (gimple g, tree block)

Set BLOCK to be the TREE_BLOCK node associated with GIMPLE_BIND statement G.


Next: , Previous: <code>GIMPLE_BIND</code>, Up: Tuple specific accessors

12.7.4 GIMPLE_CALL

— GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs, ...)

Build a GIMPLE_CALL statement to function FN. The argument FN must be either a FUNCTION_DECL or a gimple call address as determined by is_gimple_call_addr. NARGS are the number of arguments. The rest of the arguments follow the argument NARGS, and must be trees that are valid as rvalues in gimple (i.e., each operand is validated with is_gimple_operand).

— GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr)

Build a GIMPLE_CALL from a CALL_EXPR node. The arguments and the function are taken from the expression directly. This routine assumes that call_expr is already in GIMPLE form. That is, its operands are GIMPLE values and the function call needs no further simplification. All the call flags in call_expr are copied over to the new GIMPLE_CALL.

— GIMPLE function: gimple gimple_build_call_vec (tree fn, VEC(tree, heap) *args)

Identical to gimple_build_call but the arguments are stored in a VEC().

— GIMPLE function: tree gimple_call_lhs (gimple g)

Return the LHS of call statement G.

— GIMPLE function: tree *gimple_call_lhs_ptr (gimple g)

Return a pointer to the LHS of call statement G.

— GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs)

Set LHS to be the LHS operand of call statement G.

— GIMPLE function: tree gimple_call_fn (gimple g)

Return the tree node representing the function called by call statement G.

— GIMPLE function: void gimple_call_set_fn (gimple g, tree fn)

Set FN to be the function called by call statement G. This has to be a gimple value specifying the address of the called function.

— GIMPLE function: tree gimple_call_fndecl (gimple g)

If a given GIMPLE_CALL's callee is a FUNCTION_DECL, return it. Otherwise return NULL. This function is analogous to get_callee_fndecl in GENERIC.

— GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl)

Set the called function to FNDECL.

— GIMPLE function: tree gimple_call_return_type (gimple g)

Return the type returned by call statement G.

— GIMPLE function: tree gimple_call_chain (gimple g)

Return the static chain for call statement G.

— GIMPLE function: void gimple_call_set_chain (gimple g, tree chain)

Set CHAIN to be the static chain for call statement G.

— GIMPLE function: gimple_call_num_args (gimple g)

Return the number of arguments used by call statement G.

— GIMPLE function: tree gimple_call_arg (gimple g, unsigned index)

Return the argument at position INDEX for call statement G. The first argument is 0.

— GIMPLE function: tree *gimple_call_arg_ptr (gimple g, unsigned index)

Return a pointer to the argument at position INDEX for call statement G.

— GIMPLE function: void gimple_call_set_arg (gimple g, unsigned index, tree arg)

Set ARG to be the argument at position INDEX for call statement G.

— GIMPLE function: void gimple_call_set_tail (gimple s)

Mark call statement S as being a tail call (i.e., a call just before the exit of a function). These calls are candidate for tail call optimization.

— GIMPLE function: bool gimple_call_tail_p (gimple s)

Return true if GIMPLE_CALL S is marked as a tail call.

— GIMPLE function: void gimple_call_mark_uninlinable (gimple s)

Mark GIMPLE_CALL S as being uninlinable.

— GIMPLE function: bool gimple_call_cannot_inline_p (gimple s)

Return true if GIMPLE_CALL S cannot be inlined.

— GIMPLE function: bool gimple_call_noreturn_p (gimple s)

Return true if S is a noreturn call.

— GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)

Build a GIMPLE_CALL identical to STMT but skipping the arguments in the positions marked by the set ARGS_TO_SKIP.


Next: , Previous: <code>GIMPLE_CALL</code>, Up: Tuple specific accessors

12.7.5 GIMPLE_CATCH

— GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq handler)

Build a GIMPLE_CATCH statement. TYPES are the tree types this catch handles. HANDLER is a sequence of statements with the code for the handler.

— GIMPLE function: tree gimple_catch_types (gimple g)

Return the types handled by GIMPLE_CATCH statement G.

— GIMPLE function: tree *gimple_catch_types_ptr (gimple g)

Return a pointer to the types handled by GIMPLE_CATCH statement G.

— GIMPLE function: gimple_seq gimple_catch_handler (gimple g)

Return the GIMPLE sequence representing the body of the handler of GIMPLE_CATCH statement G.

— GIMPLE function: void gimple_catch_set_types (gimple g, tree t)

Set T to be the set of types handled by GIMPLE_CATCH G.

— GIMPLE function: void gimple_catch_set_handler (gimple g, gimple_seq handler)

Set HANDLER to be the body of GIMPLE_CATCH G.


Next: , Previous: <code>GIMPLE_CATCH</code>, Up: Tuple specific accessors

12.7.6 GIMPLE_CHANGE_DYNAMIC_TYPE

— GIMPLE function: gimple gimple_build_cdt (tree type, tree ptr)

Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type for the location PTR.

— GIMPLE function: tree gimple_cdt_new_type (gimple g)

Return the new type set by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

— GIMPLE function: tree *gimple_cdt_new_type_ptr (gimple g)

Return a pointer to the new type set by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

— GIMPLE function: void gimple_cdt_set_new_type (gimple g, tree new_type)

Set NEW_TYPE to be the type returned by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

— GIMPLE function: tree gimple_cdt_location (gimple g)

Return the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

— GIMPLE function: tree *gimple_cdt_location_ptr (gimple g)

Return a pointer to the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.

— GIMPLE function: void gimple_cdt_set_location (gimple g, tree ptr)

Set PTR to be the location affected by GIMPLE_CHANGE_DYNAMIC_TYPE statement G.


Next: , Previous: <code>GIMPLE_CHANGE_DYNAMIC_TYPE</code>, Up: Tuple specific accessors

12.7.7 GIMPLE_COND

— GIMPLE function: gimple gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, tree t_label, tree f_label)

Build a GIMPLE_COND statement. A GIMPLE_COND statement compares LHS and RHS and if the condition in PRED_CODE is true, jump to the label in t_label, otherwise jump to the label in f_label. PRED_CODE are relational operator tree codes like EQ_EXPR, LT_EXPR, LE_EXPR, NE_EXPR, etc.

— GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)

Build a GIMPLE_COND statement from the conditional expression tree COND. T_LABEL and F_LABEL are as in gimple_build_cond.

— GIMPLE function: enum tree_code gimple_cond_code (gimple g)

Return the code of the predicate computed by conditional statement G.

— GIMPLE function: void gimple_cond_set_code (gimple g, enum tree_code code)

Set CODE to be the predicate code for the conditional statement G.

— GIMPLE function: tree gimple_cond_lhs (gimple g)

Return the LHS of the predicate computed by conditional statement G.

— GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs)

Set LHS to be the LHS operand of the predicate computed by conditional statement G.

— GIMPLE function: tree gimple_cond_rhs (gimple g)

Return the RHS operand of the predicate computed by conditional G.

— GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs)

Set RHS to be the RHS operand of the predicate computed by conditional statement G.

— GIMPLE function: tree gimple_cond_true_label (gimple g)

Return the label used by conditional statement G when its predicate evaluates to true.

— GIMPLE function: void gimple_cond_set_true_label (gimple g, tree label)

Set LABEL to be the label used by conditional statement G when its predicate evaluates to true.

— GIMPLE function: void gimple_cond_set_false_label (gimple g, tree label)

Set LABEL to be the label used by conditional statement G when its predicate evaluates to false.

— GIMPLE function: tree gimple_cond_false_label (gimple g)

Return the label used by conditional statement G when its predicate evaluates to false.

— GIMPLE function: void gimple_cond_make_false (gimple g)

Set the conditional COND_STMT to be of the form 'if (1 == 0)'.

— GIMPLE function: void gimple_cond_make_true (gimple g)

Set the conditional COND_STMT to be of the form 'if (1 == 1)'.


Next: , Previous: <code>GIMPLE_COND</code>, Up: Tuple specific accessors

12.7.8 GIMPLE_EH_FILTER

— GIMPLE function: gimple gimple_build_eh_filter (tree types, gimple_seq failure)

Build a GIMPLE_EH_FILTER statement. TYPES are the filter's types. FAILURE is a sequence with the filter's failure action.

— GIMPLE function: tree gimple_eh_filter_types (gimple g)

Return the types handled by GIMPLE_EH_FILTER statement G.

— GIMPLE function: tree *gimple_eh_filter_types_ptr (gimple g)

Return a pointer to the types handled by GIMPLE_EH_FILTER statement G.

— GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g)

Return the sequence of statement to execute when GIMPLE_EH_FILTER statement fails.

— GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree types)

Set TYPES to be the set of types handled by GIMPLE_EH_FILTER G.

— GIMPLE function: void gimple_eh_filter_set_failure (gimple g, gimple_seq failure)

Set FAILURE to be the sequence of statements to execute on failure for GIMPLE_EH_FILTER G.

— GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g)

Return the EH_FILTER_MUST_NOT_THROW flag.

— GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple g, bool mntp)

Set the EH_FILTER_MUST_NOT_THROW flag.


Next: , Previous: <code>GIMPLE_EH_FILTER</code>, Up: Tuple specific accessors

12.7.9 GIMPLE_LABEL

— GIMPLE function: gimple gimple_build_label (tree label)

Build a GIMPLE_LABEL statement with corresponding to the tree label, LABEL.

— GIMPLE function: tree gimple_label_label (gimple g)

Return the LABEL_DECL node used by GIMPLE_LABEL statement G.

— GIMPLE function: void gimple_label_set_label (gimple g, tree label)

Set LABEL to be the LABEL_DECL node used by GIMPLE_LABEL statement G.

— GIMPLE function: gimple gimple_build_goto (tree dest)

Build a GIMPLE_GOTO statement to label DEST.

— GIMPLE function: tree gimple_goto_dest (gimple g)

Return the destination of the unconditional jump G.

— GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest)

Set DEST to be the destination of the unconditional jump G.


Next: , Previous: <code>GIMPLE_LABEL</code>, Up: Tuple specific accessors

12.7.10 GIMPLE_NOP

— GIMPLE function: gimple gimple_build_nop (void)

Build a GIMPLE_NOP statement.

— GIMPLE function: bool gimple_nop_p (gimple g)

Returns TRUE if statement G is a GIMPLE_NOP.


Next: , Previous: <code>GIMPLE_NOP</code>, Up: Tuple specific accessors

12.7.11 GIMPLE_OMP_ATOMIC_LOAD

— GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, tree rhs)

Build a GIMPLE_OMP_ATOMIC_LOAD statement. LHS is the left-hand side of the assignment. RHS is the right-hand side of the assignment.

— GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, tree lhs)

Set the LHS of an atomic load.

— GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g)

Get the LHS of an atomic load.

— GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, tree rhs)

Set the RHS of an atomic set.

— GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g)

Get the RHS of an atomic set.


Next: , Previous: <code>GIMPLE_OMP_ATOMIC_LOAD</code>, Up: Tuple specific accessors

12.7.12 GIMPLE_OMP_ATOMIC_STORE

— GIMPLE function: gimple gimple_build_omp_atomic_store (tree val)

Build a GIMPLE_OMP_ATOMIC_STORE statement. VAL is the value to be stored.

— GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g, tree val)

Set the value being stored in an atomic store.

— GIMPLE function: tree gimple_omp_atomic_store_val (gimple g)

Return the value being stored in an atomic store.


Next: , Previous: <code>GIMPLE_OMP_ATOMIC_STORE</code>, Up: Tuple specific accessors

12.7.13 GIMPLE_OMP_CONTINUE

— GIMPLE function: gimple gimple_build_omp_continue (tree control_def, tree control_use)

Build a GIMPLE_OMP_CONTINUE statement. CONTROL_DEF is the definition of the control variable. CONTROL_USE is the use of the control variable.

— GIMPLE function: tree gimple_omp_continue_control_def (gimple s)

Return the definition of the control variable on a GIMPLE_OMP_CONTINUE in S.

— GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s)

Same as above, but return the pointer.

— GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s)

Set the control variable definition for a GIMPLE_OMP_CONTINUE statement in S.

— GIMPLE function: tree gimple_omp_continue_control_use (gimple s)

Return the use of the control variable on a GIMPLE_OMP_CONTINUE in S.

— GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s)

Same as above, but return the pointer.

— GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s)

Set the control variable use for a GIMPLE_OMP_CONTINUE statement in S.


Next: , Previous: <code>GIMPLE_OMP_CONTINUE</code>, Up: Tuple specific accessors

12.7.14 GIMPLE_OMP_CRITICAL

— GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body, tree name)

Build a GIMPLE_OMP_CRITICAL statement. BODY is the sequence of statements for which only one thread can execute. NAME is an optional identifier for this critical block.

— GIMPLE function: tree gimple_omp_critical_name (gimple g)

Return the name associated with OMP_CRITICAL statement G.

— GIMPLE function: tree *gimple_omp_critical_name_ptr (gimple g)

Return a pointer to the name associated with OMP critical statement G.

— GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree name)

Set NAME to be the name associated with OMP critical statement G.


Next: , Previous: <code>GIMPLE_OMP_CRITICAL</code>, Up: Tuple specific accessors

12.7.15 GIMPLE_OMP_FOR

— GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond)

Build a GIMPLE_OMP_FOR statement. BODY is sequence of statements inside the for loop. CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate, lastprivate, reductions, ordered, schedule, and nowait. PRE_BODY is the sequence of statements that are loop invariant. INDEX is the index variable. INITIAL is the initial value of INDEX. FINAL is final value of INDEX. OMP_FOR_COND is the predicate used to compare INDEX and FINAL. INCR is the increment expression.

— GIMPLE function: tree gimple_omp_for_clauses (gimple g)

Return the clauses associated with OMP_FOR G.

— GIMPLE function: tree *gimple_omp_for_clauses_ptr (gimple g)

Return a pointer to the OMP_FOR G.

— GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree clauses)

Set CLAUSES to be the list of clauses associated with OMP_FOR G.

— GIMPLE function: tree gimple_omp_for_index (gimple g)

Return the index variable for OMP_FOR G.

— GIMPLE function: tree *gimple_omp_for_index_ptr (gimple g)

Return a pointer to the index variable for OMP_FOR G.

— GIMPLE function: void gimple_omp_for_set_index (gimple g, tree index)

Set INDEX to be the index variable for OMP_FOR G.

— GIMPLE function: tree gimple_omp_for_initial (gimple g)

Return the initial value for OMP_FOR G.

— GIMPLE function: tree *gimple_omp_for_initial_ptr (gimple g)

Return a pointer to the initial value for OMP_FOR G.

— GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree initial)

Set INITIAL to be the initial value for OMP_FOR G.

— GIMPLE function: tree gimple_omp_for_final (gimple g)

Return the final value for OMP_FOR G.

— GIMPLE function: tree *gimple_omp_for_final_ptr (gimple g)

turn a pointer to the final value for OMP_FOR G.

— GIMPLE function: void gimple_omp_for_set_final (gimple g, tree final)

Set FINAL to be the final value for OMP_FOR G.

— GIMPLE function: tree gimple_omp_for_incr (gimple g)

Return the increment value for OMP_FOR G.

— GIMPLE function: tree *gimple_omp_for_incr_ptr (gimple g)

Return a pointer to the increment value for OMP_FOR G.

— GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr)

Set INCR to be the increment value for OMP_FOR G.

— GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g)

Return the sequence of statements to execute before the OMP_FOR statement G starts.

— GIMPLE function: void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body)

Set PRE_BODY to be the sequence of statements to execute before the OMP_FOR statement G starts.

— GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum tree_code cond)

Set COND to be the condition code for OMP_FOR G.

— GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g)

Return the condition code associated with OMP_FOR G.


Next: , Previous: <code>GIMPLE_OMP_FOR</code>, Up: Tuple specific accessors

12.7.16 GIMPLE_OMP_MASTER

— GIMPLE function: gimple gimple_build_omp_master (gimple_seq body)

Build a GIMPLE_OMP_MASTER statement. BODY is the sequence of statements to be executed by just the master.


Next: , Previous: <code>GIMPLE_OMP_MASTER</code>, Up: Tuple specific accessors

12.7.17 GIMPLE_OMP_ORDERED

— GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body)

Build a GIMPLE_OMP_ORDERED statement.

BODY is the sequence of statements inside a loop that will executed in sequence.


Next: , Previous: <code>GIMPLE_OMP_ORDERED</code>, Up: Tuple specific accessors

12.7.18 GIMPLE_OMP_PARALLEL

— GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg)

Build a GIMPLE_OMP_PARALLEL statement.

BODY is sequence of statements which are executed in parallel. CLAUSES, are the OMP parallel construct's clauses. CHILD_FN is the function created for the parallel threads to execute. DATA_ARG are the shared data argument(s).

— GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g)

Return true if OMP parallel statement G has the GF_OMP_PARALLEL_COMBINED flag set.

— GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g)

Set the GF_OMP_PARALLEL_COMBINED field in OMP parallel statement G.

— GIMPLE function: gimple_seq gimple_omp_body (gimple g)

Return the body for the OMP statement G.

— GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq body)

Set BODY to be the body for the OMP statement G.

— GIMPLE function: tree gimple_omp_parallel_clauses (gimple g)

Return the clauses associated with OMP_PARALLEL G.

— GIMPLE function: tree *gimple_omp_parallel_clauses_ptr (gimple g)

Return a pointer to the clauses associated with OMP_PARALLEL G.

— GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g, tree clauses)

Set CLAUSES to be the list of clauses associated with OMP_PARALLEL G.

— GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g)

Return the child function used to hold the body of OMP_PARALLEL G.

— GIMPLE function: tree *gimple_omp_parallel_child_fn_ptr (gimple g)

Return a pointer to the child function used to hold the body of OMP_PARALLEL G.

— GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn)

Set CHILD_FN to be the child function for OMP_PARALLEL G.

— GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g)

Return the artificial argument used to send variables and values from the parent to the children threads in OMP_PARALLEL G.

— GIMPLE function: tree *gimple_omp_parallel_data_arg_ptr (gimple g)

Return a pointer to the data argument for OMP_PARALLEL G.

— GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg)

Set DATA_ARG to be the data argument for OMP_PARALLEL G.

— GIMPLE function: bool is_gimple_omp (gimple stmt)

Returns true when the gimple statement STMT is any of the OpenMP types.


Next: , Previous: <code>GIMPLE_OMP_PARALLEL</code>, Up: Tuple specific accessors

12.7.19 GIMPLE_OMP_RETURN

— GIMPLE function: gimple gimple_build_omp_return (bool wait_p)

Build a GIMPLE_OMP_RETURN statement. WAIT_P is true if this is a non-waiting return.

— GIMPLE function: void gimple_omp_return_set_nowait (gimple s)

Set the nowait flag on GIMPLE_OMP_RETURN statement S.

— GIMPLE function: bool gimple_omp_return_nowait_p (gimple g)

Return true if OMP return statement G has the GF_OMP_RETURN_NOWAIT flag set.


Next: , Previous: <code>GIMPLE_OMP_RETURN</code>, Up: Tuple specific accessors

12.7.20 GIMPLE_OMP_SECTION

— GIMPLE function: gimple gimple_build_omp_section (gimple_seq body)

Build a GIMPLE_OMP_SECTION statement for a sections statement.

BODY is the sequence of statements in the section.

— GIMPLE function: bool gimple_omp_section_last_p (gimple g)

Return true if OMP section statement G has the GF_OMP_SECTION_LAST flag set.

— GIMPLE function: void gimple_omp_section_set_last (gimple g)

Set the GF_OMP_SECTION_LAST flag on G.


Next: , Previous: <code>GIMPLE_OMP_SECTION</code>, Up: Tuple specific accessors

12.7.21 GIMPLE_OMP_SECTIONS

— GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body, tree clauses)

Build a GIMPLE_OMP_SECTIONS statement. BODY is a sequence of section statements. CLAUSES are any of the OMP sections construct's clauses: private, firstprivate, lastprivate, reduction, and nowait.

— GIMPLE function: gimple gimple_build_omp_sections_switch (void)

Build a GIMPLE_OMP_SECTIONS_SWITCH statement.

— GIMPLE function: tree gimple_omp_sections_control (gimple g)

Return the control variable associated with the GIMPLE_OMP_SECTIONS in G.

— GIMPLE function: tree *gimple_omp_sections_control_ptr (gimple g)

Return a pointer to the clauses associated with the GIMPLE_OMP_SECTIONS in G.

— GIMPLE function: void gimple_omp_sections_set_control (gimple g, tree control)

Set CONTROL to be the set of clauses associated with the GIMPLE_OMP_SECTIONS in G.

— GIMPLE function: tree gimple_omp_sections_clauses (gimple g)

Return the clauses associated with OMP_SECTIONS G.

— GIMPLE function: tree *gimple_omp_sections_clauses_ptr (gimple g)

Return a pointer to the clauses associated with OMP_SECTIONS G.

— GIMPLE function: void gimple_omp_sections_set_clauses (gimple g, tree clauses)

Set CLAUSES to be the set of clauses associated with OMP_SECTIONS G.


Next: , Previous: <code>GIMPLE_OMP_SECTIONS</code>, Up: Tuple specific accessors

12.7.22 GIMPLE_OMP_SINGLE

— GIMPLE function: gimple gimple_build_omp_single (gimple_seq body, tree clauses)

Build a GIMPLE_OMP_SINGLE statement. BODY is the sequence of statements that will be executed once. CLAUSES are any of the OMP single construct's clauses: private, firstprivate, copyprivate, nowait.

— GIMPLE function: tree gimple_omp_single_clauses (gimple g)

Return the clauses associated with OMP_SINGLE G.

— GIMPLE function: tree *gimple_omp_single_clauses_ptr (gimple g)

Return a pointer to the clauses associated with OMP_SINGLE G.

— GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree clauses)

Set CLAUSES to be the clauses associated with OMP_SINGLE G.


Next: , Previous: <code>GIMPLE_OMP_SINGLE</code>, Up: Tuple specific accessors

12.7.23 GIMPLE_PHI

— GIMPLE function: gimple make_phi_node (tree var, int len)

Build a PHI node with len argument slots for variable var.

— GIMPLE function: unsigned gimple_phi_capacity (gimple g)

Return the maximum number of arguments supported by GIMPLE_PHI G.

— GIMPLE function: unsigned gimple_phi_num_args (gimple g)

Return the number of arguments in GIMPLE_PHI G. This must always be exactly the number of incoming edges for the basic block holding G.

— GIMPLE function: tree gimple_phi_result (gimple g)

Return the SSA name created by GIMPLE_PHI G.

— GIMPLE function: tree *gimple_phi_result_ptr (gimple g)

Return a pointer to the SSA name created by GIMPLE_PHI G.

— GIMPLE function: void gimple_phi_set_result (gimple g, tree result)

Set RESULT to be the SSA name created by GIMPLE_PHI G.

— GIMPLE function: struct phi_arg_d *gimple_phi_arg (gimple g, index)

Return the PHI argument corresponding to incoming edge INDEX for GIMPLE_PHI G.

— GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg)

Set PHIARG to be the argument corresponding to incoming edge INDEX for GIMPLE_PHI G.


Next: , Previous: <code>GIMPLE_PHI</code>, Up: Tuple specific accessors

12.7.24 GIMPLE_RESX

— GIMPLE function: gimple gimple_build_resx (int region)

Build a GIMPLE_RESX statement which is a statement. This statement is a placeholder for _Unwind_Resume before we know if a function call or a branch is needed. REGION is the exception region from which control is flowing.

— GIMPLE function: int gimple_resx_region (gimple g)

Return the region number for GIMPLE_RESX G.

— GIMPLE function: void gimple_resx_set_region (gimple g, int region)

Set REGION to be the region number for GIMPLE_RESX G.


Next: , Previous: <code>GIMPLE_RESX</code>, Up: Tuple specific accessors

12.7.25 GIMPLE_RETURN

— GIMPLE function: gimple gimple_build_return (tree retval)

Build a GIMPLE_RETURN statement whose return value is retval.

— GIMPLE function: tree gimple_return_retval (gimple g)

Return the return value for GIMPLE_RETURN G.

— GIMPLE function: void gimple_return_set_retval (gimple g, tree retval)

Set RETVAL to be the return value for GIMPLE_RETURN G.


Next: , Previous: <code>GIMPLE_RETURN</code>, Up: Tuple specific accessors

12.7.26 GIMPLE_SWITCH

— GIMPLE function: gimple gimple_build_switch ( nlabels, tree index, tree default_label, ...)

Build a GIMPLE_SWITCH statement. NLABELS are the number of labels excluding the default label. The default label is passed in DEFAULT_LABEL. The rest of the arguments are trees representing the labels. Each label is a tree of code CASE_LABEL_EXPR.

— GIMPLE function: gimple gimple_build_switch_vec (tree index, tree default_label, VEC(tree,heap) *args)

This function is an alternate way of building GIMPLE_SWITCH statements. INDEX and DEFAULT_LABEL are as in gimple_build_switch. ARGS is a vector of CASE_LABEL_EXPR trees that contain the labels.

— GIMPLE function: unsigned gimple_switch_num_labels (gimple g)

Return the number of labels associated with the switch statement G.

— GIMPLE function: void gimple_switch_set_num_labels (gimple g, unsigned nlabels)

Set NLABELS to be the number of labels for the switch statement G.

— GIMPLE function: tree gimple_switch_index (gimple g)

Return the index variable used by the switch statement G.

— GIMPLE function: void gimple_switch_set_index (gimple g, tree index)

Set INDEX to be the index variable for switch statement G.

— GIMPLE function: tree gimple_switch_label (gimple g, unsigned index)

Return the label numbered INDEX. The default label is 0, followed by any labels in a switch statement.

— GIMPLE function: void gimple_switch_set_label (gimple g, unsigned index, tree label)

Set the label number INDEX to LABEL. 0 is always the default label.

— GIMPLE function: tree gimple_switch_default_label (gimple g)

Return the default label for a switch statement.

— GIMPLE function: void gimple_switch_set_default_label (gimple g, tree label)

Set the default label for a switch statement.


Next: , Previous: <code>GIMPLE_SWITCH</code>, Up: Tuple specific accessors

12.7.27 GIMPLE_TRY

— GIMPLE function: gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind)

Build a GIMPLE_TRY statement. EVAL is a sequence with the expression to evaluate. CLEANUP is a sequence of statements to run at clean-up time. KIND is the enumeration value GIMPLE_TRY_CATCH if this statement denotes a try/catch construct or GIMPLE_TRY_FINALLY if this statement denotes a try/finally construct.

— GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g)

Return the kind of try block represented by GIMPLE_TRY G. This is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY.

— GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g)

Return the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

— GIMPLE function: gimple_seq gimple_try_eval (gimple g)

Return the sequence of statements used as the body for GIMPLE_TRY G.

— GIMPLE function: gimple_seq gimple_try_cleanup (gimple g)

Return the sequence of statements used as the cleanup body for GIMPLE_TRY G.

— GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)

Set the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

— GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq eval)

Set EVAL to be the sequence of statements to use as the body for GIMPLE_TRY G.

— GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq cleanup)

Set CLEANUP to be the sequence of statements to use as the cleanup body for GIMPLE_TRY G.


Previous: <code>GIMPLE_TRY</code>, Up: Tuple specific accessors

12.7.28 GIMPLE_WITH_CLEANUP_EXPR

— GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup)

Build a GIMPLE_WITH_CLEANUP_EXPR statement. CLEANUP is the clean-up expression.

— GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g)

Return the cleanup sequence for cleanup statement G.

— GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)

Set CLEANUP to be the cleanup sequence for G.

— GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g)

Return the CLEANUP_EH_ONLY flag for a WCE tuple.

— GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, bool eh_only_p)

Set the CLEANUP_EH_ONLY flag for a WCE tuple.


Next: , Previous: Tuple specific accessors, Up: GIMPLE

12.8 GIMPLE sequences

GIMPLE sequences are the tuple equivalent of STATEMENT_LIST's used in GENERIC. They are used to chain statements together, and when used in conjunction with sequence iterators, provide a framework for iterating through statements.

GIMPLE sequences are of type struct gimple_sequence, but are more commonly passed by reference to functions dealing with sequences. The type for a sequence pointer is gimple_seq which is the same as struct gimple_sequence *. When declaring a local sequence, you can define a local variable of type struct gimple_sequence. When declaring a sequence allocated on the garbage collected heap, use the function gimple_seq_alloc documented below.

There are convenience functions for iterating through sequences in the section entitled Sequence Iterators.

Below is a list of functions to manipulate and query sequences.

— GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple g)

Link a gimple statement to the end of the sequence *SEQ if G is not NULL. If *SEQ is NULL, allocate a sequence before linking.

— GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src)

Append sequence SRC to the end of sequence *DEST if SRC is not NULL. If *DEST is NULL, allocate a new sequence before appending.

— GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src)

Perform a deep copy of sequence SRC and return the result.

— GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq)

Reverse the order of the statements in the sequence SEQ. Return SEQ.

— GIMPLE function: gimple gimple_seq_first (gimple_seq s)

Return the first statement in sequence S.

— GIMPLE function: gimple gimple_seq_last (gimple_seq s)

Return the last statement in sequence S.

— GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple last)

Set the last statement in sequence S to the statement in LAST.

— GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple first)

Set the first statement in sequence S to the statement in FIRST.

— GIMPLE function: void gimple_seq_init (gimple_seq s)

Initialize sequence S to an empty sequence.

— GIMPLE function: gimple_seq gimple_seq_alloc (void)

Allocate a new sequence in the garbage collected store and return it.

— GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq src)

Copy the sequence SRC into the sequence DEST.

— GIMPLE function: bool gimple_seq_empty_p (gimple_seq s)

Return true if the sequence S is empty.

— GIMPLE function: gimple_seq bb_seq (basic_block bb)

Returns the sequence of statements in BB.

— GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq)

Sets the sequence of statements in BB to SEQ.

— GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq)

Determine whether SEQ contains exactly one statement.


Next: , Previous: GIMPLE sequences, Up: GIMPLE

12.9 Sequence iterators

Sequence iterators are convenience constructs for iterating through statements in a sequence. Given a sequence SEQ, here is a typical use of gimple sequence iterators:

     gimple_stmt_iterator gsi;
     
     for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
       {
         gimple g = gsi_stmt (gsi);
         /* Do something with gimple statement G.  */
       }

Backward iterations are possible:

             for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))

Forward and backward iterations on basic blocks are possible with gsi_start_bb and gsi_last_bb.

In the documentation below we sometimes refer to enum gsi_iterator_update. The valid options for this enumeration are:

Below is a list of the functions used to manipulate and use statement iterators.

— GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq)

Return a new iterator pointing to the sequence SEQ's first statement. If SEQ is empty, the iterator's basic block is NULL. Use gsi_start_bb instead when the iterator needs to always have the correct basic block set.

— GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb)

Return a new iterator pointing to the first statement in basic block BB.

— GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq)

Return a new iterator initially pointing to the last statement of sequence SEQ. If SEQ is empty, the iterator's basic block is NULL. Use gsi_last_bb instead when the iterator needs to always have the correct basic block set.

— GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb)

Return a new iterator pointing to the last statement in basic block BB.

— GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i)

Return TRUE if at the end of I.

— GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i)

Return TRUE if we're one statement before the end of I.

— GIMPLE function: void gsi_next (gimple_stmt_iterator *i)

Advance the iterator to the next gimple statement.

— GIMPLE function: void gsi_prev (gimple_stmt_iterator *i)

Advance the iterator to the previous gimple statement.

— GIMPLE function: gimple gsi_stmt (gimple_stmt_iterator i)

Return the current stmt.

— GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block bb)

Return a block statement iterator that points to the first non-label statement in block BB.

— GIMPLE function: gimple *gsi_stmt_ptr (gimple_stmt_iterator *i)

Return a pointer to the current stmt.

— GIMPLE function: basic_block gsi_bb (gimple_stmt_iterator i)

Return the basic block associated with this iterator.

— GIMPLE function: gimple_seq gsi_seq (gimple_stmt_iterator i)

Return the sequence associated with this iterator.

— GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)

Remove the current stmt from the sequence. The iterator is updated to point to the next statement. When REMOVE_EH_INFO is true we remove the statement pointed to by iterator I from the EH tables. Otherwise we do not modify the EH tables. Generally, REMOVE_EH_INFO should be true when the statement is going to be removed from the IL and not reinserted elsewhere.

— GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)

Links the sequence of statements SEQ before the statement pointed by iterator I. MODE indicates what to do with the iterator after insertion (see enum gsi_iterator_update above).

— GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)

Links statement G before the statement pointed-to by iterator I. Updates iterator I according to MODE.

— GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)

Links sequence SEQ after the statement pointed-to by iterator I. MODE is as in gsi_insert_after.

— GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode)

Links statement G after the statement pointed-to by iterator I. MODE is as in gsi_insert_after.

— GIMPLE function: gimple_seq gsi_split_seq_after (gimple_stmt_iterator i)

Move all statements in the sequence after I to a new sequence. Return this new sequence.

— GIMPLE function: gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i)

Move all statements in the sequence before I to a new sequence. Return this new sequence.

— GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info)

Replace the statement pointed-to by I to STMT. If UPDATE_EH_INFO is true, the exception handling information of the original statement is moved to the new statement.

— GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)

Insert statement STMT before the statement pointed-to by iterator I, update STMT's basic block and scan it for new operands. MODE specifies how to update iterator I after insertion (see enum gsi_iterator_update).

— GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)

Like gsi_insert_before, but for all the statements in SEQ.

— GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode)

Insert statement STMT after the statement pointed-to by iterator I, update STMT's basic block and scan it for new operands. MODE specifies how to update iterator I after insertion (see enum gsi_iterator_update).

— GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode)

Like gsi_insert_after, but for all the statements in SEQ.

— GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt)

Finds iterator for STMT.

— GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)

Move the statement at FROM so it comes right after the statement at TO.

— GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)

Move the statement at FROM so it comes right before the statement at TO.

— GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)

Move the statement at FROM to the end of basic block BB.

— GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt)

Add STMT to the pending list of edge E. No actual insertion is made until a call to gsi_commit_edge_inserts() is made.

— GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq seq)

Add the sequence of statements in SEQ to the pending list of edge E. No actual insertion is made until a call to gsi_commit_edge_inserts() is made.

— GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt)

Similar to gsi_insert_on_edge+gsi_commit_edge_inserts. If a new block has to be created, it is returned.

— GIMPLE function: void gsi_commit_one_edge_insert (edge e, basic_block *new_bb)

Commit insertions pending at edge E. If a new block is created, set NEW_BB to this block, otherwise set it to NULL.

— GIMPLE function: void gsi_commit_edge_inserts (void)

This routine will commit all pending edge insertions, creating any new basic blocks which are necessary.


Next: , Previous: Sequence iterators, Up: GIMPLE

12.10 Adding a new GIMPLE statement code

The first step in adding a new GIMPLE statement code, is modifying the file gimple.def, which contains all the GIMPLE codes. Then you must add a corresponding structure, and an entry in union gimple_statement_d, both of which are located in gimple.h. This in turn, will require you to add a corresponding GTY tag in gsstruct.def, and code to handle this tag in gss_for_code which is located in gimple.c.

In order for the garbage collector to know the size of the structure you created in gimple.h, you need to add a case to handle your new GIMPLE statement in gimple_size which is located in gimple.c.

You will probably want to create a function to build the new gimple statement in gimple.c. The function should be called gimple_build_<NEW_TUPLE_NAME>, and should return the new tuple of type gimple.

If your new statement requires accessors for any members or operands it may have, put simple inline accessors in gimple.h and any non-trivial accessors in gimple.c with a corresponding prototype in gimple.h.


Previous: Adding a new GIMPLE statement code, Up: GIMPLE

12.11 Statement and operand traversals

There are two functions available for walking statements and sequences: walk_gimple_stmt and walk_gimple_seq, accordingly, and a third function for walking the operands in a statement: walk_gimple_op.

— GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)

This function is used to walk the current statement in GSI, optionally using traversal state stored in WI. If WI is NULL, no state is kept during the traversal.

The callback CALLBACK_STMT is called. If CALLBACK_STMT returns true, it means that the callback function has handled all the operands of the statement and it is not necessary to walk its operands.

If CALLBACK_STMT is NULL or it returns false, CALLBACK_OP is called on each operand of the statement via walk_gimple_op. If walk_gimple_op returns non-NULL for any operand, the remaining operands are not scanned.

The return value is that returned by the last call to walk_gimple_op, or NULL_TREE if no CALLBACK_OP is specified.

— GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)

Use this function to walk the operands of statement STMT. Every operand is walked via walk_tree with optional state information in WI.

CALLBACK_OP is called on each operand of STMT via walk_tree. Additional parameters to walk_tree must be stored in WI. For each operand OP, walk_tree is called as:

              walk_tree (&OP, CALLBACK_OP, WI, WI- PSET)

If CALLBACK_OP returns non-NULL for an operand, the remaining operands are not scanned. The return value is that returned by the last call to walk_tree, or NULL_TREE if no CALLBACK_OP is specified.

— GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)

This function walks all the statements in the sequence SEQ calling walk_gimple_stmt on each one. WI is as in walk_gimple_stmt. If walk_gimple_stmt returns non-NULL, the walk is stopped and the value returned. Otherwise, all the statements are walked and NULL_TREE returned.


Next: , Previous: GIMPLE, Up: Top

13 Analysis and Optimization of GIMPLE tuples

GCC uses three main intermediate languages to represent the program during compilation: GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation generated by each front end. It is used to serve as an interface between the parser and optimizer. GENERIC is a common representation that is able to represent programs written in all the languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and language independent optimizations (e.g., inlining, constant propagation, tail call elimination, redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent, tree based representation. However, it differs from GENERIC in that the GIMPLE grammar is more restrictive: expressions contain no more than 3 operands (except function calls), it has no control flow structures and expressions with side-effects are only allowed on the right hand side of assignments. See the chapter describing GENERIC and GIMPLE for more details.

This chapter describes the data structures and functions used in the GIMPLE optimizers (also known as “tree optimizers” or “middle end”). In particular, it focuses on all the macros, data structures, functions and programming constructs needed to implement optimization passes for GIMPLE.


Next: , Up: Tree SSA

13.1 Annotations

The optimizers need to associate attributes with variables during the optimization process. For instance, we need to know whether a variable has aliases. All these attributes are stored in data structures called annotations which are then linked to the field ann in struct tree_common.

Presently, we define annotations for variables (var_ann_t). Annotations are defined and documented in tree-flow.h.


Next: , Previous: Annotations, Up: Tree SSA

13.2 SSA Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location. Since statements come in different shapes and sizes, their operands are going to be located at various spots inside the statement's tree. To facilitate access to the statement's operands, they are organized into lists associated inside each statement's annotation. Each element in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This provides a very convenient way of examining and replacing operands.

Data flow analysis and optimization is done on all tree nodes representing variables. Any node for which SSA_VAR_P returns nonzero is considered when scanning statement operands. However, not all SSA_VAR_P variables are processed in the same way. For the purposes of optimization, we need to distinguish between references to local scalar variables and references to globals, statics, structures, arrays, aliased variables, etc. The reason is simple, the compiler can gather complete data flow information for a local scalar. On the other hand, a global variable may be modified by a function call, it may not be possible to keep track of all the elements of an array or the fields of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We also distinguish between uses and definitions. An operand is used if its value is loaded by the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a new value to the operand, the operand is considered a definition (e.g., the operand at the LHS of an assignment).

Virtual and real operands also have very different data flow properties. Real operands are unambiguous references to the full object that they represent. For instance, given

     {
       int a, b;
       a = b
     }

Since a and b are non-aliased locals, the statement a = b will have one real definition and one real use because variable b is completely modified with the contents of variable a. Real definition are also known as killing definitions. Similarly, the use of a reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous reference. This includes structures, arrays, globals, and aliased variables. In these cases, we have two types of definitions. For globals, structures, and arrays, we can determine from a statement whether a variable of these types has a killing definition. If the variable does, then the statement is marked as having a must definition of that variable. However, if a statement is only defining a part of the variable (i.e. a field in a structure), or if we know that a statement might define the variable but we cannot say for sure, then we mark that statement as having a may definition. For instance, given

     {
       int a, b, *p;
     
       if (...)
         p = &a;
       else
         p = &b;
       *p = 5;
       return *p;
     }

The assignment *p = 5 may be a definition of a or b. If we cannot determine statically where p is pointing to at the time of the store operation, we create virtual definitions to mark that statement as a potential definition site for a and b. Memory loads are similarly marked with virtual use operands. Virtual operands are shown in tree dumps right before the statement that contains them. To request a tree dump with virtual operands, use the -vops option to -fdump-tree:

     {
       int a, b, *p;
     
       if (...)
         p = &a;
       else
         p = &b;
       # a = VDEF <a>
       # b = VDEF <b>
       *p = 5;
     
       # VUSE <a>
       # VUSE <b>
       return *p;
     }

Notice that VDEF operands have two copies of the referenced variable. This indicates that this is not a killing definition of that variable. In this case we refer to it as a may definition or aliased store. The presence of the second copy of the variable in the VDEF operand will become important when the function is converted into SSA form. This will be used to link all the non-killing definitions to prevent optimizations from making incorrect assumptions about them.

Operands are updated as soon as the statement is finished via a call to update_stmt. If statement elements are changed via SET_USE or SET_DEF, then no further action is required (i.e., those macros take care of updating the statement). If changes are made by manipulating the statement's tree directly, then a call must be made to update_stmt when complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call to update_stmt.

13.2.1 Operand Iterators And Access Routines

Operands are collected by tree-ssa-operands.c. They are stored inside each statement's annotation and can be accessed through either the operand iterators or an access routine.

The following access routines are available for examining operands:

  1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless there is exactly one operand matching the specified flags. If there is exactly one operand, the operand is returned as either a tree, def_operand_p, or use_operand_p.
              tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
              use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
              def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);
    
  2. ZERO_SSA_OPERANDS: This macro returns true if there are no operands matching the specified flags.
              if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
                return;
    
  3. NUM_SSA_OPERANDS: This macro Returns the number of operands matching 'flags'. This actually executes a loop to perform the count, so only use this if it is really needed.
              int count = NUM_SSA_OPERANDS (stmt, flags)
    

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND iterator. For example, to print all the operands for a statement:

     void
     print_ops (tree stmt)
     {
       ssa_op_iter;
       tree var;
     
       FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
         print_generic_expr (stderr, var, TDF_SLIM);
     }

How to choose the appropriate iterator:

  1. Determine whether you are need to see the operand pointers, or just the trees, and choose the appropriate macro:
              Need            Macro:
              ----            -------
              use_operand_p   FOR_EACH_SSA_USE_OPERAND
              def_operand_p   FOR_EACH_SSA_DEF_OPERAND
              tree            FOR_EACH_SSA_TREE_OPERAND
    
  2. You need to declare a variable of the type you are interested in, and an ssa_op_iter structure which serves as the loop controlling variable.
  3. Determine which operands you wish to use, and specify the flags of those you are interested in. They are documented in tree-ssa-operands.h:
              #define SSA_OP_USE              0x01    /* Real USE operands.  */
              #define SSA_OP_DEF              0x02    /* Real DEF operands.  */
              #define SSA_OP_VUSE             0x04    /* VUSE operands.  */
              #define SSA_OP_VMAYUSE          0x08    /* USE portion of VDEFS.  */
              #define SSA_OP_VDEF             0x10    /* DEF portion of VDEFS.  */
              
              /* These are commonly grouped operand flags.  */
              #define SSA_OP_VIRTUAL_USES     (SSA_OP_VUSE | SSA_OP_VMAYUSE)
              #define SSA_OP_VIRTUAL_DEFS     (SSA_OP_VDEF)
              #define SSA_OP_ALL_USES         (SSA_OP_VIRTUAL_USES | SSA_OP_USE)
              #define SSA_OP_ALL_DEFS         (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)
              #define SSA_OP_ALL_OPERANDS     (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)
    

So if you want to look at the use pointers for all the USE and VUSE operands, you would do something like:

       use_operand_p use_p;
       ssa_op_iter iter;
     
       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
         {
           process_use_ptr (use_p);
         }

The TREE macro is basically the same as the USE and DEF macros, only with the use or def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren't using operand pointers, use and defs flags can be mixed.

       tree var;
       ssa_op_iter iter;
     
       FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
         {
            print_generic_expr (stderr, var, TDF_SLIM);
         }

VDEFs are broken into two flags, one for the DEF portion (SSA_OP_VDEF) and one for the USE portion (SSA_OP_VMAYUSE). If all you want to look at are the VDEFs together, there is a fourth iterator macro for this, which returns both a def_operand_p and a use_operand_p for each VDEF in the statement. Note that you don't need any flags for this one.

       use_operand_p use_p;
       def_operand_p def_p;
       ssa_op_iter iter;
     
       FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
         {
           my_code;
         }

There are many examples in the code as well, as well as the documentation in tree-ssa-operands.h.

There are also a couple of variants on the stmt iterators regarding PHI nodes.

FOR_EACH_PHI_ARG Works exactly like FOR_EACH_SSA_USE_OPERAND, except it works over PHI arguments instead of statement operands.

     /* Look at every virtual PHI use.  */
     FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
     {
        my_code;
     }
     
     /* Look at every real PHI use.  */
     FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
       my_code;
     
     /* Look at every PHI use.  */
     FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
       my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_OPERAND, except it will function on either a statement or a PHI node. These should be used when it is appropriate but they are not quite as efficient as the individual FOR_EACH_PHI and FOR_EACH_SSA routines.

     FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
       {
          my_code;
       }
     
     FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
       {
          my_code;
       }

13.2.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to ssa_var2 and call fold_stmt on each stmt after that is done:

       use_operand_p imm_use_p;
       imm_use_iterator iterator;
       tree ssa_var, stmt;
     
     
       FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
         {
           FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
             SET_USE (imm_use_p, ssa_var_2);
           fold_stmt (stmt);
         }

There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators. They attempt to preserve the sanity of the use list by moving all the uses for a statement into a controlled position, and then iterating over those uses. Then the optimization can manipulate the stmt when all the uses have been processed. This is a little slower than the FAST version since it adds a placeholder element and must sort through the list a bit for each statement. This placeholder element must be also be removed if the loop is terminated early. The macro BREAK_FROM_IMM_USE_SAFE is provided to do this :

       FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
         {
           if (stmt == last_stmt)
             BREAK_FROM_SAFE_IMM_USE (iter);
     
           FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
             SET_USE (imm_use_p, ssa_var_2);
           fold_stmt (stmt);
         }

There are checks in verify_ssa which verify that the immediate use list is up to date, as well as checking that an optimization didn't break from the loop without using this macro. It is safe to simply 'break'; from a FOR_EACH_IMM_USE_FAST traverse.

Some useful functions and macros:

  1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.
  2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.
  3. single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if there is only a single use of ssa_var, and also returns the use pointer and statement it occurs in, in the second and third parameters.
  4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is better not to use this if possible since it simply utilizes a loop to count the uses.
  5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index number for the use. An assert is triggered if the use isn't located in a PHI node.
  6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually inserted into the instruction stream via a bsi_* routine.

It is also still possible to utilize lazy updating of statements, but this should be used only when absolutely required. Both alias analysis and the dominator optimizations currently do this.

When lazy updating is being used, the immediate use information is out of date and cannot be used reliably. Lazy updating is achieved by simply marking statements modified via calls to mark_stmt_modified instead of update_stmt. When lazy updating is no longer required, all the modified statements must have update_stmt called in order to bring them up to date. This must be done before the optimization is finished, or verify_ssa will trigger an abort.

This is done with a simple loop over the instruction stream:

       block_stmt_iterator bsi;
       basic_block bb;
       FOR_EACH_BB (bb)
         {
           for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
             update_stmt_if_modified (bsi_stmt (bsi));
         }


Next: , Previous: SSA Operands, Up: Tree SSA

13.3 Static Single Assignment

Most of the tree optimizers rely on the data flow information provided by the Static Single Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently Computing Static Single Assignment Form and the Control Dependence Graph. ACM Transactions on Programming Languages and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one location in the program. Multiple assignments to the same variable create new versions of that variable. Naturally, actual programs are seldom in SSA form initially because variables tend to be assigned multiple times. The compiler modifies the program representation so that every time a variable is assigned in the code, a new version of the variable is created. Different versions of the same variable are distinguished by subscripting the variable name with its version number. Variables used in the right-hand side of expressions are renamed so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in tree-ssa.c wraps every real and virtual operand with an SSA_NAME node which contains the version number and the statement that created the SSA_NAME. Only definitions and virtual definitions may create new SSA_NAME nodes.

Sometimes, flow of control makes it impossible to determine the most recent version of a variable. In these cases, the compiler inserts an artificial definition for that variable called PHI function or PHI node. This new definition merges all the incoming versions of the variable to create a new name for it. For instance,

     if (...)
       a_1 = 5;
     else if (...)
       a_2 = 2;
     else
       a_3 = 13;
     
     # a_4 = PHI <a_1, a_2, a_3>
     return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime, we don't know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA renamer creates a new version a_4 which is assigned the result of “merging” a_1, a_2 and a_3. Hence, PHI nodes mean “one of these operands. I don't know which”.

The following macros can be used to examine PHI nodes

— Macro: PHI_RESULT (phi)

Returns the SSA_NAME created by PHI node phi (i.e., phi's LHS).

— Macro: PHI_NUM_ARGS (phi)

Returns the number of arguments in phi. This number is exactly the number of incoming edges to the basic block holding phi.

— Macro: PHI_ARG_ELT (phi, i)

Returns a tuple representing the ith argument of phi. Each element of this tuple contains an SSA_NAME var and the incoming edge through which var flows.

— Macro: PHI_ARG_EDGE (phi, i)

Returns the incoming edge for the ith argument of phi.

— Macro: PHI_ARG_DEF (phi, i)

Returns the SSA_NAME for the ith argument of phi.

13.3.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property. This can happen when a pass has added new symbols or changed the program so that variables that were previously aliased aren't anymore. Whenever something like this happens, the affected symbols must be renamed into SSA form again. Transformations that emit new code or replicate existing statements will also need to update the SSA form.

Since GCC implements two different SSA forms for register and virtual variables, keeping the SSA form up to date depends on whether you are updating register or virtual names. In both cases, the general idea behind incremental SSA updates is similar: when new SSA names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:

          1  L0:
          2  x_1 = PHI (0, x_5)
          3  if (x_1 < 10)
          4    if (x_1 > 7)
          5      y_2 = 0
          6    else
          7      y_3 = x_1 + x_7
          8    endif
          9    x_5 = x_1 + 1
          10   goto L0;
          11 endif

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).

          1  L0:
          2  x_1 = PHI (0, x_5)
          3  if (x_1 < 10)
          4    x_10 = ...
          5    if (x_1 > 7)
          6      y_2 = 0
          7    else
          8      x_11 = ...
          9      y_3 = x_1 + x_7
          10   endif
          11   x_5 = x_1 + 1
          12   goto L0;
          13 endif

We want to replace all the uses of x_1 with the new definitions of x_10 and x_11. Note that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node. The insertion of PHI nodes is optional. They are not strictly necessary to preserve the SSA form, and depending on what the caller inserted, they may not even be useful for the optimizers.

Updating the SSA form is a two step process. First, the pass has to identify which names need to be updated and/or which symbols need to be renamed into SSA form for the first time. When new names are introduced to replace existing names in the program, the mapping between the old and the new names are registered by calling register_new_name_mapping (note that if your pass creates new code by duplicating basic blocks, the call to tree_duplicate_bb will set up the necessary mappings automatically). On the other hand, if your pass exposes a new symbol that should be put in SSA form for the first time, the new symbol should be registered with mark_sym_for_renaming.

After the replacement mappings have been registered and new symbols marked for renaming, a call to update_ssa makes the registered changes. This can be done with an explicit call or by creating TODO flags in the tree_opt_pass structure for your pass. There are several TODO flags that control the behavior of update_ssa:

13.3.2 Preserving the virtual SSA form

The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because the set of virtual operands for a statement may change at what some would consider unexpected times. In general, statement modifications should be bracketed between calls to push_stmt_changes and pop_stmt_changes. For example,

         munge_stmt (tree stmt)
         {
            push_stmt_changes (&stmt);
            ... rewrite STMT ...
            pop_stmt_changes (&stmt);
         }

The call to push_stmt_changes saves the current state of the statement operands and the call to pop_stmt_changes compares the saved state with the current one and does the appropriate symbol marking for the SSA renamer.

It is possible to modify several statements at a time, provided that push_stmt_changes and pop_stmt_changes are called in LIFO order, as when processing a stack of statements.

Additionally, if the pass discovers that it did not need to make changes to the statement after calling push_stmt_changes, it can simply discard the topmost change buffer by calling discard_stmt_changes. This will avoid the expensive operand re-scan operation and the buffer comparison that determines if symbols need to be marked for renaming.

13.3.3 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

— Macro: SSA_NAME_DEF_STMT (var)

Returns the statement s that creates the SSA_NAME var. If s is an empty statement (i.e., IS_EMPTY_STMT (s) returns true), it means that the first reference to this variable is a USE or a VUSE.

— Macro: SSA_NAME_VERSION (var)

Returns the version number of the SSA_NAME object var.

13.3.4 Walking use-def chains

— Tree SSA function: void walk_use_def_chains (var, fn, data)

Walks use-def chains starting at the SSA_NAME node var. Calls function fn at each reaching definition found. Function FN takes three arguments: var, its defining statement (def_stmt) and a generic pointer to whatever state information that fn may want to maintain (data). Function fn is able to stop the walk by returning true, otherwise in order to continue the walk, fn should return false.

Note, that if def_stmt is a PHI node, the semantics are slightly different. For each argument arg of the PHI node, this function will:

  1. Walk the use-def chains for arg.
  2. Call FN (arg, phi, data).

Note how the first argument to fn is no longer the original variable var, but the PHI argument currently being examined. If fn wants to get at var, it should call PHI_RESULT (phi).

13.3.5 Walking the dominator tree

— Tree SSA function: void walk_dominator_tree (walk_data, bb)

This function walks the dominator tree for the current CFG calling a set of callback functions defined in struct dom_walk_data in domwalk.h. The call back functions you need to define give you hooks to execute custom code at various points during traversal:

  1. Once to initialize any local data needed while processing bb and its children. This local data is pushed into an internal stack which is automatically pushed and popped as the walker traverses the dominator tree.
  2. Once before traversing all the statements in the bb.
  3. Once for every statement inside bb.
  4. Once after traversing all the statements and before recursing into bb's dominator children.
  5. It then recurses into all the dominator children of bb.
  6. After recursing into all the dominator children of bb it can, optionally, traverse every statement in bb again (i.e., repeating steps 2 and 3).
  7. Once after walking the statements in bb and bb's dominator children. At this stage, the block local data stack is popped.


Previous: SSA, Up: Tree SSA

13.4 Alias analysis

Alias analysis proceeds in 4 main phases:

  1. Structural alias analysis.

    This phase walks the types for structure variables, and determines which of the fields can overlap using offset and size of each field. For each field, a “subvariable” called a “Structure field tag” (SFT) is created, which represents that field as a separate variable. All accesses that could possibly overlap with a given field will have virtual operands for the SFT of that field.

              struct foo
              {
                int a;
                int b;
              }
              struct foo temp;
              int bar (void)
              {
                int tmp1, tmp2, tmp3;
                SFT.0_2 = VDEF <SFT.0_1>
                temp.a = 5;
                SFT.1_4 = VDEF <SFT.1_3>
                temp.b = 6;
              
                VUSE <SFT.1_4>
                tmp1_5 = temp.b;
                VUSE <SFT.0_2>
                tmp2_6 = temp.a;
              
                tmp3_7 = tmp1_5 + tmp2_6;
                return tmp3_7;
              }
    

    If you copy the symbol tag for a variable for some reason, you probably also want to copy the subvariables for that variable.

  2. Points-to and escape analysis.

    This phase walks the use-def chains in the SSA web looking for three things:

    The concept of `escaping' is the same one used in the Java world. When a pointer or an ADDR_EXPR escapes, it means that it has been exposed outside of the current function. So, assignment to global variables, function arguments and returning a pointer are all escape sites.

    This is where we are currently limited. Since not everything is renamed into SSA, we lose track of escape properties when a pointer is stashed inside a field in a structure, for instance. In those cases, we are assuming that the pointer does escape.

    We use escape analysis to determine whether a variable is call-clobbered. Simply put, if an ADDR_EXPR escapes, then the variable is call-clobbered. If a pointer P_i escapes, then all the variables pointed-to by P_i (and its memory tag) also escape.

  3. Compute flow-sensitive aliases

    We have two classes of memory tags. Memory tags associated with the pointed-to data type of the pointers in the program. These tags are called “symbol memory tag” (SMT). The other class are those associated with SSA_NAMEs, called “name memory tag” (NMT). The basic idea is that when adding operands for an INDIRECT_REF *P_i, we will first check whether P_i has a name tag, if it does we use it, because that will have more precise aliasing information. Otherwise, we use the standard symbol tag.

    In this phase, we go through all the pointers we found in points-to analysis and create alias sets for the name memory tags associated with each pointer P_i. If P_i escapes, we mark call-clobbered the variables it points to and its tag.

  4. Compute flow-insensitive aliases

    This pass will compare the alias set of every symbol memory tag and every addressable variable found in the program. Given a symbol memory tag SMT and an addressable variable V. If the alias sets of SMT and V conflict (as computed by may_alias_p), then V is marked as an alias tag and added to the alias set of SMT.

    Every language that wishes to perform language-specific alias analysis should define a function that computes, given a tree node, an alias set for the node. Nodes in different alias sets are not allowed to alias. For an example, see the C front-end function c_get_alias_set.

For instance, consider the following function:

     foo (int i)
     {
       int *p, *q, a, b;
     
       if (i > 10)
         p = &a;
       else
         q = &b;
     
       *p = 3;
       *q = 5;
       a = b + 2;
       return *p;
     }

After aliasing analysis has finished, the symbol memory tag for pointer p will have two aliases, namely variables a and b. Every time pointer p is dereferenced, we want to mark the operation as a potential reference to a and b.

     foo (int i)
     {
       int *p, a, b;
     
       if (i_2 > 10)
         p_4 = &a;
       else
         p_6 = &b;
       # p_1 = PHI <p_4(1), p_6(2)>;
     
       # a_7 = VDEF <a_3>;
       # b_8 = VDEF <b_5>;
       *p_1 = 3;
     
       # a_9 = VDEF <a_7>
       # VUSE <b_8>
       a_9 = b_8 + 2;
     
       # VUSE <a_9>;
       # VUSE <b_8>;
       return *p_1;
     }

In certain cases, the list of may aliases for a pointer may grow too large. This may cause an explosion in the number of virtual operands inserted in the code. Resulting in increased memory consumption and compilation time.

When the number of virtual operands needed to represent aliased loads and stores grows too large (configurable with --param max-aliased-vops), alias sets are grouped to avoid severe compile-time slow downs and memory consumption. The alias grouping heuristic proceeds as follows:

  1. Sort the list of pointers in decreasing number of contributed virtual operands.
  2. Take the first pointer from the list and reverse the role of the memory tag and its aliases. Usually, whenever an aliased variable Vi is found to alias with a memory tag T, we add Vi to the may-aliases set for T. Meaning that after alias analysis, we will have:
              may-aliases(T) = { V1, V2, V3, ..., Vn }
    

    This means that every statement that references T, will get n virtual operands for each of the Vi tags. But, when alias grouping is enabled, we make T an alias tag and add it to the alias set of all the Vi variables:

              may-aliases(V1) = { T }
              may-aliases(V2) = { T }
              ...
              may-aliases(Vn) = { T }
    

    This has two effects: (a) statements referencing T will only get a single virtual operand, and, (b) all the variables Vi will now appear to alias each other. So, we lose alias precision to improve compile time. But, in theory, a program with such a high level of aliasing should not be very optimizable in the first place.

  3. Since variables may be in the alias set of more than one memory tag, the grouping done in step (2) needs to be extended to all the memory tags that have a non-empty intersection with the may-aliases set of tag T. For instance, if we originally had these may-aliases sets:
              may-aliases(T) = { V1, V2, V3 }
              may-aliases(R) = { V2, V4 }
    

    In step (2) we would have reverted the aliases for T as:

              may-aliases(V1) = { T }
              may-aliases(V2) = { T }
              may-aliases(V3) = { T }
    

    But note that now V2 is no longer aliased with R. We could add R to may-aliases(V2), but we are in the process of grouping aliases to reduce virtual operands so what we do is add V4 to the grouping to obtain:

              may-aliases(V1) = { T }
              may-aliases(V2) = { T }
              may-aliases(V3) = { T }
              may-aliases(V4) = { T }
    
  4. If the total number of virtual operands due to aliasing is still above the threshold set by max-alias-vops, go back to (2).


Next: , Previous: Control Flow, Up: Top

14 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected components of CFG with only one entry block. This chapter describes representation of loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related analyses (induction variable analysis and number of iterations analysis).


Next: , Up: Loop Analysis and Representation

14.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used to build, modify and analyze this representation. Most of the interfaces and data structures are declared in cfgloop.h. At the moment, loop structures are analyzed and this information is updated only by the optimization passes that deal with loops, but some efforts are being made to make it available throughout most of the optimization passes.

In general, a natural loop has one entry block (header) and possibly several back edges (latches) leading to the header from the inside of the loop. Loops with several latches may appear if several loops share a single header, or if there is a branching in the middle of the loop. The representation of loops in GCC however allows only loops with a single latch. During loop analysis, headers of such loops are split and forwarder blocks are created in order to disambiguate their structures. Heuristic based on profile information and structure of the induction variables in the loops is used to determine whether the latches correspond to sub-loops or to control flow in a single loop. This means that the analysis sometimes changes the CFG, and if you run it in the middle of an optimization pass, you must be able to deal with the new blocks. You may avoid CFG changes by passing LOOPS_MAY_HAVE_MULTIPLE_LATCHES flag to the loop discovery, note however that most other loop manipulation functions will not work correctly for loops with multiple latch edges (the functions that only query membership of blocks to loops and subloop relationships, or enumerate and test loop exits, can be expected to work).

Body of the loop is the set of blocks that are dominated by its header, and reachable from its latch against the direction of edges in CFG. The loops are organized in a containment hierarchy (tree) such that all the loops immediately contained inside loop L are the children of L in the tree. This tree is represented by the struct loops structure. The root of this tree is a fake loop that contains all blocks in the function. Each of the loops is represented in a struct loop structure. Each loop is assigned an index (num field of the struct loop structure), and the pointer to the loop is stored in the corresponding field of the larray vector in the loops structure. The indices do not have to be continuous, there may be empty (NULL) entries in the larray created by deleting loops. Also, there is no guarantee on the relative order of a loop and its subloops in the numbering. The index of a loop never changes.

The entries of the larray field should not be accessed directly. The function get_loop returns the loop description for a loop with the given index. number_of_loops function returns number of loops in the function. To traverse all loops, use FOR_EACH_LOOP macro. The flags argument of the macro is used to determine the direction of traversal and the set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop tree, and the loops may be removed during the traversal. The newly created loops are never traversed, if they need to be visited, this must be done separately after their creation. The FOR_EACH_LOOP macro allocates temporary variables. If the FOR_EACH_LOOP loop were ended using break or goto, they would not be released; FOR_EACH_LOOP_BREAK macro must be used instead.

Each basic block contains the reference to the innermost loop it belongs to (loop_father). For this reason, it is only possible to have one struct loops structure initialized at the same time for each CFG. The global variable current_loops contains the struct loops structure. Many of the loop manipulation functions assume that dominance information is up-to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this function is a set of flags represented in an integer bitmask. These flags specify what other properties of the loop structures should be calculated/enforced and preserved later:

These properties may also be computed/enforced later, using functions create_preheaders, force_single_succ_latches, mark_irreducible_loops and record_loop_exits.

The memory occupied by the loops structures should be freed with loop_optimizer_finalize function.

The CFG manipulation functions in general do not update loop structures. Specialized versions that additionally do so are provided for the most common tasks. On GIMPLE, cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops structures if current_loops is set.


Next: , Previous: Loop representation, Up: Loop Analysis and Representation

14.2 Loop querying

The functions to query the information about loops are declared in cfgloop.h. Some of the information can be taken directly from the structures. loop_father field of each basic block contains the innermost loop to that the block belongs. The most useful fields of loop structure (that are kept up-to-date at all times) are:

There are other fields in the loop structures, many of them used only by some of the passes, or not updated during CFG changes; in general, they should not be accessed directly.

The most important functions to query loop structures are:


Next: , Previous: Loop querying, Up: Loop Analysis and Representation

14.3 Loop manipulation

The loops tree can be manipulated using the following functions:

Most low-level CFG functions update loops automatically. The following functions handle some more complicated cases of CFG manipulations:

Finally, there are some higher-level loop transformations implemented. While some of them are written so that they should work on non-innermost loops, they are mostly untested in that case, and at the moment, they are only reliable for the innermost loops:


Next: , Previous: Loop manipulation, Up: Loop Analysis and Representation

14.4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form satisfying this condition is called “loop-closed SSA form” – LCSSA. To enforce LCSSA, PHI nodes must be created at the exits of the loops for the SSA names that are used outside of them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to save memory.

There are various benefits of LCSSA:

However, it also means LCSSA must be updated. This is usually straightforward, unless you create a new value in loop and use it outside, or unless you manipulate loop exit edges (functions are provided to make these manipulations simple). rewrite_into_loop_closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check that the invariant of LCSSA is preserved.


Next: , Previous: LCSSA, Up: Loop Analysis and Representation

14.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on GIMPLE. They enable us to represent variables with complicated behavior in a simple and consistent way (we only use it to express values of polynomial induction variables, but it is possible to extend it). The interfaces to SCEV analysis are declared in tree-scalar-evolution.h. To use scalar evolutions analysis, scev_initialize must be used. To stop using SCEV, scev_finalize should be used. SCEV analysis caches results in order to save time and memory. This cache however is made invalid by most of the loop transformations, including removal of code. If such a transformation is performed, scev_reset must be called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_evolution function. The returned SCEV however does not have to be fully analyzed and it may contain references to other SSA names defined in the loop. To resolve these (potentially recursive) references, instantiate_parameters or resolve_mixers functions must be used. instantiate_parameters is useful when you use the results of SCEV only for some analysis, and when you work with whole nest of loops at once. It will try replacing all SSA names by their SCEV in all loops, including the super-loops of the current loop, thus providing a complete information about the behavior of the variable in the loop nest. resolve_mixers is useful if you work with only one loop at a time, and if you possibly need to create code based on the value of the induction variable. It will only resolve the SSA names defined in the current loop, leaving the SSA names defined outside unchanged, even if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments – base, step and loop (both base and step may contain further polynomial chrecs). Type of the expression and of base and step must be the same. A variable has evolution POLYNOMIAL_CHREC(base, step, loop) if it is (in the specified loop) equivalent to x_1 in the following example

     while (...)
       {
         x_1 = phi (base, x_2);
         x_2 = x_1 + step;
       }

Note that this includes the language restrictions on the operations. For example, if we compile C code and x has signed type, then the overflow in addition would cause undefined behavior, and we may assume that this does not happen. Hence, the value with this SCEV cannot overflow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to affine induction variables. In this case, the extra expressive power of SCEV is not useful, and may complicate the optimizations. In this case, simple_iv function may be used to analyze a value – the result is a loop-invariant base and step.


Next: , Previous: Scalar evolutions, Up: Loop Analysis and Representation

14.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of affine induction variables, and only in one loop at once. The interface is declared in cfgloop.h. Before analyzing induction variables in a loop L, iv_analysis_loop_init function must be called on L. After the analysis (possibly calling iv_analysis_loop_init for several loops) is finished, iv_analysis_done should be called. The following functions can be used to access the results of the analysis:

The description of the induction variable is provided in struct rtx_iv. In order to handle subregs, the representation is a bit complicated; if the value of the extend field is not UNKNOWN, the value of the induction variable in the i-th iteration is

     delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the first iteration (when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

     subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.


Next: , Previous: loop-iv, Up: Loop Analysis and Representation

14.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of iterations of a loop, with a similar interface. The number of iterations of a loop in GCC is defined as the number of executions of the loop latch. In many cases, it is not possible to determine the number of iterations unconditionally – the determined number is correct only if some assumptions are satisfied. The analysis tries to verify these conditions using the information contained in the program; if it fails, the conditions are returned together with the result. The following information and conditions are provided by the analysis:

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored to struct tree_niter_desc structure. Number of iterations before the loop is exited through a given exit can be determined using number_of_iterations_exit function. On RTL, the results are returned in struct niter_desc structure. The corresponding function is named check_simple_exit. There are also functions that pass through all the exits of a loop and try to find one with easy to determine number of iterations – find_loop_niter on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the same information, but additionally cache it, so that repeated calls to number of iterations are not so costly – number_of_latch_executions on GIMPLE and get_simple_loop_desc on RTL.

Note that some of these functions may behave slightly differently than others – some of them return only the expression for the number of iterations, and fail if there are some assumptions. The function number_of_latch_executions works only for single-exit loops. The function number_of_cond_exit_executions can be used to determine number of executions of the exit condition of a single-exit loop (i.e., the number_of_latch_executions increased by one).


Next: , Previous: Number of iterations, Up: Loop Analysis and Representation

14.8 Data Dependency Analysis

The code for the data dependence analysis can be found in tree-data-ref.c and its interface and data structures are described in tree-data-ref.h. The function that computes the data dependences for all the array and pointer references for a given loop is compute_data_dependences_for_loop. This function is currently used by the linear loop transform and the vectorization passes. Before calling this function, one has to allocate two vectors: a first vector will contain the set of data references that are contained in the analyzed loop body, and the second vector will contain the dependence relations between the data references. Thus if the vector of data references is of size n, the vector containing the dependence relations will contain n*n elements. However if the analyzed loop contains side effects, such as calls that potentially can interfere with the data references in the current analyzed loop, the analysis stops while scanning the loop body for data references, and inserts a single chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop body: the loop body is analyzed in execution order, and the data references of each statement are pushed at the end of the data reference array. Two data references syntactically occur in the program in the same order as in the array of data references. This syntactic order is important in some classical data dependence tests, and mapping this order to the elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY_REF, INDIRECT_REF and COMPONENT_REF. The data structure for the data reference is data_reference, where data_reference_p is a name of a pointer to the data reference structure. The structure contains the following elements:

The structure describing the relation between two data references is data_dependence_relation and the shorter name for a pointer to such a structure is ddr_p. This structure contains:

Several functions for pretty printing the information extracted by the data dependence analysis are available: dump_ddrs prints with a maximum verbosity the details of a data dependence relations array, dump_dist_dir_vectors prints only the classical distance and direction vectors for a data dependence relations array, and dump_data_references prints the details of the data references contained in a data reference array.


Next: , Previous: Dependency analysis, Up: Loop Analysis and Representation

14.9 Linear loop transformations framework

Lambda is a framework that allows transformations of loops using non-singular matrix based transformations of the iteration space and loop bounds. This allows compositions of skewing, scaling, interchange, and reversal transformations. These transformations are often used to improve cache behavior or remove inner loop dependencies to allow parallelization and vectorization to take place.

To perform these transformations, Lambda requires that the loopnest be converted into a internal form that can be matrix transformed easily. To do this conversion, the function gcc_loopnest_to_lambda_loopnest is provided. If the loop cannot be transformed using lambda, this function will return NULL.

Once a lambda_loopnest is obtained from the conversion function, it can be transformed by using lambda_loopnest_transform, which takes a transformation matrix to apply. Note that it is up to the caller to verify that the transformation matrix is legal to apply to the loop (dependence respecting, etc). Lambda simply applies whatever matrix it is told to provide. It can be extended to make legal matrices out of any non-singular matrix, but this is not currently implemented. Legality of a matrix for a given loopnest can be verified using lambda_transform_legal_p.

Given a transformed loopnest, conversion back into gcc IR is done by lambda_loopnest_to_gcc_loopnest. This function will modify the loops so that they match the transformed loopnest.


Previous: Lambda, Up: Loop Analysis and Representation

14.10 Omega a solver for linear programming problems

The data dependence analysis contains several solvers triggered sequentially from the less complex ones to the more sophisticated. For ensuring the consistency of the results of these solvers, a data dependence check pass has been implemented based on two different solvers. The second method that has been integrated to GCC is based on the Omega dependence solver, written in the 1990's by William Pugh and David Wonnacott. Data dependence tests can be formulated using a subset of the Presburger arithmetics that can be translated to linear constraint systems. These linear constraint systems can then be solved using the Omega solver.

The Omega solver is using Fourier-Motzkin's algorithm for variable elimination: a linear constraint system containing n variables is reduced to a linear constraint system with n-1 variables. The Omega solver can also be used for solving other problems that can be expressed under the form of a system of linear equalities and inequalities. The Omega solver is known to have an exponential worst case, also known under the name of “omega nightmare” in the literature, but in practice, the omega test is known to be efficient for the common data dependence tests.

The interface used by the Omega solver for describing the linear programming problems is described in omega.h, and the solver is omega_solve_problem.


Next: , Previous: RTL, Up: Top

15 Control Flow Graph

A control flow graph (CFG) is a data structure built on top of the intermediate code representation (the RTL or tree instruction stream) abstracting the control flow behavior of a function that is being compiled. The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another. The data structures used to represent the control flow graph are defined in basic-block.h.


Next: , Up: Control Flow

15.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one exit. In GCC, basic blocks are represented using the basic_block data type.

Two pointer members of the basic_block structure are the pointers next_bb and prev_bb. These are used to keep doubly linked chain of basic blocks in the same order as the underlying instruction stream. The chain of basic blocks is updated transparently by the provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit all the basic blocks in lexicographical order. Dominator traversals are also possible using walk_dominator_tree. Given two basic blocks A and B, block A dominates block B if A is always executed before B.

The BASIC_BLOCK array contains all basic blocks in an unspecified order. Each basic_block structure has a field that holds a unique integer identifier index that is the index of the block in the BASIC_BLOCK array. The total number of basic blocks in the function is n_basic_blocks. Both the basic block indices and the total number of basic blocks may vary during the compilation process, as passes reorder, create, duplicate, and destroy basic blocks. The index for any block should never be greater than last_basic_block.

Special basic blocks represent possible entry and exit points of a function. These blocks are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code, and are not elements of the BASIC_BLOCK array. Therefore they have been assigned unique, negative index numbers.

Each basic_block also contains pointers to the first instruction (the head) and the last instruction (the tail) or end of the instruction stream contained in a basic block. In fact, since the basic_block data type is used to represent blocks in both major intermediate representations of GCC (tree and RTL), there are pointers to the head and end of a basic block for both representations.

For RTL, these pointers are rtx head, end. In the RTL function representation, the head pointer always points either to a NOTE_INSN_BASIC_BLOCK or to a CODE_LABEL, if present. In the RTL representation of a function, the instruction stream contains not only the “real” instructions, but also notes. Any function that moves or duplicates the basic blocks needs to take care of updating of these notes. Many of these notes expect that the instruction stream consists of linear regions, making such updates difficult. The NOTE_INSN_BASIC_BLOCK note is the only kind of note that may appear in the instruction stream contained in a basic block. The instruction stream of a basic block always follows a NOTE_INSN_BASIC_BLOCK, but zero or more CODE_LABEL nodes can precede the block note. A basic block ends by control flow instruction or last instruction before following CODE_LABEL or NOTE_INSN_BASIC_BLOCK. A CODE_LABEL cannot appear in the instruction stream of a basic block.

In addition to notes, the jump table vectors are also represented as “pseudo-instructions” inside the insn stream. These vectors never appear in the basic block and should always be placed just after the table jump instructions referencing them. After removing the table-jump it is often difficult to eliminate the code computing the address and referencing the vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the jump table vectors may appear in the insn stream unreferenced and without any purpose. Before any edge is made fall-thru, the existence of such construct in the way needs to be checked by calling can_fallthru function.

For the tree representation, the head and end of the basic block are being pointed to by the stmt_list field, but this special tree should never be referenced directly. Instead, at the tree level abstract containers and iterators are used to access statements and expressions in basic blocks. These iterators are called block statement iterators (BSIs). Grep for ^bsi in the various tree-* files. The following snippet will pretty-print all the statements of the program in the GIMPLE representation.

     FOR_EACH_BB (bb)
       {
          block_stmt_iterator si;
     
          for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
            {
               tree stmt = bsi_stmt (si);
               print_generic_stmt (stderr, stmt, 0);
            }
       }


Next: , Previous: Basic Blocks, Up: Control Flow

15.2 Edges

Edges represent possible control flow transfers from the end of some basic block A to the head of another basic block B. We say that A is a predecessor of B, and B is a successor of A. Edges are represented in GCC with the edge data type. Each edge acts as a link between two basic blocks: the src member of an edge points to the predecessor basic block of the dest basic block. The members preds and succs of the basic_block data type point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators are constructed using the edge_iterator data structure and several methods are available to operate on them:

ei_start
This function initializes an edge_iterator that points to the first edge in a vector of edges.
ei_last
This function initializes an edge_iterator that points to the last edge in a vector of edges.
ei_end_p
This predicate is true if an edge_iterator represents the last edge in an edge vector.
ei_one_before_end_p
This predicate is true if an edge_iterator represents the second last edge in an edge vector.
ei_next
This function takes a pointer to an edge_iterator and makes it point to the next edge in the sequence.
ei_prev
This function takes a pointer to an edge_iterator and makes it point to the previous edge in the sequence.
ei_edge
This function returns the edge currently pointed to by an edge_iterator.
ei_safe_safe
This function returns the edge currently pointed to by an edge_iterator, but returns NULL if the iterator is pointing at the end of the sequence. This function has been provided for existing code makes the assumption that a NULL edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence of predecessor or successor edges. It must not be used when an element might be removed during the traversal, otherwise elements will be missed. Here is an example of how to use the macro:

     edge e;
     edge_iterator ei;
     
     FOR_EACH_EDGE (e, ei, bb->succs)
       {
          if (e->flags & EDGE_FALLTHRU)
            break;
       }

There are various reasons why control flow may transfer from one block to another. One possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction stream just always starts a new basic block. In this case a fall-thru edge links the basic block to the first following basic block. But there are several other reasons why edges may be created. The flags field of the edge data type is used to store information about the type of edge we are dealing with. Each edge is of one of the following types:

jump
No type flags are set for edges corresponding to jump instructions. These edges are used for unconditional or conditional jumps and in RTL also for table jumps. They are the easiest to manipulate as they may be freely redirected when the flow graph is not in SSA form.
fall-thru
Fall-thru edges are present in case where the basic block may continue execution to the following one without branching. These edges have the EDGE_FALLTHRU flag set. Unlike other types of edges, these edges must come into the basic block immediately following in the instruction stream. The function force_nonfallthru is available to insert an unconditional jump in the case that redirection is needed. Note that this may require creation of a new basic block.
exception handling
Exception handling edges represent possible control transfers from a trapping instruction to an exception handler. The definition of “trapping” varies. In C++, only function calls can throw, but for Java, exceptions like division by zero or segmentation fault are defined and thus each instruction possibly throwing this kind of exception needs to be handled as control flow instruction. Exception edges have the EDGE_ABNORMAL and EDGE_EH flags set.

When updating the instruction stream it is easy to change possibly trapping instruction to non-trapping, by simply removing the exception edge. The opposite conversion is difficult, but should not happen anyway. The edges can be eliminated via purge_dead_edges call.

In the RTL representation, the destination of an exception edge is specified by REG_EH_REGION note attached to the insn. In case of a trapping call the EDGE_ABNORMAL_CALL flag is set too. In the tree representation, this extra flag is not set.

In the RTL representation, the predicate may_trap_p may be used to check whether instruction still may trap or not. For the tree representation, the tree_could_trap_p predicate is available, but this predicate only checks for possible memory traps, as in dereferencing an invalid pointer location.

sibling calls
Sibling calls or tail calls terminate the function in a non-standard way and thus an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are set in such case. These edges only exist in the RTL representation.
computed jumps
Computed jumps contain edges to all labels in the function referenced from the code. All those edges have EDGE_ABNORMAL flag set. The edges used to represent computed jumps often cause compile time performance problems, since functions consisting of many taken labels and many computed jumps may have very dense flow graphs, so these edges need to be handled with special care. During the earlier stages of the compilation process, GCC tries to avoid such dense flow graphs by factoring computed jumps. For example, given the following series of jumps,
            goto *x;
            [ ... ]
          
            goto *x;
            [ ... ]
          
            goto *x;
            [ ... ]

factoring the computed jumps results in the following code sequence which has a much simpler flow graph:

            goto y;
            [ ... ]
          
            goto y;
            [ ... ]
          
            goto y;
            [ ... ]
          
          y:
            goto *x;

However, the classic problem with this transformation is that it has a runtime cost in there resulting code: An extra jump. Therefore, the computed jumps are un-factored in the later passes of the compiler. Be aware of that when you work on passes in that area. There have been numerous examples already where the compile time for code with unfactored computed jumps caused some serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed to as an argument to the callee. The labels passed to nested functions contain special code to cleanup after function call. Such sections of code are referred to as “nonlocal goto receivers”. If a function contains such nonlocal goto receivers, an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_ABNORMAL_CALL flags set.
function entry points
By definition, execution of function starts at basic block 0, so there is always an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no tree representation for alternate entry points at this moment. In RTL, alternate entry points are specified by CODE_LABEL with LABEL_ALTERNATE_NAME defined. This feature is currently used for multiple entry point prologues and is limited to post-reload passes only. This can be used by back-ends to emit alternate prologues for functions called from different contexts. In future full support for multiple entry functions defined by Fortran 90 needs to be implemented.
function exits
In the pre-reload representation a function terminates after the last instruction in the insn chain and no explicit return instructions are used. This corresponds to the fall-thru edge into exit block. After reload, optimal RTL epilogues are used that use explicit (conditional) return instructions that are represented by edges with no flags set.


Next: , Previous: Edges, Up: Control Flow

15.3 Profile information

In many cases a compiler must make a choice whether to trade speed in one part of code for speed in another, or to trade code size for code speed. In such cases it is useful to know information about how often some given block will be executed. That is the purpose for maintaining profile within the flow graph. GCC can handle profile information obtained through profile feedback, but it can also estimate branch probabilities based on statics and heuristics.

The feedback based profile is produced by compiling the program with instrumentation, executing it on a train run and reading the numbers of executions of basic blocks and edges back to the compiler while re-compiling the program to produce the final executable. This method provides very accurate information about where a program spends most of its time on the train run. Whether it matches the average run of course depends on the choice of train data set, but several studies have shown that the behavior of a program usually changes just marginally over different data sets.

When profile feedback is not available, the compiler may be asked to attempt to predict the behavior of each branch in the program using a set of heuristics (see predict.def for details) and compute estimated frequencies of each basic block by propagating the probabilities over the graph.

Each basic_block contains two integer fields to represent profile information: frequency and count. The frequency is an estimation how often is basic block executed within a function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The most frequently executed basic block in function is initially set to BB_FREQ_BASE and the rest of frequencies are scaled accordingly. During optimization, the frequency of the most frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs and is nonzero only when profile feedback is available. This value is represented as the host's widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a few passes may want to know hard execution counts. The frequencies should always match the counts after scaling, however during updating of the profile information numerical error may accumulate into quite large errors.

Each edge also contains a branch probability field: an integer in the range from 0 to REG_BR_PROB_BASE. It represents probability of passing control from the end of the src basic block to the dest basic block, i.e. the probability that control will flow along this edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is taken. There is a count field for each edge as well, representing same information as for a basic block.

The basic block frequencies are not represented in the instruction stream, but in the RTL representation the edge frequencies are represented for conditional jumps (via the REG_BR_PROB macro) since they are used when instructions are output to the assembly file and the flow graph is no longer maintained.

The probability that control flow arrives via a given edge to its destination basic block is called reverse probability and is not directly represented, but it may be easily computed from frequencies of basic blocks.

Updating profile information is a delicate task that can unfortunately not be easily integrated with the CFG manipulation API. Many of the functions and hooks to modify the CFG, such as redirect_edge_and_branch, do not have enough information to easily update the profile, so updating it is in the majority of cases left up to the caller. It is difficult to uncover bugs in the profile updating code, because they manifest themselves only by producing worse code, and checking profile consistency is not possible because of numeric error accumulation. Hence special attention needs to be given to this issue in each pass that modifies the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low enough to be possible to compute second power of any frequency or probability in the flow graph, it is not possible to even square the count field, as modern CPUs are fast enough to execute $2^32$ operations quickly.


Next: , Previous: Profile information, Up: Control Flow

15.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control flow graph and all profile information up-to-date. Reconstruction of the control flow graph after each pass is not an option, since it may be very expensive and lost profile information cannot be reconstructed at all.

GCC has two major intermediate representations, and both use the basic_block and edge data types to represent control flow. Both representations share as much of the CFG maintenance code as possible. For each representation, a set of hooks is defined so that each representation can provide its own implementation of CFG manipulation routines when necessary. These hooks are defined in cfghooks.h. There are hooks for almost all common CFG manipulations, including block splitting and merging, edge redirection and creating and deleting basic blocks. These hooks should provide everything you need to maintain and manipulate the CFG in both the RTL and tree representation.

At the moment, the basic block boundaries are maintained transparently when modifying instructions, so there rarely is a need to move them manually (such as in case someone wants to output instruction outside basic block explicitly). Often the CFG may be better viewed as integral part of instruction chain, than structure built on the top of it. However, in principle the control flow graph for the tree representation is not an integral part of the representation, in that a function tree may be expanded without first building a flow graph for the tree representation at all. This happens when compiling without any tree optimization enabled. When the tree optimizations are enabled and the instruction stream is rewritten in SSA form, the CFG is very tightly coupled with the instruction stream. In particular, statement insertion and removal has to be done with care. In fact, the whole tree representation can not be easily used or maintained without proper maintenance of the CFG simultaneously.

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents pointer to the basic block that contains the instruction. In the tree representation, the function bb_for_stmt returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its tree representation, block statement iterators should be used. These iterators provide an integrated abstraction of the flow graph and the instruction stream. Block statement iterators are constructed using the block_stmt_iterator data structure and several modifier are available, including the following:

bsi_start
This function initializes a block_stmt_iterator that points to the first non-empty statement in a basic block.
bsi_last
This function initializes a block_stmt_iterator that points to the last statement in a basic block.
bsi_end_p
This predicate is true if a block_stmt_iterator represents the end of a basic block.
bsi_next
This function takes a block_stmt_iterator and makes it point to its successor.
bsi_prev
This function takes a block_stmt_iterator and makes it point to its predecessor.
bsi_insert_after
This function inserts a statement after the block_stmt_iterator passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement.
bsi_insert_before
This function inserts a statement before the block_stmt_iterator passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement.
bsi_remove
This function removes the block_stmt_iterator passed in and rechains the remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the head and end rtx of a basic block. No abstract iterators are defined for traversing the insn chain, but you can just use NEXT_INSN and PREV_INSN instead. See See Insns.

Usually a code manipulating pass simplifies the instruction stream and the flow of control, possibly eliminating some edges. This may for example happen when a conditional jump is replaced with an unconditional jump, but also when simplifying possibly trapping instruction to non-trapping while compiling Java. Updating of edges is not transparent and each optimization pass is required to do so manually. However only few cases occur in practice. The pass may call purge_dead_edges on a given basic block to remove superfluous edges, if any.

Another common scenario is redirection of branch instructions, but this is best modeled as redirection of edges in the control flow graph and thus use of redirect_edge_and_branch is preferred over more low level functions, such as redirect_jump that operate on RTL chain only. The CFG hooks defined in cfghooks.h should provide the complete API required for manipulating and maintaining the CFG.

It is also possible that a pass has to insert control flow instruction into the middle of a basic block, thus creating an entry point in the middle of the basic block, which is impossible by definition: The block must be split to make sure it only has one entry point, i.e. the head of the basic block. The CFG hook split_block may be used when an instruction in the middle of a basic block has to become the target of a jump or branch instruction.

For a global optimizer, a common operation is to split edges in the flow graph and insert instructions on them. In the RTL representation, this can be easily done using the insert_insn_on_edge function that emits an instruction “on the edge”, caching it for a later commit_edge_insertions call that will take care of moving the inserted instructions off the edge into the instruction stream contained in a basic block. This includes the creation of new basic blocks where needed. In the tree representation, the equivalent functions are bsi_insert_on_edge which inserts a block statement iterator on an edge, and bsi_commit_edge_inserts which flushes the instruction to actual instruction stream.

While debugging the optimization pass, an verify_flow_info function may be useful to find bugs in the control flow graph updating code.

Note that at present, the representation of control flow in the tree representation is discarded before expanding to RTL. Long term the CFG should be maintained and “expanded” to the RTL representation along with the function tree itself.


Previous: Maintaining the CFG, Up: Control Flow

15.5 Liveness information

Liveness information is useful to determine whether some register is “live” at given point of program, i.e. that it contains a value that may be used at a later point in the program. This information is used, for instance, during register allocation, as the pseudo registers only need to be assigned to a unique hard register or to a stack slot if they are live. The hard registers and stack slots may be freely reused for other values when a register is dead.

Liveness information is available in the back end starting with pass_df_initialize and ending with pass_df_finish. Three flavors of live analysis are available: With LR, it is possible to determine at any point P in the function if the register may be used on some path from P to the end of the function. With UR, it is possible to determine if there is a path from the beginning of the function to P that defines the variable. LIVE is the intersection of the LR and UR and a variable is live at P if there is both an assignment that reaches it from the beginning of the function and a uses that can be reached on some path from P to the end of the function.

In general LIVE is the most useful of the three. The macros DF_[LR,UR,LIVE]_[IN,OUT] can be used to access this information. The macros take a basic block number and return a bitmap that is indexed by the register number. This information is only guaranteed to be up to date after calls are made to df_analyze. See the file df-core.c for details on using the dataflow.

The liveness information is stored partly in the RTL instruction stream and partly in the flow graph. Local information is stored in the instruction stream: Each instruction may contain REG_DEAD notes representing that the value of a given register is no longer needed, or REG_UNUSED notes representing that the value computed by the instruction is never used. The second is useful for instructions computing multiple values at once.


Next: , Previous: Loop Analysis and Representation, Up: Top

16 Machine Descriptions

A machine description has two parts: a file of instruction patterns (.md file) and a C header file of macro definitions.

The .md file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a comment, unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.


Next: , Up: Machine Desc

16.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:

  1. The front end reads the source code and builds a parse tree.
  2. The parse tree is used to generate an RTL insn list based on named instruction patterns.
  3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_insn or a define_expand. The compiler will choose the pattern with the right name and apply the operands according to the documentation later in this chapter, without regard for the RTL template or operand constraints. Note that the names the compiler looks for are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names it doesn't know about, but if you don't provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_expand is used, one of three things happens, based on the condition logic. The condition logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE. For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way of performing that task. If it invokes neither DONE nor FAIL, the template given in the pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange the insns in the insn list. This is where the define_split and define_peephole patterns get used, for example.

Finally, the insn list's RTL is matched up with the RTL templates in the define_insn patterns, and those patterns are used to emit the final assembly code. For this purpose, each named define_insn acts like it's unnamed, since the names are ignored.


Next: , Previous: Overview, Up: Machine Desc

16.2 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the pieces can be filled in, and an output pattern or C code to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

  1. An optional name. The presence of a name indicate that this instruction pattern can perform a certain standard job for the RTL-generation pass of the compiler. This pass knows certain names and will use the instruction patterns with those names, if the names are defined in the machine description.

    The absence of a name is indicated by writing an empty string where the name should go. Nameless instruction patterns are never used for generating RTL code, but they may permit several simpler insns to be combined later on.

    Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all.

    For the purpose of debugging the compiler, you may also specify a name beginning with the ‘*’ character. Such a name is used only for identifying the instruction in RTL dumps; it is entirely equivalent to having a nameless pattern for all other purposes.

  2. The RTL template (see RTL Template) is a vector of incomplete RTL expressions which show what the instruction should look like. It is incomplete because it may contain match_operand, match_operator, and match_dup expressions that stand for operands of the instruction.

    If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, then the instruction pattern is a parallel expression containing the elements described.

  3. A condition. This is a string which contains a C expression that is the final test to decide whether an insn body matches this pattern.

    For a named pattern, the condition (if present) may not depend on the data in the insn being matched, but only the target-machine-type flags. The compiler needs to test these conditions during initialization in order to learn exactly which named instructions are available in a particular run.

    For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found in the vector operands. For an insn where the condition has once matched, it can't be used to control register allocation, for example by excluding certain hard registers or hard register combinations.

  4. The output template: a string that says how to output matching insns as assembler code. ‘%’ in this string specifies where to substitute the value of an operand. See Output Template.

    When simple substitution isn't general enough, you can specify a piece of C code to compute the output. See Output Statement.

  5. Optionally, a vector containing the values of attributes for insns matching this pattern. See Insn Attributes.


Next: , Previous: Patterns, Up: Machine Desc

16.3 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

     (define_insn "tstsi"
       [(set (cc0)
             (match_operand:SI 0 "general_operand" "rm"))]
       ""
       "*
     {
       if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
         return \"tstl %0\";
       return \"cmpl #0,%0\";
     }")

This can also be written using braced strings:

     (define_insn "tstsi"
       [(set (cc0)
             (match_operand:SI 0 "general_operand" "rm"))]
       ""
     {
       if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
         return "tstl %0";
       return "cmpl #0,%0";
     })

This is an instruction that sets the condition codes based on the value of a general operand. It has no condition, so any insn whose RTL description has the form shown may be handled according to this pattern. The name ‘tstsi’ means “test a SImode value” and tells the RTL generation pass that, when it is necessary to test such a value, an insn to do so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated.

"rm"’ is an operand constraint. Its meaning is explained below.


Next: , Previous: Example, Up: Machine Desc

16.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to find their operands. For named patterns, the RTL template also says how to construct an insn from specified operands.

Construction involves substituting specified operands into a copy of the template. Matching involves determining the values that serve as the operands in the insn being matched. Both of these activities are controlled by special expression types that direct matching and substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When constructing an insn, operand number n will be substituted at this point. When matching an insn, whatever appears at this position in the insn will be taken as operand number n; but it must satisfy predicate or this instruction pattern will not match at all.

Operand numbers must be chosen consecutively counting from zero in each instruction pattern. There may be only one match_operand expression in the pattern for each operand number. Usually operands are numbered in the order of appearance in match_operand expressions. In the case of a define_expand, any operand numbers used only in match_dup expressions have higher values than all other operand numbers.

predicate is a string that is the name of a function that accepts two arguments, an expression and a machine mode. See Predicates. During matching, the function will be called with the putative operand as the expression and m as the mode argument (if m is not specified, VOIDmode will be used, which normally causes predicate to accept any mode). If it returns zero, this instruction pattern fails to match. predicate may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid.

Most of the time, predicate will reject modes other than m—but not always. For example, the predicate address_operand uses m as the mode of memory ref that the address should be valid for. Many predicates accept const_int nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for a value, as explained later (see Constraints). If the constraint would be an empty string, it can be omitted.

People are often unclear on the difference between the constraint and the predicate. The predicate helps decide whether a given insn matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match.


(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and indicates that operand must be a scratch or reg expression.

When matching patterns, this is equivalent to

          (match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose operands are either a hard register or match_scratch, the combiner can add or delete them when necessary. See Side Effects.


(match_dup n)
This expression is also a placeholder for operand number n. It is used when the operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is substituted into the insn being constructed. But in matching, match_dup behaves differently. It assumes that operand number n has already been determined by a match_operand appearing earlier in the recognition template, and it matches only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular register is being used for two operands (example: add that adds one register to another; the second register is both an input operand and the output operand). Use a matching constraint (see Simple Constraints) for those. match_dup is for the cases where one operand is used in two places in the template, such as an instruction that computes both a quotient and a remainder, where the opcode takes two input operands but the RTL template has to refer to each of those twice; once for the quotient pattern and once for the remainder pattern.


(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression code is taken from that of operand n, and whose operands are constructed from the patterns operands.

When matching an expression, it matches an expression if the function predicate returns nonzero on that expression and the patterns operands match the operands of the expression.

Suppose that the function commutative_operator is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is mode:

          int
          commutative_integer_operator (x, mode)
               rtx x;
               enum machine_mode mode;
          {
            enum rtx_code code = GET_CODE (x);
            if (GET_MODE (x) != mode)
              return 0;
            return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
                    || code == EQ || code == NE);
          }

Then the following pattern will match any RTL expression consisting of a commutative operator applied to two general operands:

          (match_operator:SI 3 "commutative_operator"
            [(match_operand:SI 1 "general_operand" "g")
             (match_operand:SI 2 "general_operand" "g")])

Here the vector [operands...] contains two patterns because the expressions to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is done by the two instances of match_operand.) Operand 3 of the insn will be the entire commutative expression: use GET_CODE (operands[3]) to see which commutative operator was used.

The machine mode m of match_operator works like that of match_operand: it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched “has” that mode.

When constructing an insn, argument 3 of the gen-function will specify the operation (i.e. the expression code) for the expression to be made. It should be an RTL expression, whose expression code is copied into a new expression whose operands are arguments 1 and 2 of the gen-function. The subexpressions of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best if the operand number of the match_operator is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying.

There is no way to specify constraints in match_operator. The operand of the insn which corresponds to the match_operator never has any constraints because it is never reloaded as a whole. However, if parts of its operands are matched by match_operand patterns, those parts may have constraints of their own.


(match_op_dup:m n[operands...])
Like match_dup, except that it applies to operators instead of operands. When constructing an insn, operand number n will be substituted at this point. But in matching, match_op_dup behaves differently. It assumes that operand number n has already been determined by a match_operator appearing earlier in the recognition template, and it matches only an identical-looking expression.


(match_parallel n predicate [subpat...])
This pattern is a placeholder for an insn that consists of a parallel expression with a variable number of elements. This expression should only appear at the top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point. When matching an insn, it matches if the body of the insn is a parallel expression with at least as many elements as the vector of subpat expressions in the match_parallel, if each subpat matches the corresponding element of the parallel, and the function predicate returns nonzero on the parallel that is the body of the insn. It is the responsibility of the predicate to validate elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expressions, which can contain a variable number of elements in a parallel. For example,

          (define_insn ""
            [(match_parallel 0 "load_multiple_operation"
               [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
                     (match_operand:SI 2 "memory_operand" "m"))
                (use (reg:SI 179))
                (clobber (reg:SI 179))])]
            ""
            "loadm 0,0,%1,%2")

This example comes from a29k.md. The function load_multiple_operation is defined in a29k.c and checks that subsequent elements in the parallel are the same as the set in the pattern, except that they are referencing subsequent registers and memory locations.

An insn that matches this pattern might look like:

          (parallel
           [(set (reg:SI 20) (mem:SI (reg:SI 100)))
            (use (reg:SI 179))
            (clobber (reg:SI 179))
            (set (reg:SI 21)
                 (mem:SI (plus:SI (reg:SI 100)
                                  (const_int 4))))
            (set (reg:SI 22)
                 (mem:SI (plus:SI (reg:SI 100)
                                  (const_int 8))))])


(match_par_dup n [subpat...])
Like match_op_dup, but for match_parallel instead of match_operator.


Next: , Previous: RTL Template, Up: Machine Desc

16.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a fixed string which is output literally. The character ‘%’ is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in the string.

%’ followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings described below. The machine description macro PRINT_OPERAND can define additional letters with nonstandard meanings.

%cdigit’ can be used to substitute an operand that is a constant value without the syntax that normally indicates an immediate operand.

%ndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

%adigit’ can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a “load address” instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference.

%ldigit’ is used to substitute a label_ref into a jump instruction.

%=’ outputs a number which is unique to each instruction in the entire compilation. This is useful for making local labels to be referred to more than once in a single template that generates multiple assembler instructions.

%’ followed by a punctuation character specifies a substitution that does not use an operand. Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the instructions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the lower-numbered operand. Matching operands are not always identical, and the rest of the compiler arranges to put the proper RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in Motorola syntax. The same file of patterns is used for both kinds of output syntax, but the character sequence ‘%.’ is used in each place where Motorola syntax wants a period. The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period; the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in the output templates. If you have a define_insn that needs to emit multiple assembler instructions, and there is an matching define_split already defined, then you can simply use # as the output template instead of writing an output template that emits the multiple assembler instructions.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form ‘{option0|option1|option2}’ in the templates. These describe multiple variants of assembler language syntax. See Instruction Output.


Next: , Previous: Output Template, Up: Machine Desc

16.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for all the cases that are recognized by a single instruction pattern. For example, the opcodes may depend on the kinds of operands; or some unfortunate combinations of operands may require extra machine instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates correspond to the pattern's constraint alternatives (see Multi-Alternative). For example, if a target machine has a two-address add instruction ‘addr’ to add into a register and another ‘addm’ to add a register to memory, you might write this pattern:

     (define_insn "addsi3"
       [(set (match_operand:SI 0 "general_operand" "=r,m")
             (plus:SI (match_operand:SI 1 "general_operand" "0,0")
                      (match_operand:SI 2 "general_operand" "g,r")))]
       ""
       "@
        addr %2,%0
        addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a piece of C program that should compute a template. It should execute a return statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these doublequote characters in the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string, it is automatically assumed to be C code. In that case, it is not necessary to put in a leading asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be careful when doing this, because the result of INTVAL is an integer on the host machine. If the host machine has more bits in an int than the target machine has in the mode in which the constant will be used, then some of the bits you get from INTVAL will be superfluous. For proper results, you must carefully disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute more of them, using the subroutine output_asm_insn. This receives two arguments: a template-string and a vector of operands. The vector may be operands, or it may be another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code can test the variable which_alternative, which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and ‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to choose between them:

     (define_insn ""
       [(set (match_operand:SI 0 "general_operand" "=r,m")
             (const_int 0))]
       ""
       {
       return (which_alternative == 0
               ? "clrreg %0" : "clrmem %0");
       })

The example above, where the assembler code to generate was solely determined by the alternative, could also have been specified as follows, having the output control string start with a ‘@’:

     (define_insn ""
       [(set (match_operand:SI 0 "general_operand" "=r,m")
             (const_int 0))]
       ""
       "@
        clrreg %0
        clrmem %0")


Next: , Previous: Output Statement, Up: Machine Desc

16.7 Predicates

A predicate determines whether a match_operand or match_operator expression matches, and therefore whether the surrounding instruction pattern will be used for that combination of operands. GCC has a number of machine-independent predicates, and you can define machine-specific predicates as needed. By convention, predicates used with match_operand have names that end in ‘_operand’, and those used with match_operator have names that end in ‘_operator’.

All predicates are Boolean functions (in the mathematical sense) of two arguments: the RTL expression that is being considered at that position in the instruction pattern, and the machine mode that the match_operand or match_operator specifies. In this section, the first argument is called op and the second argument mode. Predicates can be called from C as ordinary two-argument functions; this can be useful in output templates or other machine-specific code.

Operand predicates can allow operands that are not actually acceptable to the hardware, as long as the constraints give reload the ability to fix them up (see Constraints). However, GCC will usually generate better code if the predicates specify the requirements of the machine instructions as closely as possible. Reload cannot fix up operands that must be constants (“immediate operands”); you must use a predicate that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is VOIDmode (unspecified), then op can have any mode. If mode is anything else, then op must have the same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions always have VOIDmode, so it would be counterproductive to check that their mode matches. Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the value stored in the constant will fit in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction recognizer based on knowledge of how normal predicates treat modes. It can also diagnose certain kinds of common errors in the use of normal predicates; for instance, it is almost always an error to use a normal predicate without specifying a mode.

Predicates that do something different with their mode argument are called special. The generic predicates address_operand and pmode_register_operand are special predicates. genrecog does not do any optimizations or diagnosis when special predicates are used.


Next: , Up: Predicates

16.7.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are defined in recog.c. The first category of predicates allow only constant, or immediate, operands.

— Function: immediate_operand

This predicate allows any sort of constant that fits in mode. It is an appropriate choice for instructions that take operands that must be constant.

— Function: const_int_operand

This predicate allows any CONST_INT expression that fits in mode. It is an appropriate choice for an immediate operand that does not allow a symbol or label.

— Function: const_double_operand

This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode is VOIDmode, it will also accept CONST_INT. It is intended for immediate floating point constants.

The second category of predicates allow only some kind of machine register.

— Function: register_operand

This predicate allows any REG or SUBREG expression that is valid for mode. It is often suitable for arithmetic instruction operands on a RISC machine.

— Function: pmode_register_operand

This is a slight variant on register_operand which works around a limitation in the machine-description reader.

          (match_operand n "pmode_register_operand" constraint)

means exactly what

          (match_operand:P n "register_operand" constraint)

would mean, if the machine-description reader accepted ‘:P’ mode suffixes. Unfortunately, it cannot, because Pmode is an alias for some other mode, and might vary with machine-specific options. See Misc.

— Function: scratch_operand

This predicate allows hard registers and SCRATCH expressions, but not pseudo-registers. It is used internally by match_scratch; it should not be used directly.

The third category of predicates allow only some kind of memory reference.

— Function: memory_operand

This predicate allows any valid reference to a quantity of mode mode in memory, as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Addressing Modes).

— Function: address_operand

This predicate is a little unusual; it allows any operand that is a valid expression for the address of a quantity of mode mode, again determined by the weak form of GO_IF_LEGITIMATE_ADDRESS. To first order, if ‘(mem:mode (exp))’ is acceptable to memory_operand, then exp is acceptable to address_operand. Note that exp does not necessarily have the mode mode.

— Function: indirect_operand

This is a stricter form of memory_operand which allows only memory references with a general_operand as the address expression. New uses of this predicate are discouraged, because general_operand is very permissive, so it's hard to tell what an indirect_operand does or does not allow. If a target has different requirements for memory operands for different instructions, it is better to define target-specific predicates which enforce the hardware's requirements explicitly.

— Function: push_operand

This predicate allows a memory reference suitable for pushing a value onto the stack. This will be a MEM which refers to stack_pointer_rtx, with a side-effect in its address expression (see Incdec); which one is determined by the STACK_PUSH_CODE macro (see Frame Layout).

— Function: pop_operand

This predicate allows a memory reference suitable for popping a value off the stack. Again, this will be a MEM referring to stack_pointer_rtx, with a side-effect in its address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

— Function: nonmemory_operand

This predicate allows any immediate or register operand valid for mode.

— Function: nonimmediate_operand

This predicate allows any register or memory operand valid for mode.

— Function: general_operand

This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there is one generic operator predicate.

— Function: comparison_operator

This predicate matches any expression which performs an arithmetic comparison in mode; that is, COMPARISON_P is true for the expression code.


Previous: Machine-Independent Predicates, Up: Predicates

16.7.2 Defining Machine-Specific Predicates

Many machines have requirements for their operands that cannot be expressed precisely using the generic predicates. You can define additional predicates using define_predicate and define_special_predicate expressions. These expressions have three operands:

The program genrecog scans define_predicate and define_special_predicate expressions to determine which RTX codes are possibly allowed. You should always make this explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate definition, from the IA64 machine description:

     ;; True if op is a SYMBOL_REF which refers to the sdata section.
     (define_predicate "small_addr_symbolic_operand"
       (and (match_code "symbol_ref")
            (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))

And here is another, showing the use of the C block.

     ;; True if op is a register operand that is (or could be) a GR reg.
     (define_predicate "gr_register_operand"
       (match_operand 0 "register_operand")
     {
       unsigned int regno;
       if (GET_CODE (op) == SUBREG)
         op = SUBREG_REG (op);
     
       regno = REGNO (op);
       return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
     })

Predicates written with define_predicate automatically include a test that mode is VOIDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They do not check specifically for integer CONST_DOUBLE, nor do they test that the value of either kind of constant fits in the requested mode. This is because target-specific predicates that take constants usually have to do more stringent value checks anyway. If you need the exact same treatment of CONST_INT or CONST_DOUBLE that the generic predicates provide, use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand, or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes a header file containing function declarations for all machine-specific predicates. It is not necessary to declare these predicates in cpu-protos.h.


Next: , Previous: Predicates, Up: Machine Desc

16.8 Operand Constraints

Each match_operand in an instruction pattern can specify constraints for the operands allowed. The constraints allow you to fine-tune matching within the set of operands allowed by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a memory reference, and which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match.


Next: , Up: Constraints

16.8.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except the first. This enables each alternative for different operands to be visually aligned in the machine description even if they have different number of constraints and modifiers.


m
A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the general memory constraint can be re-defined by a back end using the TARGET_MEM_CONSTRAINT macro.


o
A memory operand is allowed, but only if the address is offsettable. This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine mode) may be added to the address and the result is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that is the sum of a register and a constant (as long as a slightly larger constant is also within the range of address-offsets supported by the machine); but an autoincrement or autodecrement address is not offsettable. More complicated indirect/indexed addresses may or may not be offsettable depending on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the target machine has predecrement addressing) and ‘>’ (if the target machine has preincrement addressing).


V
A memory operand that is not offsettable. In other words, anything that would fit the ‘m’ constraint but not the ‘o’ constraint.


<
A memory operand with autodecrement addressing (either predecrement or postdecrement) is allowed.


>
A memory operand with autoincrement addressing (either preincrement or postincrement) is allowed.


r
A register operand is allowed provided that it is in a general register.


i
An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later.


n
An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ‘n’ rather than ‘i’.


I’, ‘J’, ‘K’, ...P
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the 68000, ‘I’ is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions.


E
An immediate floating operand (expression code const_double) is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running).


F
An immediate floating operand (expression code const_double or const_vector) is allowed.


G’, ‘H
G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate floating operands in particular ranges of values.


s
An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not known at compile time, it certainly must allow any known value. So why use ‘s’ instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between −128 and 127, better code results from loading the value into a register and using the register. This is because the load into the register can be done with a ‘moveq’ instruction. We arrange for this to happen by defining the letter ‘K’ to mean “any integer outside the range −128 to 127”, and then specifying ‘Ks’ in the operand constraints.


g
Any register, memory or immediate integer operand is allowed, except for registers that are not general registers.


X
Any operand whatsoever is allowed, even if it does not satisfy general_operand. This is normally used in the constraint of a match_scratch when certain alternatives will not actually require a scratch register.


0’, ‘1’, ‘2’, ...9
An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last.

This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a single decimal integer. There is scant chance for ambiguity, since to-date it has never been desirable that ‘10’ be interpreted as matching either operand 1 or operand 0. Should this be desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the assembler has only a single operand that fills two roles considered separate in the RTL insn. For example, an add insn has two input operands and one output operand in the RTL, but on most CISC machines an add instruction really has only two operands, one of them an input-output operand:

          addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two operands that match must include one input-only operand and one output-only operand. Moreover, the digit must be a smaller number than the number of the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases specific kinds of dissimilarity are allowed. For example, *x as an input operand will match *x++ as an output operand. For proper results in such cases, the output template should always use the output-operand's number when printing the operand.


p
An operand that is a valid memory address is allowed. This is for “load address” and “push address” instructions.

p’ in the constraint must be accompanied by address_operand as the predicate in the match_operand. This predicate interprets the mode specified in the match_operand as the mode of the memory reference for which the address would be valid.


other-letters
Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’ are defined on the 68000/68020 to stand for data, address and floating point registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a failure to do so does not prevent the pattern from applying to an insn. Instead, it directs the compiler to modify the code so that the constraint will be satisfied. Usually this is done by copying an operand into a register.

Contrast, therefore, the two instruction patterns that follow:

     (define_insn ""
       [(set (match_operand:SI 0 "general_operand" "=r")
             (plus:SI (match_dup 0)
                      (match_operand:SI 1 "general_operand" "r")))]
       ""
       "...")

which has two operands, one of which must appear in two places, and

     (define_insn ""
       [(set (match_operand:SI 0 "general_operand" "=r")
             (plus:SI (match_operand:SI 1 "general_operand" "0")
                      (match_operand:SI 2 "general_operand" "r")))]
       ""
       "...")

which has three operands, two of which are required by a constraint to be identical. If we are considering an insn of the form

     (insn n prev next
       (set (reg:SI 3)
            (plus:SI (reg:SI 6) (reg:SI 109)))
       ...)

the first pattern would not apply at all, because this insn does not contain two identical subexpressions in the right place. The pattern would say, “That does not look like an add instruction; try other patterns”. The second pattern would say, “Yes, that's an add instruction, but there is something wrong with it”. It would direct the reload pass of the compiler to generate additional insns to make the constraint true. The results might look like this:

     (insn n2 prev n
       (set (reg:SI 3) (reg:SI 6))
       ...)
     
     (insn n n2 next
       (set (reg:SI 3)
            (plus:SI (reg:SI 3) (reg:SI 109)))
       ...)

It is up to you to make sure that each operand, in each pattern, has constraints that can handle any RTL expression that could be present for that operand. (When multiple alternatives are in use, each pattern must, for each possible combination of operand expressions, have at least one alternative which can handle that combination of operands.) The constraints don't need to allow any possible operand—when this is the case, they do not constrain—but they must at least point the way to reloading any possible operand so that it will fit.

If the operand's predicate can recognize registers, but the constraint does not permit them, it can make the compiler crash. When this operand happens to be a register, the reload pass will be stymied, because it does not know how to copy a register temporarily into memory.

If the predicate accepts a unary operator, the constraint applies to the operand. For example, the MIPS processor at ISA level 3 supports an instruction which adds two registers in SImode to produce a DImode result, but only if the registers are correctly sign extended. This predicate for the input operands accepts a sign_extend of an SImode register. Write the constraint to indicate the type of register that is required for the operand of the sign_extend.


Next: , Previous: Simple Constraints, Up: Constraints

16.8.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example, on the 68000, a logical-or instruction can combine register or an immediate value into memory, or it can combine any kind of operand into a register; but it cannot combine one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be described by a series of letters for each operand. The overall constraint for an operand is made from the letters for this operand from the first alternative, a comma, the letters for this operand from the second alternative, a comma, and so on until the last alternative. Here is how it is done for fullword logical-or on the 68000:

     (define_insn "iorsi3"
       [(set (match_operand:SI 0 "general_operand" "=m,d")
             (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
                     (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
       ...)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register) for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the constraints apply to all the alternatives; their meaning is explained in the next section (see Class Preferences).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many instructions must be added to copy the operands so that that alternative applies. The alternative requiring the least copying is chosen. If two alternatives need the same amount of copying, the one that comes first is chosen. These choices can be altered with the ‘?’ and ‘!’ characters:

?
Disparage slightly the alternative that the ‘?’ appears in, as a choice when no alternative applies exactly. The compiler regards this alternative as one unit more costly for each ‘?’ that appears in it.


!
Disparage severely the alternative that the ‘!’ appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the assembler code can use the variable which_alternative, which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). See Output Statement.


Next: , Previous: Multi-Alternative, Up: Constraints

16.8.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote: they vote in favor of a general register. The machine description says which registers are considered general.

Of course, on some machines all registers are equivalent, and no register classes are defined. Then none of this complexity is relevant.


Next: , Previous: Class Preferences, Up: Constraints

16.8.4 Constraint Modifier Characters

Here are constraint modifier characters.

=
Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data.


+
Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and which are outputs from it. ‘=’ identifies an output; ‘+’ identifies an operand that is both input and output; all other operands are assumed to be input only.

If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the constraint string.


&
Means (in a particular alternative) that this operand is an earlyclobber operand, which is modified before the instruction is finished using the input operands. Therefore, this operand may not lie in a register that is used as an input operand or as part of any memory address.

&’ applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative requires ‘&’ while others do not. See, for example, the ‘movdf’ insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.

&’ does not obviate the need to write ‘=’.


%
Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition instructions that really have only two operands: the result must go in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined:
          (define_insn "addhi3"
            [(set (match_operand:HI 0 "general_operand" "=m,r")
               (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
                        (match_operand:HI 2 "general_operand" "di,g")))]
            ...)

GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail. Note that you need not use the modifier if the two alternatives are strictly identical; this would only waste time in the reload pass. The modifier is not operational after register allocation, so the result of define_peephole2 and define_splits performed after reload cannot rely on ‘%’ to make the intended insn match.


#
Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences.


*
Says that the following character should be ignored when choosing register preferences. ‘*’ has no effect on the meaning of the constraint as a constraint, and no effect on reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by copying it into an address register. While either kind of register is acceptable, the constraints on an address-register destination are less strict, so it is best if register allocation makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ constraint letter (for data register) is ignored when computing register preferences.

          (define_insn "extendhisi2"
            [(set (match_operand:SI 0 "general_operand" "=*d,a")
                  (sign_extend:SI
                   (match_operand:HI 1 "general_operand" "0,g")))]
            ...)


Next: , Previous: Disable Insn Alternatives, Up: Constraints

16.8.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments, since they will convey meaning more readily to people reading your code. Failing that, use the constraint letters that usually have very similar meanings across architectures. The most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers respectively; see Simple Constraints), and ‘I’, usually the letter indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as for asm statements; therefore, some of the constraints are not particularly useful for asm. Here is a summary of some of the machine-dependent constraints available on some particular machines; it includes both constraints that are useful for asm and constraints that aren't. The compiler source file mentioned in the table heading for each architecture is the definitive reference for the meanings of that architecture's constraints.

ARM family—config/arm/arm.h
f
Floating-point register
w
VFP floating-point register
F
One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or 10.0
G
Floating-point constant that would satisfy the constraint ‘F’ if it were negated
I
Integer that is valid as an immediate operand in a data processing instruction. That is, an integer in the range 0 to 255 rotated by a multiple of 2
J
Integer in the range −4095 to 4095
K
Integer that satisfies constraint ‘I’ when inverted (ones complement)
L
Integer that satisfies constraint ‘I’ when negated (twos complement)
M
Integer in the range 0 to 32
Q
A memory reference where the exact address is in a single register (`‘m’' is preferable for asm statements)
R
An item in the constant pool
S
A symbol in the text segment of the current file
Uv
A memory reference suitable for VFP load/store insns (reg+constant offset)
Uy
A memory reference suitable for iWMMXt load/store instructions.
Uq
A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family—config/avr/constraints.md
l
Registers from r0 to r15
a
Registers from r16 to r23
d
Registers from r16 to r31
w
Registers from r24 to r31. These registers can be used in ‘adiw’ command
e
Pointer register (r26–r31)
b
Base pointer register (r28–r31)
q
Stack pointer register (SPH:SPL)
t
Temporary register r0
x
Register pair X (r27:r26)
y
Register pair Y (r29:r28)
z
Register pair Z (r31:r30)
I
Constant greater than −1, less than 64
J
Constant greater than −64, less than 1
K
Constant integer 2
L
Constant integer 0
M
Constant that fits in 8 bits
N
Constant integer −1
O
Constant integer 8, 16, or 24
P
Constant integer 1
G
A floating point constant 0.0
R
Integer constant in the range -6 ... 5.
Q
A memory address based on Y or Z pointer with displacement.

CRX Architecture—config/crx/crx.h
b
Registers from r0 to r14 (registers without stack pointer)
l
Register r16 (64-bit accumulator lo register)
h
Register r17 (64-bit accumulator hi register)
k
Register pair r16-r17. (64-bit accumulator lo-hi pair)
I
Constant that fits in 3 bits
J
Constant that fits in 4 bits
K
Constant that fits in 5 bits
L
Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48
G
Floating point constant that is legal for store immediate

Hewlett-Packard PA-RISC—config/pa/pa.h
a
General register 1
f
Floating point register
q
Shift amount register
x
Floating point register (deprecated)
y
Upper floating point register (32-bit), floating point register (64-bit)
Z
Any register
I
Signed 11-bit integer constant
J
Signed 14-bit integer constant
K
Integer constant that can be deposited with a zdepi instruction
L
Signed 5-bit integer constant
M
Integer constant 0
N
Integer constant that can be loaded with a ldil instruction
O
Integer constant whose value plus one is a power of 2
P
Integer constant that can be used for and operations in depi and extru instructions
S
Integer constant 31
U
Integer constant 63
G
Floating-point constant 0.0
A
A lo_sum data-linkage-table memory operand
Q
A memory operand that can be used as the destination operand of an integer store instruction
R
A scaled or unscaled indexed memory operand
T
A memory operand for floating-point loads and stores
W
A register indirect memory operand

picoChip family—picochip.h
k
Stack register.
f
Pointer register. A register which can be used to access memory without supplying an offset. Any other register can be used to access memory, but will need a constant offset. In the case of the offset being zero, it is more efficient to use a pointer register, since this reduces code size.
t
A twin register. A register which may be paired with an adjacent register to create a 32-bit register.
a
Any absolute memory address (e.g., symbolic constant, symbolic constant + offset).
I
4-bit signed integer.
J
4-bit unsigned integer.
K
8-bit signed integer.
M
Any constant whose absolute value is no greater than 4-bits.
N
10-bit signed integer
O
16-bit signed integer.

PowerPC and IBM RS6000—config/rs6000/rs6000.h
b
Address base register
f
Floating point register
v
Vector register
h
MQ’, ‘CTR’, or ‘LINK’ register
q
MQ’ register
c
CTR’ register
l
LINK’ register
x
CR’ register (condition register) number 0
y
CR’ register (condition register)
z
FPMEM’ stack memory for FPR-GPR transfers
I
Signed 16-bit constant
J
Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for SImode constants)
K
Unsigned 16-bit constant
L
Signed 16-bit constant shifted left 16 bits
M
Constant larger than 31
N
Exact power of 2
O
Zero
P
Constant whose negation is a signed 16-bit constant
G
Floating point constant that can be loaded into a register with one instruction per word
H
Integer/Floating point constant that can be loaded into a register using three instructions
Q
Memory operand that is an offset from a register (‘m’ is preferable for asm statements)
Z
Memory operand that is an indexed or indirect from a register (‘m’ is preferable for asm statements)
R
AIX TOC entry
a
Address operand that is an indexed or indirect from a register (‘p’ is preferable for asm statements)
S
Constant suitable as a 64-bit mask operand
T
Constant suitable as a 32-bit mask operand
U
System V Release 4 small data area reference
t
AND masks that can be performed by two rldic{l, r} instructions
W
Vector constant that does not require memory

Intel 386—config/i386/constraints.md
R
Legacy register—the eight integer registers available on all i386 processors (a, b, c, d, si, di, bp, sp).
q
Any register accessible as rl. In 32-bit mode, a, b, c, and d; in 64-bit mode, any integer register.
Q
Any register accessible as rh: a, b, c, and d.
l
Any register that can be used as the index in a base+index memory access: that is, any general register except the stack pointer.
a
The a register.
b
The b register.
c
The c register.
d
The d register.
S
The si register.
D
The di register.
A
The a and d registers, as a pair (for instructions that return half the result in one and half in the other).
f
Any 80387 floating-point (stack) register.
t
Top of 80387 floating-point stack (%st(0)).
u
Second from top of 80387 floating-point stack (%st(1)).
y
Any MMX register.
x
Any SSE register.
Yz
First SSE register (%xmm0).
Y2
Any SSE register, when SSE2 is enabled.
Yi
Any SSE register, when SSE2 and inter-unit moves are enabled.
Ym
Any MMX register, when inter-unit moves are enabled.
I
Integer constant in the range 0 ... 31, for 32-bit shifts.
J
Integer constant in the range 0 ... 63, for 64-bit shifts.
K
Signed 8-bit integer constant.
L
0xFF or 0xFFFF, for andsi as a zero-extending move.
M
0, 1, 2, or 3 (shifts for the lea instruction).
N
Unsigned 8-bit integer constant (for in and out instructions).
O
Integer constant in the range 0 ... 127, for 128-bit shifts.
G
Standard 80387 floating point constant.
C
Standard SSE floating point constant.
e
32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions).
Z
32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions).

Intel IA-64—config/ia64/ia64.h
a
General register r0 to r3 for addl instruction
b
Branch register
c
Predicate register (‘c’ as in “conditional”)
d
Application register residing in M-unit
e
Application register residing in I-unit
f
Floating-point register
m
Memory operand. Remember that ‘m’ allows postincrement and postdecrement which require printing with ‘%Pn’ on IA-64. Use ‘S’ to disallow postincrement and postdecrement.
G
Floating-point constant 0.0 or 1.0
I
14-bit signed integer constant
J
22-bit signed integer constant
K
8-bit signed integer constant for logical instructions
L
8-bit adjusted signed integer constant for compare pseudo-ops
M
6-bit unsigned integer constant for shift counts
N
9-bit signed integer constant for load and store postincrements
O
The constant zero
P
0 or −1 for dep instruction
Q
Non-volatile memory for floating-point loads and stores
R
Integer constant in the range 1 to 4 for shladd instruction
S
Memory operand except postincrement and postdecrement

FRV—config/frv/frv.h
a
Register in the class ACC_REGS (acc0 to acc7).
b
Register in the class EVEN_ACC_REGS (acc0 to acc7).
c
Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).
d
Register in the class GPR_REGS (gr0 to gr63).
e
Register in the class EVEN_REGS (gr0 to gr63). Odd registers are excluded not in the class but through the use of a machine mode larger than 4 bytes.
f
Register in the class FPR_REGS (fr0 to fr63).
h
Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are excluded not in the class but through the use of a machine mode larger than 4 bytes.
l
Register in the class LR_REG (the lr register).
q
Register in the class QUAD_REGS (gr2 to gr63). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes.
t
Register in the class ICC_REGS (icc0 to icc3).
u
Register in the class FCC_REGS (fcc0 to fcc3).
v
Register in the class ICR_REGS (cc4 to cc7).
w
Register in the class FCR_REGS (cc0 to cc3).
x
Register in the class QUAD_FPR_REGS (fr0 to fr63). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes.
z
Register in the class SPR_REGS (lcr and lr).
A
Register in the class QUAD_ACC_REGS (acc0 to acc7).
B
Register in the class ACCG_REGS (accg0 to accg7).
C
Register in the class CR_REGS (cc0 to cc7).
G
Floating point constant zero
I
6-bit signed integer constant
J
10-bit signed integer constant
L
16-bit signed integer constant
M
16-bit unsigned integer constant
N
12-bit signed integer constant that is negative—i.e. in the range of −2048 to −1
O
Constant zero
P
12-bit signed integer constant that is greater than zero—i.e. in the range of 1 to 2047.

Blackfin family—config/bfin/constraints.md
a
P register
d
D register
z
A call clobbered P register.
qn
A single register. If n is in the range 0 to 7, the corresponding D register. If it is A, then the register P0.
D
Even-numbered D register
W
Odd-numbered D register
e
Accumulator register.
A
Even-numbered accumulator register.
B
Odd-numbered accumulator register.
b
I register
v
B register
f
M register
c
Registers used for circular buffering, i.e. I, B, or L registers.
C
The CC register.
t
LT0 or LT1.
k
LC0 or LC1.
u
LB0 or LB1.
x
Any D, P, B, M, I or L register.
y
Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
w
Any register except accumulators or CC.
Ksh
Signed 16 bit integer (in the range -32768 to 32767)
Kuh
Unsigned 16 bit integer (in the range 0 to 65535)
Ks7
Signed 7 bit integer (in the range -64 to 63)
Ku7
Unsigned 7 bit integer (in the range 0 to 127)
Ku5
Unsigned 5 bit integer (in the range 0 to 31)
Ks4
Signed 4 bit integer (in the range -8 to 7)
Ks3
Signed 3 bit integer (in the range -3 to 4)
Ku3
Unsigned 3 bit integer (in the range 0 to 7)
Pn
Constant n, where n is a single-digit constant in the range 0 to 4.
PA
An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator.
PB
An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1.
M1
Constant 255.
M2
Constant 65535.
J
An integer constant with exactly a single bit set.
L
An integer constant with all bits set except exactly one.
H
Q
Any SYMBOL_REF.

M32C—config/m32c/m32c.c
Rsp
Rfb
Rsb
$sp’, ‘$fb’, ‘$sb’.
Rcr
Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide)
Rcl
Any control register, when they're 24 bits wide.
R0w
R1w
R2w
R3w
$r0, $r1, $r2, $r3.
R02
$r0 or $r2, or $r2r0 for 32 bit values.
R13
$r1 or $r3, or $r3r1 for 32 bit values.
Rdi
A register that can hold a 64 bit value.
Rhl
$r0 or $r1 (registers with addressable high/low bytes)
R23
$r2 or $r3
Raa
Address registers
Raw
Address registers when they're 16 bits wide.
Ral
Address registers when they're 24 bits wide.
Rqi
Registers that can hold QI values.
Rad
Registers that can be used with displacements ($a0, $a1, $sb).
Rsi
Registers that can hold 32 bit values.
Rhi
Registers that can hold 16 bit values.
Rhc
Registers chat can hold 16 bit values, including all control registers.
Rra
$r0 through R1, plus $a0 and $a1.
Rfl
The flags register.
Rmm
The memory-based pseudo-registers $mem0 through $mem15.
Rpi
Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c).
Rpa
Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values.
Is3
-8 ... 7
IS1
-128 ... 127
IS2
-32768 ... 32767
IU2
0 ... 65535
In4
-8 ... -1 or 1 ... 8
In5
-16 ... -1 or 1 ... 16
In6
-32 ... -1 or 1 ... 32
IM2
-65536 ... -1
Ilb
An 8 bit value with exactly one bit set.
Ilw
A 16 bit value with exactly one bit set.
Sd
The common src/dest memory addressing modes.
Sa
Memory addressed using $a0 or $a1.
Si
Memory addressed with immediate addresses.
Ss
Memory addressed using the stack pointer ($sp).
Sf
Memory addressed using the frame base register ($fb).
Ss
Memory addressed using the small base register ($sb).
S1
$r1h

MIPS—config/mips/constraints.md
d
An address register. This is equivalent to r unless generating MIPS16 code.
f
A floating-point register (if available).
h
Formerly the hi register. This constraint is no longer supported.
l
The lo register. Use this register to store values that are no bigger than a word.
x
The concatenated hi and lo registers. Use this register to store doubleword values.
c
A register suitable for use in an indirect jump. This will always be $25 for -mabicalls.
v
Register $3. Do not use this constraint in new code; it is retained only for compatibility with glibc.
y
Equivalent to r; retained for backwards compatibility.
z
A floating-point condition code register.
I
A signed 16-bit constant (for arithmetic instructions).
J
Integer zero.
K
An unsigned 16-bit constant (for logic instructions).
L
A signed 32-bit constant in which the lower 16 bits are zero. Such constants can be loaded using lui.
M
A constant that cannot be loaded using lui, addiu or ori.
N
A constant in the range -65535 to -1 (inclusive).
O
A signed 15-bit constant.
P
A constant in the range 1 to 65535 (inclusive).
G
Floating-point zero.
R
An address that can be used in a non-macro load or store.

Motorola 680x0—config/m68k/constraints.md
a
Address register
d
Data register
f
68881 floating-point register, if available
I
Integer in the range 1 to 8
J
16-bit signed number
K
Signed number whose magnitude is greater than 0x80
L
Integer in the range −8 to −1
M
Signed number whose magnitude is greater than 0x100
N
Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
O
16 (for rotate using swap)
P
Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
R
Numbers that mov3q can handle
G
Floating point constant that is not a 68881 constant
S
Operands that satisfy 'm' when -mpcrel is in effect
T
Operands that satisfy 's' when -mpcrel is not in effect
Q
Address register indirect addressing mode
U
Register offset addressing
W
const_call_operand
Cs
symbol_ref or const
Ci
const_int
C0
const_int 0
Cj
Range of signed numbers that don't fit in 16 bits
Cmvq
Integers valid for mvq
Capsw
Integers valid for a moveq followed by a swap
Cmvz
Integers valid for mvz
Cmvs
Integers valid for mvs
Ap
push_operand
Ac
Non-register operands allowed in clr

Motorola 68HC11 & 68HC12 families—config/m68hc11/m68hc11.h
a
Register `a'
b
Register `b'
d
Register `d'
q
An 8-bit register
t
Temporary soft register _.tmp
u
A soft register _.d1 to _.d31
w
Stack pointer register
x
Register `x'
y
Register `y'
z
Pseudo register `z' (replaced by `x' or `y' at the end)
A
An address register: x, y or z
B
An address register: x or y
D
Register pair (x:d) to form a 32-bit value
L
Constants in the range −65536 to 65535
M
Constants whose 16-bit low part is zero
N
Constant integer 1 or −1
O
Constant integer 16
P
Constants in the range −8 to 2

SPARC—config/sparc/sparc.h
f
Floating-point register on the SPARC-V8 architecture and lower floating-point register on the SPARC-V9 architecture.
e
Floating-point register. It is equivalent to ‘f’ on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture.
c
Floating-point condition code register.
d
Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available.
b
Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available.
h
64-bit global or out register for the SPARC-V8+ architecture.
D
A vector constant
I
Signed 13-bit constant
J
Zero
K
32-bit constant with the low 12 bits clear (a constant that can be loaded with the sethi instruction)
L
A constant in the range supported by movcc instructions
M
A constant in the range supported by movrcc instructions
N
Same as ‘K’, except that it verifies that bits that are not in the lower 32-bit range are all zero. Must be used instead of ‘K’ for modes wider than SImode
O
The constant 4096
G
Floating-point zero
H
Signed 13-bit constant, sign-extended to 32 or 64 bits
Q
Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction
R
Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction
S
Floating-point constant whose integral representation can be moved into an integer register using a high/lo_sum instruction sequence
T
Memory address aligned to an 8-byte boundary
U
Even register
W
Memory address for ‘e’ constraint registers
Y
Vector zero

SPU—config/spu/spu.h
a
An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value.
c
An immediate for and/xor/or instructions. const_int is treated as a 64 bit value.
d
An immediate for the iohl instruction. const_int is treated as a 64 bit value.
f
An immediate which can be loaded with fsmbi.
A
An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value.
B
An immediate for most arithmetic instructions. const_int is treated as a 32 bit value.
C
An immediate for and/xor/or instructions. const_int is treated as a 32 bit value.
D
An immediate for the iohl instruction. const_int is treated as a 32 bit value.
I
A constant in the range [-64, 63] for shift/rotate instructions.
J
An unsigned 7-bit constant for conversion/nop/channel instructions.
K
A signed 10-bit constant for most arithmetic instructions.
M
A signed 16 bit immediate for stop.
N
An unsigned 16-bit constant for iohl and fsmbi.
O
An unsigned 7-bit constant whose 3 least significant bits are 0.
P
An unsigned 3-bit constant for 16-byte rotates and shifts
R
Call operand, reg, for indirect calls
S
Call operand, symbol, for relative calls.
T
Call operand, const_int, for absolute calls.
U
An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit.
W
An immediate for shift and rotate instructions. const_int is treated as a 32 bit value.
Y
An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit.
Z
An immediate for the iohl instruction. const_int is sign extended to 128 bit.

S/390 and zSeries—config/s390/s390.h
a
Address register (general purpose register except r0)
c
Condition code register
d
Data register (arbitrary general purpose register)
f
Floating-point register
I
Unsigned 8-bit constant (0–255)
J
Unsigned 12-bit constant (0–4095)
K
Signed 16-bit constant (−32768–32767)
L
Value appropriate as displacement.
(0..4095)
for short displacement
(-524288..524287)
for long displacement

M
Constant integer with a value of 0x7fffffff.
N
Multiple letter constraint followed by 4 parameter letters.
0..9:
number of the part counting from most to least significant
H,Q:
mode of the part
D,S,H:
mode of the containing operand
0,F:
value of the other parts (F—all bits set)
The constraint matches if the specified part of a constant has a value different from its other parts.
Q
Memory reference without index register and with short displacement.
R
Memory reference with index register and short displacement.
S
Memory reference without index register but with long displacement.
T
Memory reference with index register and long displacement.
U
Pointer with short displacement.
W
Pointer with long displacement.
Y
Shift count operand.

Score family—config/score/score.h
d
Registers from r0 to r32.
e
Registers from r0 to r16.
t
r8—r11 or r22—r27 registers.
h
hi register.
l
lo register.
x
hi + lo register.
q
cnt register.
y
lcb register.
z
scb register.
a
cnt + lcb + scb register.
c
cr0—cr15 register.
b
cp1 registers.
f
cp2 registers.
i
cp3 registers.
j
cp1 + cp2 + cp3 registers.
I
High 16-bit constant (32-bit constant with 16 LSBs zero).
J
Unsigned 5 bit integer (in the range 0 to 31).
K
Unsigned 16 bit integer (in the range 0 to 65535).
L
Signed 16 bit integer (in the range −32768 to 32767).
M
Unsigned 14 bit integer (in the range 0 to 16383).
N
Signed 14 bit integer (in the range −8192 to 8191).
Z
Any SYMBOL_REF.

Xstormy16—config/stormy16/stormy16.h
a
Register r0.
b
Register r1.
c
Register r2.
d
Register r8.
e
Registers r0 through r7.
t
Registers r0 and r1.
y
The carry register.
z
Registers r8 and r9.
I
A constant between 0 and 3 inclusive.
J
A constant that has exactly one bit set.
K
A constant that has exactly one bit clear.
L
A constant between 0 and 255 inclusive.
M
A constant between −255 and 0 inclusive.
N
A constant between −3 and 0 inclusive.
O
A constant between 1 and 4 inclusive.
P
A constant between −4 and −1 inclusive.
Q
A memory reference that is a stack push.
R
A memory reference that is a stack pop.
S
A memory reference that refers to a constant address of known value.
T
The register indicated by Rx (not implemented yet).
U
A constant that is not between 2 and 15 inclusive.
Z
The constant 0.

Xtensa—config/xtensa/constraints.md
a
General-purpose 32-bit register
b
One-bit boolean register
A
MAC16 40-bit accumulator register
I
Signed 12-bit integer constant, for use in MOVI instructions
J
Signed 8-bit integer constant, for use in ADDI instructions
K
Integer constant valid for BccI instructions
L
Unsigned constant valid for BccUI instructions


Next: , Previous: Modifiers, Up: Constraints

16.8.6 Disable insn alternatives using the enabled attribute

The enabled insn attribute may be used to disable certain insn alternatives for machine-specific reasons. This is useful when adding new instructions to an existing pattern which are only available for certain cpu architecture levels as specified with the -march= option.

If an insn alternative is disabled, then it will never be used. The compiler treats the constraints for the disabled alternative as unsatisfiable.

In order to make use of the enabled attribute a back end has to add in the machine description files:

  1. A definition of the enabled insn attribute. The attribute is defined as usual using the define_attr command. This definition should be based on other insn attributes and/or target flags. The enabled attribute is a numeric attribute and should evaluate to (const_int 1) for an enabled alternative and to (const_int 0) otherwise.
  2. A definition of another insn attribute used to describe for what reason an insn alternative might be available or not. E.g. cpu_facility as in the example below.
  3. An assignment for the second attribute to each insn definition combining instructions which are not all available under the same circumstances. (Note: It obviously only makes sense for definitions with more than one alternative. Otherwise the insn pattern should be disabled or enabled using the insn condition.)

E.g. the following two patterns could easily be merged using the enabled attribute:

     
     (define_insn "*movdi_old"
       [(set (match_operand:DI 0 "register_operand" "=d")
             (match_operand:DI 1 "register_operand" " d"))]
       "!TARGET_NEW"
       "lgr %0,%1")
     
     (define_insn "*movdi_new"
       [(set (match_operand:DI 0 "register_operand" "=d,f,d")
             (match_operand:DI 1 "register_operand" " d,d,f"))]
       "TARGET_NEW"
       "@
        lgr  %0,%1
        ldgr %0,%1
        lgdr %0,%1")
     

to:

     
     (define_insn "*movdi_combined"
       [(set (match_operand:DI 0 "register_operand" "=d,f,d")
             (match_operand:DI 1 "register_operand" " d,d,f"))]
       ""
       "@
        lgr  %0,%1
        ldgr %0,%1
        lgdr %0,%1"
       [(set_attr "cpu_facility" "*,new,new")])
     

with the enabled attribute defined like this:

     
     (define_attr "cpu_facility" "standard,new" (const_string "standard"))
     
     (define_attr "enabled" ""
       (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
              (and (eq_attr "cpu_facility" "new")
                   (ne (symbol_ref "TARGET_NEW") (const_int 0)))
              (const_int 1)]
             (const_int 0)))
     


Next: , Previous: Machine Constraints, Up: Constraints

16.8.7 Defining Machine-Specific Constraints

Machine-specific constraints fall into two categories: register and non-register constraints. Within the latter category, constraints which allow subsets of all possible memory or address operands should be specially marked, to give reload more information.

Machine-specific constraints can be given names of arbitrary length, but they must be entirely composed of letters, digits, underscores (‘_’), and angle brackets (‘< >’). Like C identifiers, they must begin with a letter or underscore.

In order to avoid ambiguity in operand constraint strings, no constraint can have a name that begins with any other constraint's name. For example, if x is defined as a constraint name, xy may not be, and vice versa. As a consequence of this rule, no constraint may begin with one of the generic constraint letters: ‘E F V X g i m n o p r s’.

Register constraints correspond directly to register classes. See Register Classes. There is thus not much flexibility in their definitions.

— MD Expression: define_register_constraint name regclass docstring

All three arguments are string constants. name is the name of the constraint, as it will appear in match_operand expressions. If name is a multi-letter constraint its length shall be the same for all constraints starting with the same letter. regclass can be either the name of the corresponding register class (see Register Classes), or a C expression which evaluates to the appropriate register class. If it is an expression, it must have no side effects, and it cannot look at the operand. The usual use of expressions is to map some register constraints to NO_REGS when the register class is not available on a given subarchitecture.

docstring is a sentence documenting the meaning of the constraint. Docstrings are explained further below.

Non-register constraints are more like predicates: the constraint definition gives a Boolean expression which indicates whether the constraint matches.

— MD Expression: define_constraint name docstring exp

The name and docstring arguments are the same as for define_register_constraint, but note that the docstring comes immediately after the name for these expressions. exp is an RTL expression, obeying the same rules as the RTL expressions in predicate definitions. See Defining Predicates, for details. If it evaluates true, the constraint matches; if it evaluates false, it doesn't. Constraint expressions should indicate which RTL codes they might match, just like predicate expressions.

match_test C expressions have access to the following variables:

op
The RTL object defining the operand.
mode
The machine mode of op.
ival
INTVAL (op)’, if op is a const_int.
hval
CONST_DOUBLE_HIGH (op)’, if op is an integer const_double.
lval
CONST_DOUBLE_LOW (op)’, if op is an integer const_double.
rval
CONST_DOUBLE_REAL_VALUE (op)’, if op is a floating-point const_double.

The *val variables should only be used once another piece of the expression has verified that op is the appropriate kind of RTL object.

Most non-register constraints should be defined with define_constraint. The remaining two definition expressions are only appropriate for constraints that should be handled specially by reload if they fail to match.

— MD Expression: define_memory_constraint name docstring exp

Use this expression for constraints that match a subset of all memory operands: that is, reload can make them match by converting the operand to the form ‘(mem (reg X))’, where X is a base register (from the register class specified by BASE_REG_CLASS, see Register Classes).

For example, on the S/390, some instructions do not accept arbitrary memory references, but only those that do not make use of an index register. The constraint letter ‘Q’ is defined to represent a memory address of this type. If ‘Q’ is defined with define_memory_constraint, a ‘Q’ constraint can handle any memory operand, because reload knows it can simply copy the memory address into a base register if required. This is analogous to the way a ‘o’ constraint can handle any memory operand.

The syntax and semantics are otherwise identical to define_constraint.

— MD Expression: define_address_constraint name docstring exp

Use this expression for constraints that match a subset of all address operands: that is, reload can make the constraint match by converting the operand to the form ‘(reg X)’, again with X a base register.

Constraints defined with define_address_constraint can only be used with the address_operand predicate, or machine-specific predicates that work the same way. They are treated analogously to the generic ‘p’ constraint.

The syntax and semantics are otherwise identical to define_constraint.

For historical reasons, names beginning with the letters ‘G H’ are reserved for constraints that match only const_doubles, and names beginning with the letters ‘I J K L M N O P’ are reserved for constraints that match only const_ints. This may change in the future. For the time being, constraints with these names must be written in a stylized form, so that genpreds can tell you did it correctly:

     (define_constraint "[GHIJKLMNOP]..."
       "doc..."
       (and (match_code "const_int")  ; const_double for G/H
            condition...))            ; usually a match_test

It is fine to use names beginning with other letters for constraints that match const_doubles or const_ints.

Each docstring in a constraint definition should be one or more complete sentences, marked up in Texinfo format. They are currently unused. In the future they will be copied into the GCC manual, in Machine Constraints, replacing the hand-maintained tables currently found in that section. Also, in the future the compiler may use this to give more helpful diagnostics when poor choice of asm constraints causes a reload failure.

If you put the pseudo-Texinfo directive ‘@internal’ at the beginning of a docstring, then (in the future) it will appear only in the internals manual's version of the machine-specific constraint tables. Use this for constraints that should not appear in asm statements.


Previous: Define Constraints, Up: Constraints

16.8.8 Testing constraints from C

It is occasionally useful to test a constraint from C code rather than implicitly via the constraint string in a match_operand. The generated file tm_p.h declares a few interfaces for working with machine-specific constraints. None of these interfaces work with the generic constraints described in Simple Constraints. This may change in the future.

Warning: tm_p.h may declare other functions that operate on constraints, besides the ones documented here. Do not use those functions from machine-dependent code. They exist to implement the old constraint interface that machine-independent components of the compiler still expect. They will change or disappear in the future.

Some valid constraint names are not valid C identifiers, so there is a mangling scheme for referring to them from C. Constraint names that do not contain angle brackets or underscores are left unchanged. Underscores are doubled, each ‘<’ is replaced with ‘_l’, and each ‘>’ with ‘_g’. Here are some examples:

     

Original Mangled
x x
P42x P42x
P4_x P4__x
P4>x P4_gx
P4>> P4_g_g
P4_g> P4__g_g

Throughout this section, the variable c is either a constraint in the abstract sense, or a constant from enum constraint_num; the variable m is a mangled constraint name (usually as part of a larger identifier).

— Enum: constraint_num

For each machine-specific constraint, there is a corresponding enumeration constant: ‘CONSTRAINT_’ plus the mangled name of the constraint. Functions that take an enum constraint_num as an argument expect one of these constants.

Machine-independent constraints do not have associated constants. This may change in the future.

— Function: inline bool satisfies_constraint_m (rtx exp)

For each machine-specific, non-register constraint m, there is one of these functions; it returns true if exp satisfies the constraint. These functions are only visible if rtl.h was included before tm_p.h.

— Function: bool constraint_satisfied_p (rtx exp, enum constraint_num c)

Like the satisfies_constraint_m functions, but the constraint to test is given as an argument, c. If c specifies a register constraint, this function will always return false.

— Function: enum reg_class regclass_for_constraint (enum constraint_num c)

Returns the register class associated with c. If c is not a register constraint, or those registers are not available for the currently selected subtarget, returns NO_REGS.

Here is an example use of satisfies_constraint_m. In peephole optimizations (see Peephole Definitions), operand constraint strings are ignored, so if there are relevant constraints, they must be tested in the C condition. In the example, the optimization is applied if operand 2 does not satisfy the ‘K’ constraint. (This is a simplified version of a peephole definition from the i386 machine description.)

     (define_peephole2
       [(match_scratch:SI 3 "r")
        (set (match_operand:SI 0 "register_operand" "")
             (mult:SI (match_operand:SI 1 "memory_operand" "")
                      (match_operand:SI 2 "immediate_operand" "")))]
     
       "!satisfies_constraint_K (operands[2])"
     
       [(set (match_dup 3) (match_dup 1))
        (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
     
       "")


Next: , Previous: Constraints, Up: Machine Desc

16.9 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of the compiler. Giving one of these names to an instruction pattern tells the RTL generation pass that it can use the pattern to accomplish a certain task.

movm
Here m stands for a two-letter machine mode name, in lowercase. This instruction pattern moves data with that machine mode from operand 1 to operand 0. For example, ‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider than m, the effect of this instruction is to store the specified value in the part of the register that corresponds to mode m. Bits outside of m, but which are within the same target word as the subreg are undefined. Bits which are outside the target word are left unchanged.

This class of patterns is special in several ways. First of all, each of these names up to and including full word size must be defined, because there is no other way to copy a datum from one place to another. If there are patterns accepting operands in larger modes, ‘movm’ must be defined for integer modes of those sizes.

Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values from stack slots into temporary registers. When it does so, one of the operands is a hard register and the other is an operand that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers—no registers other than the operands. For example, if you support the pattern with a define_expand, then in such a case the define_expand mustn't call force_reg or any other such function which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where fetching those modes from memory normally requires several insns and some temporary registers.

During reload a memory reference with an invalid address may be passed as an operand. Such an address will be replaced with a valid address later in the reload pass. In this case, nothing may be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt should be made to make such an address into a valid address and no routine (such as change_address) that will do so may be called. Note that general_operand will fail when applied to such an address.

The global variable reload_in_progress (which must be explicitly declared if required) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine description, but typically on a RISC machine these can only be pseudo registers that did not get hard registers, while on other machines explicit memory references will get optional reloads.

If a scratch register is required to move an object to or from memory, it can be allocated using gen_reg_rtx prior to life analysis.

If there are cases which need scratch registers during or after reload, you must provide an appropriate secondary_reload target hook.

The macro can_create_pseudo_p can be used to determine if it is unsafe to create new pseudo registers. If this variable is nonzero, then it is unsafe to call gen_reg_rtx to allocate a new pseudo.

The constraints on a ‘movm’ must permit moving any hard register to any other hard register provided that HARD_REGNO_MODE_OK permits mode m in both registers and REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movm’ instructions into and out of any registers that can hold fixed point values, because unions and structures (which have modes SImode or DImode) can be in those registers and they may have floating point members.

There may also be a need to support fixed point ‘movm’ instructions in and out of floating point registers. Unfortunately, I have forgotten why this was so, and I don't know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point values in floating point registers, then the constraints of the fixed point ‘movm’ instructions must be designed to avoid ever trying to reload into a floating point register.


reload_inm
reload_outm
These named patterns have been obsoleted by the target hook secondary_reload.

Like ‘movm’, but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch register. See the discussion of the SECONDARY_RELOAD_CLASS macro in see Register Classes.

There are special restrictions on the form of the match_operands used in these patterns. First, only the predicate for the reload operand is examined, i.e., reload_in examines operand 1, but not the predicates for operand 0 or 2. Second, there may be only one alternative in the constraints. Third, only a single register class letter may be used for the constraint; subsequent constraint letters are ignored. As a special exception, an empty constraint string matches the ALL_REGS register class. This may relieve ports of the burden of defining an ALL_REGS constraint letter just for these patterns.


movstrictm
Like ‘movm’ except that if operand 0 is a subreg with mode m of a register whose natural mode is wider, the ‘movstrictm’ instruction is guaranteed not to alter any of the register except the part which belongs to mode m.


movmisalignm
This variant of a move pattern is designed to load or store a value from a memory address that is not naturally aligned for its mode. For a store, the memory will be in operand 0; for a load, the memory will be in operand 1. The other operand is guaranteed not to be a memory, so that it's easy to tell whether this is a load or store.

This pattern is used by the autovectorizer, and when expanding a MISALIGNED_INDIRECT_REF expression.


load_multiple
Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not define this if the most efficient way of loading consecutive registers from memory is to do them one at a time.

On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those machines, use a define_expand (see Expander Definitions) and make the pattern fail if the restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register from the appropriate memory location (you may also need use or clobber elements). Use a match_parallel (see RTL Template) to recognize the insn. See rs6000.md for examples of the use of this insn pattern.


store_multiple
Similar to ‘load_multiple’, but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers.


vec_setm
Set given field in the vector value. Operand 0 is the vector to modify, operand 1 is new value of field and operand 2 specify the field index.


vec_extractm
Extract given field from the vector value. Operand 1 is the vector, operand 2 specify field index and operand 0 place to store value into.


vec_extract_evenm
Extract even elements from the input vectors (operand 1 and operand 2). The even elements of operand 2 are concatenated to the even elements of operand 1 in their original order. The result is stored in operand 0. The output and input vectors should have the same modes.


vec_extract_oddm
Extract odd elements from the input vectors (operand 1 and operand 2). The odd elements of operand 2 are concatenated to the odd elements of operand 1 in their original order. The result is stored in operand 0. The output and input vectors should have the same modes.


vec_interleave_highm
Merge high elements of the two input vectors into the output vector. The output and input vectors should have the same modes (N elements). The high N/2 elements of the first input vector are interleaved with the high N/2 elements of the second input vector.


vec_interleave_lowm
Merge low elements of the two input vectors into the output vector. The output and input vectors should have the same modes (N elements). The low N/2 elements of the first input vector are interleaved with the low N/2 elements of the second input vector.


vec_initm
Initialize the vector to given values. Operand 0 is the vector to initialize and operand 1 is parallel containing values for individual fields.


pushm1
Output a push instruction. Operand 0 is value to push. Used only when PUSH_ROUNDING is defined. For historical reason, this pattern may be missing and in such case an mov expander is used instead, with a MEM expression forming the push operation. The mov expander method is deprecated.


addm3
Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode m. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location.


ssaddm3’, ‘usaddm3
subm3’, ‘sssubm3’, ‘ussubm3
mulm3’, ‘ssmulm3’, ‘usmulm3
divm3’, ‘ssdivm3
udivm3’, ‘usdivm3
modm3’, ‘umodm3
uminm3’, ‘umaxm3
andm3’, ‘iorm3’, ‘xorm3
Similar, for other arithmetic operations.


sminm3’, ‘smaxm3
Signed minimum and maximum operations. When used with floating point, if both operands are zeros, or if either operand is NaN, then it is unspecified which of the two operands is returned as the result.


reduc_smin_m’, ‘reduc_smax_m
Find the signed minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least significant bits of operand 0 (also a vector). The output and input vector should have the same modes.


reduc_umin_m’, ‘reduc_umax_m
Find the unsigned minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least significant bits of operand 0 (also a vector). The output and input vector should have the same modes.


reduc_splus_m
Compute the sum of the signed elements of a vector. The vector is operand 1, and the scalar result is stored in the least significant bits of operand 0 (also a vector). The output and input vector should have the same modes.


reduc_uplus_m
Compute the sum of the unsigned elements of a vector. The vector is operand 1, and the scalar result is stored in the least significant bits of operand 0 (also a vector). The output and input vector should have the same modes.


sdot_prodm

udot_prodm
Compute the sum of the products of two signed/unsigned elements. Operand 1 and operand 2 are of the same mode. Their product, which is of a wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or wider than the mode of the product. The result is placed in operand 0, which is of the same mode as operand 3.


ssum_widenm3

usum_widenm3
Operands 0 and 2 are of the same mode, which is wider than the mode of operand 1. Add operand 1 to operand 2 and place the widened result in operand 0. (This is used express accumulation of elements into an accumulator of a wider mode.)


vec_shl_m’, ‘vec_shr_m
Whole vector left/right shift in bits. Operand 1 is a vector to be shifted. Operand 2 is an integer shift amount in bits. Operand 0 is where the resulting shifted vector is stored. The output and input vectors should have the same modes.


vec_pack_trunc_m
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral or floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated after narrowing them down using truncation.


vec_pack_ssat_m’, ‘vec_pack_usat_m
Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral elements of size S. Operand 0 is the resulting vector in which the elements of the two input vectors are concatenated after narrowing them down using signed/unsigned saturating arithmetic.


vec_pack_sfix_trunc_m’, ‘vec_pack_ufix_trunc_m
Narrow, convert to signed/unsigned integral type and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated.


vec_unpacks_hi_m’, ‘vec_unpacks_lo_m
Extract and widen (promote) the high/low part of a vector of signed integral or floating point elements. The input vector (operand 1) has N elements of size S. Widen (promote) the high/low elements of the vector using signed or floating point extension and place the resulting N/2 values of size 2*S in the output vector (operand 0).


vec_unpacku_hi_m’, ‘vec_unpacku_lo_m
Extract and widen (promote) the high/low part of a vector of unsigned integral elements. The input vector (operand 1) has N elements of size S. Widen (promote) the high/low elements of the vector using zero extension and place the resulting N/2 values of size 2*S in the output vector (operand 0).


vec_unpacks_float_hi_m’, ‘vec_unpacks_float_lo_m
vec_unpacku_float_hi_m’, ‘vec_unpacku_float_lo_m
Extract, convert to floating point type and widen the high/low part of a vector of signed/unsigned integral elements. The input vector (operand 1) has N elements of size S. Convert the high/low elements of the vector using floating point conversion and place the resulting N/2 values of size 2*S in the output vector (operand 0).


vec_widen_umult_hi_m’, ‘vec_widen_umult_lo_m
vec_widen_smult_hi_m’, ‘vec_widen_smult_lo_m
Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2) are vectors with N signed/unsigned elements of size S. Multiply the high/low elements of the two vectors, and put the N/2 products of size 2*S in the output vector (operand 0).


mulhisi3
Multiply operands 1 and 2, which have mode HImode, and store a SImode product in operand 0.


mulqihi3’, ‘mulsidi3
Similar widening-multiplication instructions of other widths.


umulqihi3’, ‘umulhisi3’, ‘umulsidi3
Similar widening-multiplication instructions that do unsigned multiplication.


usmulqihi3’, ‘usmulhisi3’, ‘usmulsidi3
Similar widening-multiplication instructions that interpret the first operand as unsigned and the second operand as signed, then do a signed multiplication.


smulm3_highpart
Perform a signed multiplication of operands 1 and 2, which have mode m, and store the most significant half of the product in operand 0. The least significant half of the product is discarded.


umulm3_highpart
Similar, but the multiplication is unsigned.


maddmn4
Multiply operands 1 and 2, sign-extend them to mode n, add operand 3, and store the result in operand 0. Operands 1 and 2 have mode m and operands 0 and 3 have mode n. Both modes must be integer or fixed-point modes and n must be twice the size of m.

In other words, maddmn4 is like mulmn3 except that it also adds operand 3.

These instructions are not allowed to FAIL.


umaddmn4
Like maddmn4, but zero-extend the multiplication operands instead of sign-extending them.


ssmaddmn4
Like maddmn4, but all involved operations must be signed-saturating.


usmaddmn4
Like umaddmn4, but all involved operations must be unsigned-saturating.


msubmn4
Multiply operands 1 and 2, sign-extend them to mode n, subtract the result from operand 3, and store the result in operand 0. Operands 1 and 2 have mode m and operands 0 and 3 have mode n. Both modes must be integer or fixed-point modes and n must be twice the size of m.

In other words, msubmn4 is like mulmn3 except that it also subtracts the result from operand 3.

These instructions are not allowed to FAIL.


umsubmn4
Like msubmn4, but zero-extend the multiplication operands instead of sign-extending them.


ssmsubmn4
Like msubmn4, but all involved operations must be signed-saturating.


usmsubmn4
Like umsubmn4, but all involved operations must be unsigned-saturating.


divmodm4
Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3.

For machines with an instruction that produces both a quotient and a remainder, provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’ and ‘modm3’. This allows optimization in the relatively common case when both the quotient and remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces both, write the output routine of ‘divmodm4’ to call find_reg_note and look for a REG_UNUSED note on the quotient or remainder and generate the appropriate instruction.


udivmodm4
Similar, but does unsigned division.


ashlm3’, ‘ssashlm3’, ‘usashlm3
Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here m is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. The meaning of out-of-range shift counts can optionally be specified by TARGET_SHIFT_TRUNCATION_MASK. See TARGET_SHIFT_TRUNCATION_MASK. Operand 2 is always a scalar type.


ashrm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3
Other shift and rotate instructions, analogous to the ashlm3 instructions. Operand 2 is always a scalar type.


vashlm3’, ‘vashrm3’, ‘vlshrm3’, ‘vrotlm3’, ‘vrotrm3
Vector shift and rotate instructions that take vectors as operand 2 instead of a scalar type.


negm2’, ‘ssnegm2’, ‘usnegm2
Negate operand 1 and store the result in operand 0.


absm2
Store the absolute value of operand 1 into operand 0.


sqrtm2
Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to the C data type double and the sqrtf built-in function uses the mode which corresponds to the C data type float.


fmodm3
Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded towards zero to an integer.

The fmod built-in function of C always uses the mode which corresponds to the C data type double and the fmodf built-in function uses the mode which corresponds to the C data type float.


remainderm3
Store the remainder of dividing operand 1 by operand 2 into operand 0, rounded to the nearest integer.

The remainder built-in function of C always uses the mode which corresponds to the C data type double and the remainderf built-in function uses the mode which corresponds to the C data type float.


cosm2
Store the cosine of operand 1 into operand 0.

The cos built-in function of C always uses the mode which corresponds to the C data type double and the cosf built-in function uses the mode which corresponds to the C data type float.


sinm2
Store the sine of operand 1 into operand 0.

The sin built-in function of C always uses the mode which corresponds to the C data type double and the sinf built-in function uses the mode which corresponds to the C data type float.


expm2
Store the exponential of operand 1 into operand 0.

The exp built-in function of C always uses the mode which corresponds to the C data type double and the expf built-in function uses the mode which corresponds to the C data type float.


logm2
Store the natural logarithm of operand 1 into operand 0.

The log built-in function of C always uses the mode which corresponds to the C data type double and the logf built-in function uses the mode which corresponds to the C data type float.


powm3
Store the value of operand 1 raised to the exponent operand 2 into operand 0.

The pow built-in function of C always uses the mode which corresponds to the C data type double and the powf built-in function uses the mode which corresponds to the C data type float.


atan2m3
Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into operand 0, using the signs of both arguments to determine the quadrant of the result.

The atan2 built-in function of C always uses the mode which corresponds to the C data type double and the atan2f built-in function uses the mode which corresponds to the C data type float.


floorm2
Store the largest integral value not greater than argument.

The floor built-in function of C always uses the mode which corresponds to the C data type double and the floorf built-in function uses the mode which corresponds to the C data type float.


btruncm2
Store the argument rounded to integer towards zero.

The trunc built-in function of C always uses the mode which corresponds to the C data type double and the truncf built-in function uses the mode which corresponds to the C data type float.


roundm2
Store the argument rounded to integer away from zero.

The round built-in function of C always uses the mode which corresponds to the C data type double and the roundf built-in function uses the mode which corresponds to the C data type float.


ceilm2
Store the argument rounded to integer away from zero.

The ceil built-in function of C always uses the mode which corresponds to the C data type double and the ceilf built-in function uses the mode which corresponds to the C data type float.


nearbyintm2
Store the argument rounded according to the default rounding mode

The nearbyint built-in function of C always uses the mode which corresponds to the C data type double and the nearbyintf built-in function uses the mode which corresponds to the C data type float.


rintm2
Store the argument rounded according to the default rounding mode and raise the inexact exception when the result differs in value from the argument

The rint built-in function of C always uses the mode which corresponds to the C data type double and the rintf built-in function uses the mode which corresponds to the C data type float.


lrintmn2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed number according to the current rounding mode and store in operand 0 (which has mode n).


lroundm2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed number rounding to nearest and away from zero and store in operand 0 (which has mode n).


lfloorm2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed number rounding down and store in operand 0 (which has mode n).


lceilm2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed number rounding up and store in operand 0 (which has mode n).


copysignm3
Store a value with the magnitude of operand 1 and the sign of operand 2 into operand 0.

The copysign built-in function of C always uses the mode which corresponds to the C data type double and the copysignf built-in function uses the mode which corresponds to the C data type float.


ffsm2
Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. m is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.

The ffs built-in function of C always uses the mode which corresponds to the C data type int.


clzm2
Store into operand 0 the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the CLZ_DEFINED_VALUE_AT_ZERO (see Misc) macro defines if the result is undefined or has a useful value. m is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.


ctzm2
Store into operand 0 the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the CTZ_DEFINED_VALUE_AT_ZERO (see Misc) macro defines if the result is undefined or has a useful value. m is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.


popcountm2
Store into operand 0 the number of 1-bits in x. m is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.


paritym2
Store into operand 0 the parity of x, i.e. the number of 1-bits in x modulo 2. m is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction.


one_cmplm2
Store the bitwise-complement of operand 1 into operand 0.


cmpm
Compare operand 0 and operand 1, and set the condition codes. The RTL pattern should look like this:
          (set (cc0) (compare (match_operand:m 0 ...)
                              (match_operand:m 1 ...)))


tstm
Compare operand 0 against zero, and set the condition codes. The RTL pattern should look like this:
          (set (cc0) (match_operand:m 0 ...))

tstm’ patterns should not be defined for machines that do not use (cc0). Doing so would confuse the optimizer since it would no longer be clear which set operations were comparisons. The ‘cmpm’ patterns should be used instead.


movmemm
Block move instruction. The destination and source blocks of memory are the first two operands, and both are mem:BLKs with an address in mode Pmode.

The number of bytes to move is the third operand, in mode m. Usually, you specify word_mode for m. However, if you can generate better code knowing the range of valid lengths is smaller than those representable in a full word, you should provide a pattern with a mode corresponding to the range of values you can handle efficiently (e.g., QImode for values in the range 0–127; note we avoid numbers that appear negative) and also a pattern with word_mode.

The fourth operand is the known shared alignment of the source and destination, in the form of a const_int rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, is set to (const_int -1).

Descriptions of multiple movmemm patterns can only be beneficial if the patterns for smaller modes have fewer restrictions on their first, second and fourth operands. Note that the mode m in movmemm does not impose any restriction on the mode of individually moved data units in the block.

These patterns need not give special consideration to the possibility that the source and destination strings might overlap.


movstr
String copy instruction, with stpcpy semantics. Operand 0 is an output operand in mode Pmode. The addresses of the destination and source strings are operands 1 and 2, and both are mem:BLKs with addresses in mode Pmode. The execution of the expansion of this pattern should store in operand 0 the address in which the NUL terminator was stored in the destination string.


setmemm
Block set instruction. The destination string is the first operand, given as a mem:BLK whose address is in mode Pmode. The number of bytes to set is the second operand, in mode m. The value to initialize the memory with is the third operand. Targets that only support the clearing of memory should reject any value that is not the constant 0. See ‘movmemm’ for a discussion of the choice of mode.

The fourth operand is the known alignment of the destination, in the form of a const_int rtx. Thus, if the compiler knows that the destination is word-aligned, it may provide the value 4 for this operand.

Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, is set to (const_int -1).

The use for multiple setmemm is as for movmemm.


cmpstrnm
String compare instruction, with five operands. Operand 0 is the output; it has mode m. The remaining four operands are like the operands of ‘movmemm’. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end in the first byte and reading past that may access an invalid page or segment and cause a fault. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison.


cmpstrm
String compare instruction, without known maximum length. Operand 0 is the output; it has mode m. The second and third operand are the blocks of memory to be compared; both are mem:BLK with an address in mode Pmode.

The fourth operand is the known shared alignment of the source and destination, in the form of a const_int rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand.

The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end in the first byte and reading past that may access an invalid page or segment and cause a fault. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison.


cmpmemm
Block compare instruction, with five operands like the operands of ‘cmpstrm’. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each block. Unlike ‘cmpstrm’ the instruction can prefetch any bytes in the two memory blocks. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison.


strlenm
Compute the length of a string, with three operands. Operand 0 is the result (of mode m), operand 1 is a mem referring to the first character of the string, operand 2 is the character to search for (normally zero), and operand 3 is a constant describing the known alignment of the beginning of the string.


floatmn2
Convert signed integer operand 1 (valid for fixed point mode m) to floating point mode n and store in operand 0 (which has mode n).


floatunsmn2
Convert unsigned integer operand 1 (valid for fixed point mode m) to floating point mode n and store in operand 0 (which has mode n).


fixmn2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed number and store in operand 0 (which has mode n). This instruction's result is defined only when the value of operand 1 is an integer.

If the machine description defines this pattern, it also needs to define the ftrunc pattern.


fixunsmn2
Convert operand 1 (valid for floating point mode m) to fixed point mode n as an unsigned number and store in operand 0 (which has mode n). This instruction's result is defined only when the value of operand 1 is an integer.


ftruncm2
Convert operand 1 (valid for floating point mode m) to an integer value, still represented in floating point mode m, and store it in operand 0 (valid for floating point mode m).


fix_truncmn2
Like ‘fixmn2’ but works for any floating point value of mode m by converting the value to an integer.


fixuns_truncmn2
Like ‘fixunsmn2’ but works for any floating point value of mode m by converting the value to an integer.


truncmn2
Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which has mode n). Both modes must be fixed point or both floating point.


extendmn2
Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which has mode n). Both modes must be fixed point or both floating point.


zero_extendmn2
Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which has mode n). Both modes must be fixed point.


fractmn2
Convert operand 1 of mode m to mode n and store in operand 0 (which has mode n). Mode m and mode n could be fixed-point to fixed-point, signed integer to fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-point to floating-point. When overflows or underflows happen, the results are undefined.


satfractmn2
Convert operand 1 of mode m to mode n and store in operand 0 (which has mode n). Mode m and mode n could be fixed-point to fixed-point, signed integer to fixed-point, or floating-point to fixed-point. When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum.


fractunsmn2
Convert operand 1 of mode m to mode n and store in operand 0 (which has mode n). Mode m and mode n could be unsigned integer to fixed-point, or fixed-point to unsigned integer. When overflows or underflows happen, the results are undefined.


satfractunsmn2
Convert unsigned integer operand 1 of mode m to fixed-point mode n and store in operand 0 (which has mode n). When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum.


extv
Extract a bit-field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode word_mode. Operand 1 may have mode byte_mode or word_mode; often word_mode is allowed only for registers. Operands 2 and 3 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands 2 and 3 and the constant is never zero for operand 2.

The bit-field value is sign-extended to a full word integer before it is stored in operand 0.


extzv
Like ‘extv’ except that the bit-field value is zero-extended.


insv
Store operand 3 (which must be valid for word_mode) into a bit-field in operand 0, where operand 1 specifies the width in bits and operand 2 the starting bit. Operand 0 may have mode byte_mode or word_mode; often word_mode is allowed only for registers. Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands 1 and 2 and the constant is never zero for operand 1.


movmodecc
Conditionally move operand 2 or operand 3 into operand 0 according to the comparison in operand 1. If the comparison is true, operand 2 is moved into operand 0, otherwise operand 3 is moved.

The mode of the operands being compared need not be the same as the operands being moved. Some machines, sparc64 for example, have instructions that conditionally move an integer value based on the floating point condition codes and vice versa.

If the machine does not have conditional move instructions, do not define these patterns.


addmodecc
Similar to ‘movmodecc’ but for conditional addition. Conditionally move operand 2 or (operands 2 + operand 3) into operand 0 according to the comparison in operand 1. If the comparison is true, operand 2 is moved into operand 0, otherwise (operand 2 + operand 3) is moved.


scond
Store zero or nonzero in the operand according to the condition codes. Value stored is nonzero iff the condition cond is true. cond is the name of a comparison operation expression code, such as eq, lt or leu.

You specify the mode that the operand must have when you write the match_operand expression. The compiler automatically sees which mode you have used and supplies an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining the macro STORE_FLAG_VALUE (see Misc). If a description cannot be found that can be used for all the ‘scond’ patterns, you should omit those operations from the machine description.

These operations may fail, but should do so only in relatively uncommon cases; if they would fail for common cases involving integer comparisons, it is best to omit these patterns.

If these operations are omitted, the compiler will usually generate code that copies the constant one to the target and branches around an assignment of zero to the target. If this code is more efficient than the potential instructions used for the ‘scond’ pattern followed by those required to convert the result into a 1 or a zero in SImode, you should omit the ‘scond’ operations from the machine description.


bcond
Conditional branch instruction. Operand 0 is a label_ref that refers to the label to jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison instruction is followed by a conditional branch instruction. In that case, the ‘cmpm’ (and ‘tstm’) patterns should simply store the operands away and generate all the required insns in a define_expand (see Expander Definitions) for the conditional branch operations. All calls to expand ‘bcond’ patterns are immediately preceded by calls to expand either a ‘cmpm’ pattern or a ‘tstm’ pattern.

Machines that use a pseudo register for the condition code value, or where the mode used for the comparison depends on the condition being tested, should also use the above mechanism. See Jump Patterns.

The above discussion also applies to the ‘movmodecc’ and ‘scond’ patterns.


cbranchmode4
Conditional branch instruction combined with a compare instruction. Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the comparison, respectively. Operand 3 is a label_ref that refers to the label to jump to.


jump
A jump inside a function; an unconditional branch. Operand 0 is the label_ref of the label to jump to. This pattern name is mandatory on all machines.


call
Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments pushed as a const_int; operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is supplied for the sake of some RISC machines which need to put this information into the assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function. Note, however, that this address can be a symbol_ref expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a define_expand (see Expander Definitions) that places the address into a register and uses that register in the call instruction.


call_value
Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more operands, the same as the three operands of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.


call_pop’, ‘call_value_pop
Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_ARGS is nonzero. They should emit a parallel that contains both the function call and a set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be nonzero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired.


untyped_call
Subroutine call instruction returning a value of any type. Operand 0 is the function to call; operand 1 is a memory location where the result of calling the function is to be stored; operand 2 is a parallel expression where each element is a set expression that indicates the saving of a function return value into the result block.

This instruction pattern should be defined to support __builtin_apply on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. FUNCTION_VALUE_REGNO_P is true for more than one register).


return
Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where multiple instructions are usually needed to return from a function, but some class of functions only requires one instruction to implement a return. Normally, the applicable functions are those which do not need to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true when reload_completed is nonzero and the function's epilogue would only be a single instruction. For machines with register windows, the routine leaf_function_p may be used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such as

          (define_insn ""
            [(set (pc)
                  (if_then_else (match_operator
                                   0 "comparison_operator"
                                   [(cc0) (const_int 0)])
                                (return)
                                (pc)))]
            "condition"
            "...")

where condition would normally be the same condition specified on the named ‘return’ pattern.


untyped_return
Untyped subroutine return instruction. This instruction pattern should be defined to support __builtin_return on machines where special instructions are needed to return a value of any type.

Operand 0 is a memory location where the result of calling a function with __builtin_apply is stored; operand 1 is a parallel expression where each element is a set expression that indicates the restoring of a function return value from the result block.


nop
No-op instruction. This instruction pattern name should always be defined to output a no-op in assembler code. (const_int 0) will do as an RTL pattern.


indirect_jump
An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines.


casesi
Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands:
  1. The index to dispatch on, which has mode SImode.
  2. The lower bound for indices in the table, an integer constant.
  3. The total range of indices in the table—the largest index minus the smallest one (both inclusive).
  4. A label that precedes the table itself.
  5. A label to jump to if the index has a value outside the bounds.

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number of elements in the table is one plus the difference between the upper bound and the lower bound.


tablejump
Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the macro CASE_VECTOR_PC_RELATIVE evaluates to a nonzero value then the first operand is an offset which counts from the address of the table; otherwise, it is an absolute address to jump to. In either case, the first operand has mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its assembler code normally has no need to use the second operand, but you should incorporate it in the RTL pattern so that the jump optimizer will not delete the table as unreachable code.


decrement_and_branch_until_zero
Conditional branch instruction that decrements a register and jumps if the register is nonzero. Operand 0 is the register to decrement and test; operand 1 is the label to jump to if the register is nonzero. See Looping Patterns.

This optional instruction pattern is only used by the combiner, typically for loops reversed by the loop optimizer when strength reduction is enabled.


doloop_end
Conditional branch instruction that decrements a register and jumps if the register is nonzero. This instruction takes five operands: Operand 0 is the register to decrement and test; operand 1 is the number of loop iterations as a const_int or const0_rtx if this cannot be determined until run-time; operand 2 is the actual or estimated maximum number of iterations as a const_int; operand 3 is the number of enclosed loops as a const_int (an innermost loop has a value of 1); operand 4 is the label to jump to if the register is nonzero. See Looping Patterns.

This optional instruction pattern should be defined for machines with low-overhead looping instructions as the loop optimizer will try to modify suitable loops to utilize it. If nested low-overhead looping is not supported, use a define_expand (see Expander Definitions) and make the pattern fail if operand 3 is not const1_rtx. Similarly, if the actual or estimated maximum number of iterations is too large for this instruction, make it fail.


doloop_begin
Companion instruction to doloop_end required for machines that need to perform some initialization, such as loading special registers used by a low-overhead looping instruction. If initialization insns do not always need to be emitted, use a define_expand (see Expander Definitions) and make it fail.


canonicalize_funcptr_for_compare
Canonicalize the function pointer in operand 1 and store the result into operand 0.

Operand 0 is always a reg and has mode Pmode; operand 1 may be a reg, mem, symbol_ref, const_int, etc and also has mode Pmode.

Canonicalization of a function pointer usually involves computing the address of the function which would be called if the function pointer were used in an indirect call.

Only define this pattern if function pointers on the target machine can have different values but still call the same function when used in an indirect call.


save_stack_block
save_stack_function
save_stack_nonlocal
restore_stack_block
restore_stack_function
restore_stack_nonlocal
Most machines save and restore the stack pointer by copying it to or from an object of mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to the non-standard cases by using a define_expand (see Expander Definitions) that produces the required insns. The three types of saves and restores are:

  1. save_stack_block’ saves the stack pointer at the start of a block that allocates a variable-sized object, and ‘restore_stack_block’ restores the stack pointer when the block is exited.
  2. save_stack_function’ and ‘restore_stack_function’ do a similar job for the outermost block of a function and are used when the function allocates variable-sized objects or calls alloca. Only the epilogue uses the restored stack pointer, allowing a simpler save or restore sequence on some machines.
  3. save_stack_nonlocal’ is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use ‘restore_stack_nonlocal’ to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information or stack backchains. Place insns in these patterns to save and restore any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the stack pointer. The mode used to allocate the save area defaults to Pmode but you can override that choice by defining the STACK_SAVEAREA_MODE macro (see Storage Layout). You must specify an integral mode, or VOIDmode if no save area is needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for restore operations. If ‘save_stack_block’ is defined, operand 0 must not be VOIDmode since these saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx when the stack pointer is saved for use by nonlocal gotos and a reg in the other two cases.


allocate_stack
Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 1 from the stack pointer to create space for dynamically allocated data.

Store the resultant pointer to this space into operand 0. If you are allocating space from the main stack, do this by emitting a move insn to copy virtual_stack_dynamic_rtx to operand 0. If you are allocating the space elsewhere, generate code to copy the location of the space to operand 0. In the latter case, you must ensure this space gets freed when the corresponding space on the main stack is free.

Do not define this pattern if all that must be done is the subtraction. Some machines require other operations such as stack probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer.


check_stack
If stack checking cannot be done on your system by probing the stack with a load or store instruction (see Stack Checking), define this pattern to perform the needed check and signaling an error if the stack has overflowed. The single operand is the location in the stack furthest from the current stack pointer that you need to validate. Normally, on machines where this pattern is needed, you would obtain the stack limit from a global or thread-specific variable or register.


nonlocal_goto
Emit code to generate a non-local goto, e.g., a jump from one function to a label in an outer function. This pattern has four arguments, each representing a value to be used in the jump. The first argument is to be loaded into the frame pointer, the second is the address to branch to (code to dispatch to the actual label), the third is the address of a location where the stack is saved, and the last is the address of the label, to be placed in the location for the incoming static chain.

On most machines you need not define this pattern, since GCC will already generate the correct code, which is to load the frame pointer and static chain, restore the stack (using the ‘restore_stack_nonlocal’ pattern, if defined), and jump indirectly to the dispatcher. You need only define this pattern if this code will not work on your machine.


nonlocal_goto_receiver
This pattern, if defined, contains code needed at the target of a nonlocal goto after the code already generated by GCC. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored when the frame pointer is restored. Note that a nonlocal goto only occurs within a unit-of-translation, so a global table pointer that is shared by all functions of a given module need not be restored. There are no arguments.


exception_receiver
This pattern, if defined, contains code needed at the site of an exception handler that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored after control flow is branched to the handler of an exception. There are no arguments.


builtin_setjmp_setup
This pattern, if defined, contains additional code needed to initialize the jmp_buf. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. Though it is preferred that the pointer value be recalculated if possible (given the address of a label for instance). The single argument is a pointer to the jmp_buf. Note that the buffer is five words long and that the first three are normally used by the generic mechanism.


builtin_setjmp_receiver
This pattern, if defined, contains code needed at the site of an built-in setjmp that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. It takes one argument, which is the label to which builtin_longjmp transfered control; this pattern may be emitted at a small offset from that label.


builtin_longjmp
This pattern, if defined, performs the entire action of the longjmp. You will not normally need to define this pattern unless you also define builtin_setjmp_setup. The single argument is a pointer to the jmp_buf.


eh_return
This pattern, if defined, affects the way __builtin_eh_return, and thence the call frame exception handling library routines, are built. It is intended to handle non-trivial actions needed along the abnormal return path.

The address of the exception handler to which the function should return is passed as operand to this pattern. It will normally need to copied by the pattern to some special register or memory location. If the pattern needs to determine the location of the target call frame in order to do so, it may use EH_RETURN_STACKADJ_RTX, if defined; it will have already been assigned.

If this pattern is not defined, the default action will be to simply copy the return address to EH_RETURN_HANDLER_RTX. Either that macro or this pattern needs to be defined if call frame exception handling is to be used.


prologue
This pattern, if defined, emits RTL for entry to a function. The function entry is responsible for setting up the stack frame, initializing the frame pointer register, saving callee saved registers, etc.

Using a prologue pattern is generally preferred over defining TARGET_ASM_FUNCTION_PROLOGUE to emit assembly code for the prologue.

The prologue pattern is particularly useful for targets which perform instruction scheduling.


epilogue
This pattern emits RTL for exit from a function. The function exit is responsible for deallocating the stack frame, restoring callee saved registers and emitting the return instruction.

Using an epilogue pattern is generally preferred over defining TARGET_ASM_FUNCTION_EPILOGUE to emit assembly code for the epilogue.

The epilogue pattern is particularly useful for targets which perform instruction scheduling or which have delay slots for their return instruction.


sibcall_epilogue
This pattern, if defined, emits RTL for exit from a function without the final branch back to the calling function. This pattern will be emitted before any sibling call (aka tail call) sites.

The sibcall_epilogue pattern must not clobber any arguments used for parameter passing or any stack slots for arguments passed to the current function.


trap
This pattern, if defined, signals an error, typically by causing some kind of signal to be raised. Among other places, it is used by the Java front end to signal `invalid array index' exceptions.


conditional_trap
Conditional trap instruction. Operand 0 is a piece of RTL which performs a comparison. Operand 1 is the trap code, an integer.

A typical conditional_trap pattern looks like

          (define_insn "conditional_trap"
            [(trap_if (match_operator 0 "trap_operator"
                       [(cc0) (const_int 0)])
                      (match_operand 1 "const_int_operand" "i"))]
            ""
            "...")


prefetch
This pattern, if defined, emits code for a non-faulting data prefetch instruction. Operand 0 is the address of the memory to prefetch. Operand 1 is a constant 1 if the prefetch is preparing for a write to the memory address, or a constant 0 otherwise. Operand 2 is the expected degree of temporal locality of the data and is a value between 0 and 3, inclusive; 0 means that the data has no temporal locality, so it need not be left in the cache after the access; 3 means that the data has a high degree of temporal locality and should be left in all levels of cache possible; 1 and 2 mean, respectively, a low or moderate degree of temporal locality.

Targets that do not support write prefetches or locality hints can ignore the values of operands 1 and 2.


blockage
This pattern defines a pseudo insn that prevents the instruction scheduler from moving instructions across the boundary defined by the blockage insn. Normally an UNSPEC_VOLATILE pattern.


memory_barrier
If the target memory model is not fully synchronous, then this pattern should be defined to an instruction that orders both loads and stores before the instruction with respect to loads and stores after the instruction. This pattern has no operands.


sync_compare_and_swapmode
This pattern, if defined, emits code for an atomic compare-and-swap operation. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is the “old” value to be compared against the current contents of the memory location. Operand 3 is the “new” value to store in the memory if the compare succeeds. Operand 0 is the result of the operation; it should contain the contents of the memory before the operation. If the compare succeeds, this should obviously be a copy of operand 2.

This pattern must show that both operand 0 and operand 1 are modified.

This pattern must issue any memory barrier instructions such that all memory operations before the atomic operation occur before the atomic operation and all memory operations after the atomic operation occur after the atomic operation.


sync_compare_and_swap_ccmode
This pattern is just like sync_compare_and_swapmode, except it should act as if compare part of the compare-and-swap were issued via cmpm. This comparison will only be used with EQ and NE branches and setcc operations.

Some targets do expose the success or failure of the compare-and-swap operation via the status flags. Ideally we wouldn't need a separate named pattern in order to take advantage of this, but the combine pass does not handle patterns with multiple sets, which is required by definition for sync_compare_and_swapmode.


sync_addmode’, ‘sync_submode
sync_iormode’, ‘sync_andmode
sync_xormode’, ‘sync_nandmode
These patterns emit code for an atomic operation on memory. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory operations before the atomic operation occur before the atomic operation and all memory operations after the atomic operation occur after the atomic operation.

If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined.


sync_old_addmode’, ‘sync_old_submode
sync_old_iormode’, ‘sync_old_andmode
sync_old_xormode’, ‘sync_old_nandmode
These patterns are emit code for an atomic operation on memory, and return the value that the memory contained before the operation. Operand 0 is the result value, operand 1 is the memory on which the atomic operation is performed, and operand 2 is the second operand to the binary operator.

This pattern must issue any memory barrier instructions such that all memory operations before the atomic operation occur before the atomic operation and all memory operations after the atomic operation occur after the atomic operation.

If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined.


sync_new_addmode’, ‘sync_new_submode
sync_new_iormode’, ‘sync_new_andmode
sync_new_xormode’, ‘sync_new_nandmode
These patterns are like their sync_old_op counterparts, except that they return the value that exists in the memory location after the operation, rather than before the operation.


sync_lock_test_and_setmode
This pattern takes two forms, based on the capabilities of the target. In either case, operand 0 is the result of the operand, operand 1 is the memory on which the atomic operation is performed, and operand 2 is the value to set in the lock.

In the ideal case, this operation is an atomic exchange operation, in which the previous value in memory operand is copied into the result operand, and the value operand is stored in the memory operand.

For less capable targets, any value operand that is not the constant 1 should be rejected with FAIL. In this case the target may use an atomic test-and-set bit operation. The result operand should contain 1 if the bit was previously set and 0 if the bit was previously clear. The true contents of the memory operand are implementation defined.

This pattern must issue any memory barrier instructions such that the pattern as a whole acts as an acquire barrier, that is all memory operations after the pattern do not occur until the lock is acquired.

If this pattern is not defined, the operation will be constructed from a compare-and-swap operation, if defined.


sync_lock_releasemode
This pattern, if defined, releases a lock set by sync_lock_test_and_setmode. Operand 0 is the memory that contains the lock; operand 1 is the value to store in the lock.

If the target doesn't implement full semantics for sync_lock_test_and_setmode, any value operand which is not the constant 0 should be rejected with FAIL, and the true contents of the memory operand are implementation defined.

This pattern must issue any memory barrier instructions such that the pattern as a whole acts as a release barrier, that is the lock is released only after all previous memory operations have completed.

If this pattern is not defined, then a memory_barrier pattern will be emitted, followed by a store of the value to the memory operand.


stack_protect_set
This pattern, if defined, moves a Pmode value from the memory in operand 1 to the memory in operand 0 without leaving the value in a register afterward. This is to avoid leaking the value some place that an attacker might use to rewrite the stack guard slot after having clobbered it.

If this pattern is not defined, then a plain move pattern is generated.


stack_protect_test
This pattern, if defined, compares a Pmode value from the memory in operand 1 with the memory in operand 0 without leaving the value in a register afterward and branches to operand 2 if the values weren't equal.

If this pattern is not defined, then a plain compare pattern and conditional branch pattern is used.


clear_cache
This pattern, if defined, flushes the instruction cache for a region of memory. The region is bounded to by the Pmode pointers in operand 0 inclusive and operand 1 exclusive.

If this pattern is not defined, a call to the library function __clear_cache is used.


Next: , Previous: Standard Names, Up: Machine Desc

16.10 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that appears first in the machine description is the one used. Therefore, more specific patterns (patterns that will match fewer things) and faster instructions (those that will produce better code when they do match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is not valid. For example, the 68000 has an instruction for converting a fullword to floating point and another for converting a byte to floating point. An instruction converting an integer to floating point could match either one. We put the pattern to convert the fullword first to make sure that one will be used rather than the other. (Otherwise a large integer might be generated as a single-byte immediate quantity, which would not work.) Instead of using this pattern ordering it would be possible to make the pattern for convert-a-byte smart enough to deal properly with any constant value.


Next: , Previous: Pattern Ordering, Up: Machine Desc

16.11 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch names ‘bcond’. The recognition template must always have the form

     (set (pc)
          (if_then_else (cond (cc0) (const_int 0))
                        (label_ref (match_operand 0 "" ""))
                        (pc)))

In addition, every machine description must have an anonymous pattern for each of the possible reverse-conditional branches. Their templates look like

     (set (pc)
          (if_then_else (cond (cc0) (const_int 0))
                        (pc)
                        (label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into reverse-conditional branches.

It is often convenient to use the match_operator construct to reduce the number of patterns that must be specified for branches. For example,

     (define_insn ""
       [(set (pc)
             (if_then_else (match_operator 0 "comparison_operator"
                                           [(cc0) (const_int 0)])
                           (pc)
                           (label_ref (match_operand 1 "" ""))))]
       "condition"
       "...")

In some cases machines support instructions identical except for the machine mode of one or more operands. For example, there may be “sign-extend halfword” and “sign-extend byte” instructions whose patterns are

     (set (match_operand:SI 0 ...)
          (extend:SI (match_operand:HI 1 ...)))
     
     (set (match_operand:SI 0 ...)
          (extend:SI (match_operand:QI 1 ...)))

Constant integers do not specify a machine mode, so an instruction to extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode (HImode, here). If the pattern matches the QImode instruction, the results will be incorrect if the constant value does not actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized away, but they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with a constant permitted by the constraint in some cases. Similarly for memory references. Because of this substitution, you should not provide separate patterns for increment and decrement instructions. Instead, they should be generated from the same pattern that supports register-register add insns by examining the operands and generating the appropriate machine instruction.


Next: , Previous: Dependent Patterns, Up: Machine Desc

16.12 Defining Jump Instruction Patterns

For most machines, GCC assumes that the machine has a condition code. A comparison insn sets the condition code, recording the results of both signed and unsigned comparison of the given operands. A separate branch insn tests the condition code and branches or not according its value. The branch insns come in distinct signed and unsigned flavors. Many common machines, such as the VAX, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one set of conditional branch instructions. The easiest way to handle these machines is to treat them just like the others until the final stage where assembly code is written. At this time, when outputting code for the compare instruction, peek ahead at the following branch using next_cc0_user (insn). (The variable insn refers to the insn being output, in the output-writing code in an instruction pattern.) If the RTL says that is an unsigned branch, output an unsigned compare; otherwise output a signed compare. When the branch itself is output, you can treat signed and unsigned branches identically.

The reason you can do this is that GCC always generates a pair of consecutive RTL insns, possibly separated by note insns, one to set the condition code and one to test it, and keeps the pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_UPDATE_CC to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar technique works for them. When it is time to “output” a compare instruction, record its operands in two static variables. When outputting the branch-on-condition-code instruction that follows, actually output a compare-and-branch instruction that uses the remembered operands.

It also works to define patterns for compare-and-branch instructions. In optimizing compilation, the pair of compare and branch instructions will be combined according to these patterns. But this does not happen if optimization is not requested. So you must use one of the solutions above in addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there may not even be a separate condition code register. On these machines, the restriction that the definition and use of the condition code be adjacent insns is not necessary and can prevent important optimizations. For example, on the IBM RS/6000, there is a delay for taken branches unless the condition code register is set three instructions earlier than the conditional branch. The instruction scheduler cannot perform this optimization if it is not permitted to separate the definition and use of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition code. If there is a specific condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the condition code was produced; for example, on the 68k and SPARC, setting the condition code directly from an add or subtract instruction does not clear the overflow bit the way that a test instruction does, so a different branch instruction must be used for some conditional branches. For machines that use (cc0), the set and use of the condition code must be adjacent (separated only by note insns) allowing flags in cc_status to be used. (See Condition Code.) Also, the comparison and branch insns can be located from each other by using the functions prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no assumptions can be made about the adjacency of the compare and branch insns and the above methods cannot be used. Instead, we use the machine mode of the condition code register to record different formats of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_CC. Normally, it will be CCmode. If additional modes are required (as for the add example mentioned above in the SPARC), define them in machine-modes.def (see Condition Code). Also define SELECT_CC_MODE to choose a mode given an operand of a compare.

If it is known during RTL generation that a different mode will be required (for example, if the machine has separate compare instructions for signed and unsigned quantities, like most IBM processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the macro SELECT_CC_MODE determines which machine mode should be used for the comparison result. The patterns should be written using that mode. To support the case of the add on the SPARC discussed above, we have the pattern

     (define_insn ""
       [(set (reg:CC_NOOV 0)
             (compare:CC_NOOV
               (plus:SI (match_operand:SI 0 "register_operand" "%r")
                        (match_operand:SI 1 "arith_operand" "rI"))
               (const_int 0)))]
       ""
       "...")

The SELECT_CC_MODE macro on the SPARC returns CC_NOOVmode for comparisons whose argument is a plus.


Next: , Previous: Jump Patterns, Up: Machine Desc

16.13 Defining Looping Instruction Patterns

Some machines have special jump instructions that can be utilized to make loops more efficient. A common example is the 68000 ‘dbra’ instruction which performs a decrement of a register and a branch if the result was greater than zero. Other machines, in particular digital signal processors (DSPs), have special block repeat instructions to provide low-overhead loop support. For example, the TI TMS320C3x/C4x DSPs have a block repeat instruction that loads special registers to mark the top and end of a loop and to count the number of loop iterations. This avoids the need for fetching and executing a ‘dbra’-like instruction and avoids pipeline stalls associated with the jump.

GCC has three special named patterns to support low overhead looping. They are ‘decrement_and_branch_until_zero’, ‘doloop_begin’, and ‘doloop_end’. The first pattern, ‘decrement_and_branch_until_zero’, is not emitted during RTL generation but may be emitted during the instruction combination phase. This requires the assistance of the loop optimizer, using information collected during strength reduction, to reverse a loop to count down to zero. Some targets also require the loop optimizer to add a REG_NONNEG note to indicate that the iteration count is always positive. This is needed if the target performs a signed loop termination test. For example, the 68000 uses a pattern similar to the following for its dbra instruction:

     (define_insn "decrement_and_branch_until_zero"
       [(set (pc)
             (if_then_else
               (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
                            (const_int -1))
                   (const_int 0))
               (label_ref (match_operand 1 "" ""))
               (pc)))
        (set (match_dup 0)
             (plus:SI (match_dup 0)
                      (const_int -1)))]
       "find_reg_note (insn, REG_NONNEG, 0)"
       "...")

Note that since the insn is both a jump insn and has an output, it must deal with its own reloads, hence the `m' constraints. Also note that since this insn is generated by the instruction combination phase combining two sequential insns together into an implicit parallel insn, the iteration counter needs to be biased by the same amount as the decrement operation, in this case −1. Note that the following similar pattern will not be matched by the combiner.

     (define_insn "decrement_and_branch_until_zero"
       [(set (pc)
             (if_then_else
               (ge (match_operand:SI 0 "general_operand" "+d*am")
                   (const_int 1))
               (label_ref (match_operand 1 "" ""))
               (pc)))
        (set (match_dup 0)
             (plus:SI (match_dup 0)
                      (const_int -1)))]
       "find_reg_note (insn, REG_NONNEG, 0)"
       "...")

The other two special looping patterns, ‘doloop_begin’ and ‘doloop_end’, are emitted by the loop optimizer for certain well-behaved loops with a finite number of loop iterations using information collected during strength reduction.

The ‘doloop_end’ pattern describes the actual looping instruction (or the implicit looping operation) and the ‘doloop_begin’ pattern is an optional companion pattern that can be used for initialization needed for some low-overhead looping instructions.

Note that some machines require the actual looping instruction to be emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping instruction at the top of the loop can cause problems with flow analysis. So instead, a dummy doloop insn is emitted at the end of the loop. The machine dependent reorg pass checks for the presence of this doloop insn and then searches back to the top of the loop, where it inserts the true looping insn (provided there are no instructions in the loop which would cause problems). Any additional labels can be emitted at this point. In addition, if the desired special iteration counter register was not allocated, this machine dependent reorg pass could emit a traditional compare and jump instruction pair.

The essential difference between the ‘decrement_and_branch_until_zero’ and the ‘doloop_end’ patterns is that the loop optimizer allocates an additional pseudo register for the latter as an iteration counter. This pseudo register cannot be used within the loop (i.e., general induction variables cannot be derived from it), however, in many cases the loop induction variable may become redundant and removed by the flow pass.


Next: , Previous: Looping Patterns, Up: Machine Desc

16.14 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation performed by a single machine instruction. This situation is most commonly encountered with logical, branch, and multiply-accumulate instructions. In such cases, the compiler attempts to convert these multiple RTL expressions into a single canonical form to reduce the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

Further canonicalization rules are defined in the function commutative_operand_precedence in gcc/rtlanal.c.


Next: , Previous: Insn Canonicalizations, Up: Machine Desc

16.15 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike the latter, a define_expand is used only for RTL generation and it can produce more than one RTL insn.

A define_expand RTX has four operands:

Every RTL insn emitted by a define_expand must match some define_insn in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes the operands that need to be specified when this pattern is used. In particular, it gives a predicate for each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern, should be described with a match_operand in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GCC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than once, subsequent references should use match_dup.

The RTL template may also refer to internal “operands” which are temporary registers or labels used only within the sequence made by the define_expand. Internal operands are substituted into the RTL template with match_dup, never with match_operand. The values of the internal operands are not passed in as arguments by the compiler when it requests use of this pattern. Instead, they are computed within the pattern, in the preparation statements. These statements compute the values and store them into the appropriate elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and FAIL. Use them with a following semicolon, as a statement.

DONE
Use the DONE macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be those already emitted by explicit calls to emit_insn within the preparation statements; the RTL template will not be generated.


FAIL
Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting, etc.) and bit-field (extv, extzv, and insv) operations.

If the preparation falls through (invokes neither DONE nor FAIL), then the define_expand acts like a define_insn in that the RTL template is used to generate the insn.

The RTL template is not used for matching, only for generating the initial insn list. If the preparation statement always invokes DONE or FAIL, the RTL template may be reduced to a simple list of operands, such as this example:

     (define_expand "addsi3"
       [(match_operand:SI 0 "register_operand" "")
        (match_operand:SI 1 "register_operand" "")
        (match_operand:SI 2 "register_operand" "")]
       ""
       "
     {
       handle_add (operands[0], operands[1], operands[2]);
       DONE;
     }")

Here is an example, the definition of left-shift for the SPUR chip:

     (define_expand "ashlsi3"
       [(set (match_operand:SI 0 "register_operand" "")
             (ashift:SI
               (match_operand:SI 1 "register_operand" "")
               (match_operand:SI 2 "nonmemory_operand" "")))]
       ""
       "
     {
       if (GET_CODE (operands[2]) != CONST_INT
           || (unsigned) INTVAL (operands[2]) > 3)
         FAIL;
     }")

This example uses define_expand so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names, then it would be possible to use a define_insn in that case. Here is another case (zero-extension on the 68000) which makes more use of the power of define_expand:

     (define_expand "zero_extendhisi2"
       [(set (match_operand:SI 0 "general_operand" "")
             (const_int 0))
        (set (strict_low_part
               (subreg:HI
                 (match_dup 0)
                 0))
             (match_operand:HI 1 "general_operand" ""))]
       ""
       "operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of] the output operand, so the preparation statement makes sure this isn't so. The function make_safe_from copies the operands[1] into a temporary register if it refers to operands[0]. It does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the SPUR chip is done by and-ing the result against a halfword mask. But this mask cannot be represented by a const_int because the constant value is too large to be legitimate on this machine. So it must be copied into a register with force_reg and then the register used in the and.

     (define_expand "zero_extendhisi2"
       [(set (match_operand:SI 0 "register_operand" "")
             (and:SI (subreg:SI
                       (match_operand:HI 1 "register_operand" "")
                       0)
                     (match_dup 2)))]
       ""
       "operands[2]
          = force_reg (SImode, GEN_INT (65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic operation or a bit-field operation, then the last insn it generates must not be a code_label, barrier or note. It must be an insn, jump_insn or call_insn. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler.


Next: , Previous: Expander Definitions, Up: Machine Desc

16.16 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns. On machines that have instructions requiring delay slots (see Delay Slots) or that have instructions whose output is not available for multiple cycles (see Processor pipeline description), the compiler phases that optimize these cases need to be able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to one machine instruction. The disadvantage of doing so is that it will cause the compilation to be slower and require more space. If the resulting insns are too complex, it may also suppress some optimizations. The compiler splits the insn if there is a reason to believe that it might improve instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by some define_insn pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several simpler insns. It looks like this:

     (define_split
       [insn-pattern]
       "condition"
       [new-insn-pattern-1
        new-insn-pattern-2
        ...]
       "preparation-statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be tested, as in a define_insn. When an insn matching insn-pattern and satisfying condition is found, it is replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-pattern-2, etc.

The preparation-statements are similar to those statements that are specified for define_expand (see Expander Definitions) and are executed before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in define_expand, however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means that it must have been matched by some define_insn and, if reload_completed is nonzero, is known to satisfy the constraints of that define_insn. In that case, the new insn patterns must also be insns that are matched by some define_insn and, if reload_completed is nonzero, must also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from a29k.md, which splits a sign_extend from HImode to SImode into a pair of shift insns:

     (define_split
       [(set (match_operand:SI 0 "gen_reg_operand" "")
             (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
       ""
       [(set (match_dup 0)
             (ashift:SI (match_dup 1)
                        (const_int 16)))
        (set (match_dup 0)
             (ashiftrt:SI (match_dup 0)
                          (const_int 16)))]
       "
     { operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the pattern is not matched by any define_insn. The combiner pass first tries to split a single set expression and then the same set expression inside a parallel, but followed by a clobber of a pseudo-reg to use as a scratch register. In these cases, the combiner expects exactly two new insn patterns to be generated. It will verify that these patterns match some define_insn definitions, so you need not do this test in the define_split (of course, there is no point in writing a define_split that will never produce insns that match).

Here is an example of this use of define_split, taken from rs6000.md:

     (define_split
       [(set (match_operand:SI 0 "gen_reg_operand" "")
             (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
                      (match_operand:SI 2 "non_add_cint_operand" "")))]
       ""
       [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
        (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
     "
     {
       int low = INTVAL (operands[2]) & 0xffff;
       int high = (unsigned) INTVAL (operands[2]) >> 16;
     
       if (low & 0x8000)
         high++, low |= 0xffff0000;
     
       operands[3] = GEN_INT (high << 16);
       operands[4] = GEN_INT (low);
     }")

Here the predicate non_add_cint_operand matches any const_int that is not a valid operand of a single add insn. The add with the smaller displacement is written so that it can be substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant:

     (define_split
       [(set (match_operand:CC 0 "cc_reg_operand" "")
             (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
                         (match_operand:SI 2 "non_short_cint_operand" "")))
        (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
       "find_single_use (operands[0], insn, 0)
        && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
            || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
       [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
        (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
       "
     {
       /* Get the constant we are comparing against, C, and see what it
          looks like sign-extended to 16 bits.  Then see what constant
          could be XOR'ed with C to get the sign-extended value.  */
     
       int c = INTVAL (operands[2]);
       int sextc = (c << 16) >> 16;
       int xorv = c ^ sextc;
     
       operands[4] = GEN_INT (xorv);
       operands[5] = GEN_INT (sextc);
     }")

To avoid confusion, don't write a single define_split that accepts some insns that match some define_insn as well as some insns that don't. Instead, write two separate define_split definitions, one for the insns that are valid and one for the insns that are not valid.

The splitter is allowed to split jump instructions into sequence of jumps or create new jumps in while splitting non-jump instructions. As the central flowgraph and branch prediction information needs to be updated, several restriction apply.

Splitting of jump instruction into sequence that over by another jump instruction is always valid, as compiler expect identical behavior of new jump. When new sequence contains multiple jump instructions or new labels, more assistance is needed. Splitter is required to create only unconditional jumps, or simple conditional jump instructions. Additionally it must attach a REG_BR_PROB note to each conditional jump. A global variable split_branch_probability holds the probability of the original branch in case it was an simple conditional jump, −1 otherwise. To simplify recomputing of edge frequencies, the new sequence is required to have only forward jumps to the newly created labels.

For the common case where the pattern of a define_split exactly matches the pattern of a define_insn, use define_insn_and_split. It looks like this:

     (define_insn_and_split
       [insn-pattern]
       "condition"
       "output-template"
       "split-condition"
       [new-insn-pattern-1
        new-insn-pattern-2
        ...]
       "preparation-statements"
       [insn-attributes])
     

insn-pattern, condition, output-template, and insn-attributes are used as in define_insn. The new-insn-pattern vector and the preparation-statements are used as in a define_split. The split-condition is also used as in define_split, with the additional behavior that if the condition starts with ‘&&’, the condition used for the split will be the constructed as a logical “and” of the split condition with the insn condition. For example, from i386.md:

     (define_insn_and_split "zero_extendhisi2_and"
       [(set (match_operand:SI 0 "register_operand" "=r")
          (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
        (clobber (reg:CC 17))]
       "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
       "#"
       "&& reload_completed"
       [(parallel [(set (match_dup 0)
                        (and:SI (match_dup 0) (const_int 65535)))
                   (clobber (reg:CC 17))])]
       ""
       [(set_attr "type" "alu1")])
     

In this case, the actual split condition will be ‘TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed’.

The define_insn_and_split construction provides exactly the same functionality as two separate define_insn and define_split patterns. It exists for compactness, and as a maintenance tool to prevent having to ensure the two patterns' templates match.


Next: , Previous: Insn Splitting, Up: Machine Desc

16.17 Including Patterns in Machine Descriptions.

The include pattern tells the compiler tools where to look for patterns that are in files other than in the file .md. This is used only at build time and there is no preprocessing allowed.

It looks like:

     
     (include
       pathname)

For example:

     
     (include "filestuff")
     

Where pathname is a string that specifies the location of the file, specifies the include file to be in gcc/config/target/filestuff. The directory gcc/config/target is regarded as the default directory.

Machine descriptions may be split up into smaller more manageable subsections and placed into subdirectories.

By specifying:

     
     (include "BOGUS/filestuff")
     

the include file is specified to be in gcc/config/target/BOGUS/filestuff.

Specifying an absolute path for the include file such as;

     
     (include "/u2/BOGUS/filestuff")
     

is permitted but is not encouraged.

16.17.1 RTL Generation Tool Options for Directory Search

The -Idir option specifies directories to search for machine descriptions. For example:

     
     genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
     

Add the directory dir to the head of the list of directories to be searched for header files. This can be used to override a system machine definition file, substituting your own version, since these directories are searched before the default machine description file directories. If you use more than one -I option, the directories are scanned in left-to-right order; the standard default directory come after.


Next: , Previous: Including Patterns, Up: Machine Desc

16.18 Machine-Specific Peephole Optimizers

In addition to instruction patterns the md file may contain definitions of machine-specific peephole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the program does not suggest that it should try them. For example, sometimes two consecutive insns related in purpose can be combined even though the second one does not appear to use a register computed in the first one. A machine-specific peephole optimizer can detect such opportunities.

There are two forms of peephole definitions that may be used. The original define_peephole is run at assembly output time to match insns and substitute assembly text. Use of define_peephole is deprecated.

A newer define_peephole2 matches insns and substitutes new insns. The peephole2 pass is run after register allocation but before scheduling, which may result in much better code for targets that do scheduling.


Next: , Up: Peephole Definitions

16.18.1 RTL to Text Peephole Optimizers

A definition looks like this:

     (define_peephole
       [insn-pattern-1
        insn-pattern-2
        ...]
       "condition"
       "template"
       "optional-insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-pattern-2 matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are checked only at the last stage just before code generation, and only optionally. Therefore, any insn which would match a peephole but no define_insn will cause a crash in code generation in an unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and match_dup, as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using match_operand in one insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect on the applicability of the peephole, but they will be validated afterward, so make sure your constraints are general enough to apply whenever the peephole matches. If the peephole matches but the constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C expression which makes the final decision whether to perform the optimization (we do so if the expression is nonzero). If condition is omitted (in other words, the string is empty) then the optimization is applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete. Therefore, the peephole definition can check which operands have ended up in which kinds of registers, just by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number i (as matched by (match_operand i ...)). Use the variable insn to refer to the last of the insns being matched; use prev_active_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match only when the intermediate results are not used elsewhere. Use the C expression dead_or_set_p (insn, op), where insn is the insn in which you expect the value to be used for the last time (from the value of insn, together with use of prev_nonnote_insn), and op is the intermediate value (from operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The template controls ultimate output of assembler code for this combined insn. It works exactly like the template of a define_insn. Operand numbers in this template are the same ones used in matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns in the machine description; it does not even have an opportunity to match them. The peephole optimizer definition itself serves as the insn pattern to control how the insn is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they produce are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

     (define_peephole
       [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
        (set (match_operand:DF 0 "register_operand" "=f")
             (match_operand:DF 1 "register_operand" "ad"))]
       "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
     {
       rtx xoperands[2];
       xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
     #ifdef MOTOROLA
       output_asm_insn ("move.l %1,(sp)", xoperands);
       output_asm_insn ("move.l %1,-(sp)", operands);
       return "fmove.d (sp)+,%0";
     #else
       output_asm_insn ("movel %1,sp@", xoperands);
       output_asm_insn ("movel %1,sp@-", operands);
       return "fmoved sp@+,%0";
     #endif
     })

The effect of this optimization is to change

     jbsr _foobar
     addql #4,sp
     movel d1,sp@-
     movel d0,sp@-
     fmoved sp@+,fp0

into

     jbsr _foobar
     movel d1,sp@
     movel d0,sp@-
     fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There is one important difference: the second operand of define_insn consists of one or more RTX's enclosed in square brackets. Usually, there is only one: then the same action can be written as an element of a define_peephole. But when there are multiple actions in a define_insn, they are implicitly enclosed in a parallel. Then you must explicitly write the parallel, and the square brackets within it, in the define_peephole. Thus, if an insn pattern looks like this,

     (define_insn "divmodsi4"
       [(set (match_operand:SI 0 "general_operand" "=d")
             (div:SI (match_operand:SI 1 "general_operand" "0")
                     (match_operand:SI 2 "general_operand" "dmsK")))
        (set (match_operand:SI 3 "general_operand" "=d")
             (mod:SI (match_dup 1) (match_dup 2)))]
       "TARGET_68020"
       "divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

     (define_peephole
       [...
        (parallel
         [(set (match_operand:SI 0 "general_operand" "=d")
               (div:SI (match_operand:SI 1 "general_operand" "0")
                       (match_operand:SI 2 "general_operand" "dmsK")))
          (set (match_operand:SI 3 "general_operand" "=d")
               (mod:SI (match_dup 1) (match_dup 2)))])
        ...]
       ...)


Previous: define_peephole, Up: Peephole Definitions

16.18.2 RTL to RTL Peephole Optimizers

The define_peephole2 definition tells the compiler how to substitute one sequence of instructions for another sequence, what additional scratch registers may be needed and what their lifetimes must be.

     (define_peephole2
       [insn-pattern-1
        insn-pattern-2
        ...]
       "condition"
       [new-insn-pattern-1
        new-insn-pattern-2
        ...]
       "preparation-statements")

The definition is almost identical to define_split (see Insn Splitting) except that the pattern to match is not a single instruction, but a sequence of instructions.

It is possible to request additional scratch registers for use in the output template. If appropriate registers are not free, the pattern will simply not match.

Scratch registers are requested with a match_scratch pattern at the top level of the input pattern. The allocated register (initially) will be dead at the point requested within the original sequence. If the scratch is used at more than a single point, a match_dup pattern at the top level of the input pattern marks the last position in the input sequence at which the register must be available.

Here is an example from the IA-32 machine description:

     (define_peephole2
       [(match_scratch:SI 2 "r")
        (parallel [(set (match_operand:SI 0 "register_operand" "")
                        (match_operator:SI 3 "arith_or_logical_operator"
                          [(match_dup 0)
                           (match_operand:SI 1 "memory_operand" "")]))
                   (clobber (reg:CC 17))])]
       "! optimize_size && ! TARGET_READ_MODIFY"
       [(set (match_dup 2) (match_dup 1))
        (parallel [(set (match_dup 0)
                        (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
                   (clobber (reg:CC 17))])]
       "")

This pattern tries to split a load from its use in the hopes that we'll be able to schedule around the memory load latency. It allocates a single SImode register of class GENERAL_REGS ("r") that needs to be live only at the point just before the arithmetic.

A real example requiring extended scratch lifetimes is harder to come by, so here's a silly made-up example:

     (define_peephole2
       [(match_scratch:SI 4 "r")
        (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
        (set (match_operand:SI 2 "" "") (match_dup 1))
        (match_dup 4)
        (set (match_operand:SI 3 "" "") (match_dup 1))]
       "/* determine 1 does not overlap 0 and 2 */"
       [(set (match_dup 4) (match_dup 1))
        (set (match_dup 0) (match_dup 4))
        (set (match_dup 2) (match_dup 4))]
        (set (match_dup 3) (match_dup 4))]
       "")

If we had not added the (match_dup 4) in the middle of the input sequence, it might have been the case that the register we chose at the beginning of the sequence is killed by the first or second set.


Next: , Previous: Peephole Definitions, Up: Machine Desc

16.19 Instruction Attributes

In addition to describing the instruction supported by the target machine, the md file also defines a group of attributes and a set of values for each. Every generated insn is assigned a value for each attribute. One possible attribute would be the effect that the insn has on the machine's condition code. This attribute can then be used by NOTICE_UPDATE_CC to track the condition codes.


Next: , Up: Insn Attributes

16.19.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine. It looks like:

     (define_attr name list-of-values default)

name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can be assigned to the attribute, or a null string to indicate that the attribute takes numeric values.

default is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not include an explicit value for this attribute. See Attr Example, for more information on the handling of defaults. See Constant Attributes, for information on attributes that do not depend on any particular insn.

For each defined attribute, a number of definitions are written to the insn-attr.h file. For cases where an explicit set of values is specified for an attribute, the following are defined:

For example, if the following is present in the md file:

     (define_attr "type" "branch,fp,load,store,arith" ...)

the following lines will be written to the file insn-attr.h.

     #define HAVE_ATTR_type
     enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
                      TYPE_STORE, TYPE_ARITH};
     extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to obtain the attribute's value will return int.

There are attributes which are tied to a specific meaning. These attributes are not free to use for other purposes:

length
The length attribute is used to calculate the length of emitted code chunks. This is especially important when verifying branch distances. See Insn Lengths.
enabled
The enabled attribute can be defined to prevent certain alternatives of an insn definition from being used during code generation. See Disable Insn Alternatives.


Next: , Previous: Defining Attributes, Up: Insn Attributes

16.19.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms:

(const_int i)
The integer i specifies the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be specified either with a const_int, or as an integer represented as a string in const_string, eq_attr (see below), attr, symbol_ref, simple arithmetic expressions, and set_attr overrides on specific instructions (see Tagging Insns).


(const_string value)
The string value specifies a constant attribute value. If value is specified as ‘"*"’, it means that the default value of the attribute is to be used for the insn containing this expression. ‘"*"’ obviously cannot be used in the default expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string containing a non-negative integer (normally const_int would be used in this case). Otherwise, it must contain one of the valid values for the attribute.


(if_then_else test true-value false-value)
test specifies an attribute test, whose format is defined below. The value of this expression is true-value if test is true, otherwise it is false-value.


(cond [test1 value1 ...] default)
The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of test and value expressions. The value of the cond expression is that of the value corresponding to the first true test expression. If none of the test expressions are true, the value of the cond expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)
This test is true if i is nonzero and false otherwise.


(not test)
(ior test1 test2)
(and test1 test2)
These tests are true if the indicated logical function is true.


(match_operand:m n pred constraints)
This test is true if operand n of the insn whose attribute value is being determined has mode m (this part of the test is ignored if m is VOIDmode) and the function specified by the string pred returns a nonzero value when passed operand n and mode m (this part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.


(le arith1 arith2)
(leu arith1 arith2)
(lt arith1 arith2)
(ltu arith1 arith2)
(gt arith1 arith2)
(gtu arith1 arith2)
(ge arith1 arith2)
(geu arith1 arith2)
(ne arith1 arith2)
(eq arith1 arith2)
These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed with plus, minus, mult, div, mod, abs, neg, and, ior, xor, not, ashift, lshiftrt, and ashiftrt expressions.

const_int and symbol_ref are always valid terms (see Insn Lengths,for additional forms). symbol_ref is a string denoting a C expression that yields an int when evaluated by the ‘get_attr_...’ routine. It should normally be a global variable.


(eq_attr name value)
name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-separated list of values, or ‘!’ followed by a value or list. If value does not begin with a ‘!’, this test is true if the value of the name attribute of the current insn is in the list specified by value. If value begins with a ‘!’, this test is true if the attribute's value is not in the specified list.

For example,

          (eq_attr "type" "load,store")

is equivalent to

          (ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of ‘alternative’, it refers to the value of the compiler variable which_alternative (see Output Statement) and the values must be small integers. For example,

          (eq_attr "alternative" "2,3")

is equivalent to

          (ior (eq (symbol_ref "which_alternative") (const_int 2))
               (eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case.


(attr_flag name)
The value of an attr_flag expression is true if the flag specified by name is true for the insn currently being scheduled.

name is a string specifying one of a fixed set of flags to test. Test the flags forward and backward to determine the direction of a conditional branch. Test the flags very_likely, likely, very_unlikely, and unlikely to determine if a conditional branch is expected to be taken.

If the very_likely flag is true, then the likely flag is also true. Likewise for the very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can be nullified for forward branches that are taken (annul-true) or for backward branches which are not taken (annul-false).

          (define_delay (eq_attr "type" "cbranch")
            [(eq_attr "in_branch_delay" "true")
             (and (eq_attr "in_branch_delay" "true")
                  (attr_flag "forward"))
             (and (eq_attr "in_branch_delay" "true")
                  (attr_flag "backward"))])

The forward and backward flags are false if the current insn being scheduled is not a conditional branch.

The very_likely and likely flags are true if the insn being scheduled is not a conditional branch. The very_unlikely and unlikely flags are false if the insn being scheduled is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to other passes of the compiler.


(attr name)
The value of another attribute is returned. This is most useful for numeric attributes, as eq_attr and attr_flag produce more efficient code for non-numeric attributes.


Next: , Previous: Expressions, Up: Insn Attributes

16.19.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is matched by that insn (or which define_peephole generated it). Every define_insn and define_peephole can have an optional last argument to specify the values of attributes for matching insns. The value of any attribute not specified in a particular insn is set to the default value for that attribute, as specified in its define_attr. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section.

The optional last argument of define_insn and define_peephole is a vector of expressions, each of which defines the value for a single attribute. The most general way of assigning an attribute's value is to use a set expression whose first operand is an attr expression giving the name of the attribute being set. The second operand of the set is an attribute expression (see Expressions) giving the value of the attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the applicable alternative in the constraint of the insn), the set_attr_alternative expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_attr expression can be used, which allows specifying a string giving either a single attribute value or a list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a string specifying the attribute to be set.

(set_attr name value-string)
value-string is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the attribute will assume its default value for insns matching that alternative.


(set_attr_alternative name [value1 value2 ...])
Depending on the alternative of the insn, the value will be one of the specified values. This is a shorthand for using a cond with tests on the ‘alternative’ attribute.


(set (attr name) value)
The first operand of this set must be the special RTL expression attr, whose sole operand is a string giving the name of the attribute being set. value is the value of the attribute.

The following shows three different ways of representing the same attribute value specification:

     (set_attr "type" "load,store,arith")
     
     (set_attr_alternative "type"
                           [(const_string "load") (const_string "store")
                            (const_string "arith")])
     
     (set (attr "type")
          (cond [(eq_attr "alternative" "1") (const_string "load")
                 (eq_attr "alternative" "2") (const_string "store")]
                (const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes assigned to insns produced from an asm statement. It has the form:

     (define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole expressions.

These values will typically be the “worst case” attribute values. For example, they might indicate that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the length of an asm insn is to multiply the length specified in the expression define_asm_attributes by the number of machine instructions specified in the asm statement, determined by counting the number of semicolons and newlines in the string. Therefore, the value of the length attribute specified in a define_asm_attributes should be the maximum possible length of a single machine instruction.


Next: , Previous: Tagging Insns, Up: Insn Attributes

16.19.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into types and an attribute, customarily called type, is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word operations are performed in registers. Let us assume that we can divide all insns into loads, stores, (integer) arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible effects: The condition code can be set unpredictably (clobbered), not be changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified.

Here is part of a sample md file for such a machine:

     (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
     
     (define_attr "cc" "clobber,unchanged,set,change0"
                  (cond [(eq_attr "type" "load")
                             (const_string "change0")
                         (eq_attr "type" "store,branch")
                             (const_string "unchanged")
                         (eq_attr "type" "arith")
                             (if_then_else (match_operand:SI 0 "" "")
                                           (const_string "set")
                                           (const_string "clobber"))]
                        (const_string "clobber")))
     
     (define_insn ""
       [(set (match_operand:SI 0 "general_operand" "=r,r,m")
             (match_operand:SI 1 "general_operand" "r,m,r"))]
       ""
       "@
        move %0,%1
        load %0,%1
        store %0,%1"
       [(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on quantities smaller than a machine word clobber the condition code since they will set the condition code to a value corresponding to the full-word result.


Next: , Previous: Attr Example, Up: Insn Attributes

16.19.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the assembler will choose the correct instruction to use. However, when the assembler cannot do so, GCC can when a special attribute, the length attribute, is defined. This attribute must be defined to have numeric values by specifying a null string in its define_attr.

In the case of the length attribute, two additional forms of arithmetic terms are allowed in test expressions:

(match_dup n)
This refers to the address of operand n of the current insn, which must be a label_ref.


(pc)
This refers to the address of the current insn. It might have been more consistent with other usage to make this the address of the next insn but this would be confusing because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the length attribute. In the case of addr_vec and addr_diff_vec insn patterns, the length is computed as the number of vectors multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to refine the length computation:

ADJUST_INSN_LENGTH (insn, length)
If defined, modifies the length assigned to instruction insn as a function of the context in which it is used. length is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn.

This macro will normally not be required. A case in which it is required is the ROMP. On this machine, the size of an addr_vec insn must be increased by two to compensate for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we need a six-byte sequence to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

     (define_insn "jump"
       [(set (pc)
             (label_ref (match_operand 0 "" "")))]
       ""
     {
        return (get_attr_length (insn) == 4
                ? "b %l0" : "l r15,=a(%l0); br r15");
     }
       [(set (attr "length")
             (if_then_else (lt (match_dup 0) (const_int 4096))
                           (const_int 4)
                           (const_int 6)))])


Next: , Previous: Insn Lengths, Up: Insn Attributes

16.19.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example,

     (define_attr "cpu" "m88100,m88110,m88000"
      (const
       (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
              (symbol_ref "TARGET_88110") (const_string "m88110")]
             (const_string "m88000"))))
     
     (define_attr "memory" "fast,slow"
      (const
       (if_then_else (symbol_ref "TARGET_FAST_MEM")
                     (const_string "fast")
                     (const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define the value of a constant attribute may use the symbol_ref form, but may not use either the match_operand form or eq_attr forms involving insn attributes.


Next: , Previous: Constant Attributes, Up: Insn Attributes

16.19.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a delay slot if some instructions that are physically after the instruction are executed as if they were located before it. Classic examples are branch and call instructions, which often execute the following instruction before the branch or call is performed.

On some machines, conditional branch instructions can optionally annul instructions in the delay slot. This means that the instruction will not be executed for certain branch outcomes. Both instructions that annul if the branch is true and instructions that annul if the branch is false are supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only on the type of instruction being generated, not on data flow between the instructions. See the next section for a discussion of data-dependent instruction scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_delay expression. It has the following form:

     (define_delay test
                   [delay-1 annul-true-1 annul-false-1
                    delay-2 annul-true-2 annul-false-2
                    ...])

test is an attribute test that indicates whether this define_delay applies to a particular insn. If so, the number of required delay slots is determined by the length of the vector specified as the second argument. An insn placed in delay slot n must satisfy attribute test delay-n. annul-true-n is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, annul-false-n specifies which insns in the delay slot may be annulled if the branch is false. If annulling is not supported for that delay slot, (nil) should be coded.

For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or call, the following would be placed in the md file:

     (define_delay (eq_attr "type" "branch,call")
                   [(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression specifies different delay slot requirements and there must be no insn for which tests in two define_delay expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows:

     (define_delay (eq_attr "type" "branch")
        [(eq_attr "type" "!branch,call")
         (eq_attr "type" "!branch,call")
         (nil)])
     
     (define_delay (eq_attr "type" "call")
                   [(eq_attr "type" "!branch,call") (nil) (nil)
                    (eq_attr "type" "!branch,call") (nil) (nil)])


Previous: Delay Slots, Up: Insn Attributes

16.19.8 Specifying processor pipeline description

To achieve better performance, most modern processors (super-pipelined, superscalar RISC, and VLIW processors) have many functional units on which several instructions can be executed simultaneously. An instruction starts execution if its issue conditions are satisfied. If not, the instruction is stalled until its conditions are satisfied. Such interlock (pipeline) delay causes interruption of the fetching of successor instructions (or demands nop instructions, e.g. for some MIPS processors).

There are two major kinds of interlock delays in modern processors. The first one is a data dependence delay determining instruction latency time. The instruction execution is not started until all source data have been evaluated by prior instructions (there are more complex cases when the instruction execution starts even when the data are not available but will be ready in given time after the instruction execution start). Taking the data dependence delays into account is simple. The data dependence (true, output, and anti-dependence) delay between two instructions is given by a constant. In most cases this approach is adequate. The second kind of interlock delays is a reservation delay. The reservation delay means that two instructions under execution will be in need of shared processors resources, i.e. buses, internal registers, and/or functional units, which are reserved for some time. Taking this kind of delay into account is complex especially for modern RISC processors.

The task of exploiting more processor parallelism is solved by an instruction scheduler. For a better solution to this problem, the instruction scheduler has to have an adequate description of the processor parallelism (or pipeline description). GCC machine descriptions describe processor parallelism and functional unit reservations for groups of instructions with the aid of regular expressions.

The GCC instruction scheduler uses a pipeline hazard recognizer to figure out the possibility of the instruction issue by the processor on a given simulated processor cycle. The pipeline hazard recognizer is automatically generated from the processor pipeline description. The pipeline hazard recognizer generated from the machine description is based on a deterministic finite state automaton (DFA): the instruction issue is possible if there is a transition from one automaton state to another one. This algorithm is very fast, and furthermore, its speed is not dependent on processor complexity4.

The rest of this section describes the directives that constitute an automaton-based processor pipeline description. The order of these constructions within the machine description file is not important.

The following optional construction describes names of automata generated and used for the pipeline hazards recognition. Sometimes the generated finite state automaton used by the pipeline hazard recognizer is large. If we use more than one automaton and bind functional units to the automata, the total size of the automata is usually less than the size of the single automaton. If there is no one such construction, only one finite state automaton is generated.

     (define_automaton automata-names)

automata-names is a string giving names of the automata. The names are separated by commas. All the automata should have unique names. The automaton name is used in the constructions define_cpu_unit and define_query_cpu_unit.

Each processor functional unit used in the description of instruction reservations should be described by the following construction.

     (define_cpu_unit unit-names [automaton-name])

unit-names is a string giving the names of the functional units separated by commas. Don't use name ‘nothing’, it is reserved for other goals.

automaton-name is a string giving the name of the automaton with which the unit is bound. The automaton should be described in construction define_automaton. You should give automaton-name, if there is a defined automaton.

The assignment of units to automata are constrained by the uses of the units in insn reservations. The most important constraint is: if a unit reservation is present on a particular cycle of an alternative for an insn reservation, then some unit from the same automaton must be present on the same cycle for the other alternatives of the insn reservation. The rest of the constraints are mentioned in the description of the subsequent constructions.

The following construction describes CPU functional units analogously to define_cpu_unit. The reservation of such units can be queried for an automaton state. The instruction scheduler never queries reservation of functional units for given automaton state. So as a rule, you don't need this construction. This construction could be used for future code generation goals (e.g. to generate VLIW insn templates).

     (define_query_cpu_unit unit-names [automaton-name])

unit-names is a string giving names of the functional units separated by commas.

automaton-name is a string giving the name of the automaton with which the unit is bound.

The following construction is the major one to describe pipeline characteristics of an instruction.

     (define_insn_reservation insn-name default_latency
                              condition regexp)

default_latency is a number giving latency time of the instruction. There is an important difference between the old description and the automaton based pipeline description. The latency time is used for all dependencies when we use the old description. In the automaton based pipeline description, the given latency time is only used for true dependencies. The cost of anti-dependencies is always zero and the cost of output dependencies is the difference between latency times of the producing and consuming insns (if the difference is negative, the cost is considered to be zero). You can always change the default costs for any description by using the target hook TARGET_SCHED_ADJUST_COST (see Scheduling).

insn-name is a string giving the internal name of the insn. The internal names are used in constructions define_bypass and in the automaton description file generated for debugging. The internal name has nothing in common with the names in define_insn. It is a good practice to use insn classes described in the processor manual.

condition defines what RTL insns are described by this construction. You should remember that you will be in trouble if condition for two or more different define_insn_reservation constructions is TRUE for an insn. In this case what reservation will be used for the insn is not defined. Such cases are not checked during generation of the pipeline hazards recognizer because in general recognizing that two conditions may have the same value is quite difficult (especially if the conditions contain symbol_ref). It is also not checked during the pipeline hazard recognizer work because it would slow down the recognizer considerably.

regexp is a string describing the reservation of the cpu's functional units by the instruction. The reservations are described by a regular expression according to the following syntax:

            regexp = regexp "," oneof
                   | oneof
     
            oneof = oneof "|" allof
                  | allof
     
            allof = allof "+" repeat
                  | repeat
     
            repeat = element "*" number
                   | element
     
            element = cpu_function_unit_name
                    | reservation_name
                    | result_name
                    | "nothing"
                    | "(" regexp ")"

Sometimes unit reservations for different insns contain common parts. In such case, you can simplify the pipeline description by describing the common part by the following construction

     (define_reservation reservation-name regexp)

reservation-name is a string giving name of regexp. Functional unit names and reservation names are in the same name space. So the reservation names should be different from the functional unit names and can not be the reserved name ‘nothing’.

The following construction is used to describe exceptions in the latency time for given instruction pair. This is so called bypasses.

     (define_bypass number out_insn_names in_insn_names
                    [guard])

number defines when the result generated by the instructions given in string out_insn_names will be ready for the instructions given in string in_insn_names. The instructions in the string are separated by commas.

guard is an optional string giving the name of a C function which defines an additional guard for the bypass. The function will get the two insns as parameters. If the function returns zero the bypass will be ignored for this case. The additional guard is necessary to recognize complicated bypasses, e.g. when the consumer is only an address of insn ‘store’ (not a stored value).

The following five constructions are usually used to describe VLIW processors, or more precisely, to describe a placement of small instructions into VLIW instruction slots. They can be used for RISC processors, too.

     (exclusion_set unit-names unit-names)
     (presence_set unit-names patterns)
     (final_presence_set unit-names patterns)
     (absence_set unit-names patterns)
     (final_absence_set unit-names patterns)

unit-names is a string giving names of functional units separated by commas.

patterns is a string giving patterns of functional units separated by comma. Currently pattern is one unit or units separated by white-spaces.

The first construction (‘exclusion_set’) means that each functional unit in the first string can not be reserved simultaneously with a unit whose name is in the second string and vice versa. For example, the construction is useful for describing processors (e.g. some SPARC processors) with a fully pipelined floating point functional unit which can execute simultaneously only single floating point insns or only double floating point insns.

The second construction (‘presence_set’) means that each functional unit in the first string can not be reserved unless at least one of pattern of units whose names are in the second string is reserved. This is an asymmetric relation. For example, it is useful for description that VLIWslot1’ is reserved after ‘slot0’ reservation. We could describe it by the following construction

     (presence_set "slot1" "slot0")

Or ‘slot1’ is reserved only after ‘slot0’ and unit ‘b0’ reservation. In this case we could write

     (presence_set "slot1" "slot0 b0")

The third construction (‘final_presence_set’) is analogous to ‘presence_set’. The difference between them is when checking is done. When an instruction is issued in given automaton state reflecting all current and planned unit reservations, the automaton state is changed. The first state is a source state, the second one is a result state. Checking for ‘presence_set’ is done on the source state reservation, checking for ‘final_presence_set’ is done on the result reservation. This construction is useful to describe a reservation which is actually two subsequent reservations. For example, if we use

     (presence_set "slot1" "slot0")

the following insn will be never issued (because ‘slot1’ requires ‘slot0’ which is absent in the source state).

     (define_reservation "insn_and_nop" "slot0 + slot1")

but it can be issued if we use analogous ‘final_presence_set’.

The forth construction (‘absence_set’) means that each functional unit in the first string can be reserved only if each pattern of units whose names are in the second string is not reserved. This is an asymmetric relation (actually ‘exclusion_set’ is analogous to this one but it is symmetric). For example it might be useful in a VLIW description to say that ‘slot0’ cannot be reserved after either ‘slot1’ or ‘slot2’ have been reserved. This can be described as:

     (absence_set "slot0" "slot1, slot2")

Or ‘slot2’ can not be reserved if ‘slot0’ and unit ‘b0’ are reserved or ‘slot1’ and unit ‘b1’ are reserved. In this case we could write

     (absence_set "slot2" "slot0 b0, slot1 b1")

All functional units mentioned in a set should belong to the same automaton.

The last construction (‘final_absence_set’) is analogous to ‘absence_set’ but checking is done on the result (state) reservation. See comments for ‘final_presence_set’.

You can control the generator of the pipeline hazard recognizer with the following construction.

     (automata_option options)

options is a string giving options which affect the generated code. Currently there are the following options:

As an example, consider a superscalar RISC machine which can issue three insns (two integer insns and one floating point insn) on the cycle but can finish only two insns. To describe this, we define the following functional units.

     (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
     (define_cpu_unit "port0, port1")

All simple integer insns can be executed in any integer pipeline and their result is ready in two cycles. The simple integer insns are issued into the first pipeline unless it is reserved, otherwise they are issued into the second pipeline. Integer division and multiplication insns can be executed only in the second integer pipeline and their results are ready correspondingly in 8 and 4 cycles. The integer division is not pipelined, i.e. the subsequent integer division insn can not be issued until the current division insn finished. Floating point insns are fully pipelined and their results are ready in 3 cycles. Where the result of a floating point insn is used by an integer insn, an additional delay of one cycle is incurred. To describe all of this we could specify

     (define_cpu_unit "div")
     
     (define_insn_reservation "simple" 2 (eq_attr "type" "int")
                              "(i0_pipeline | i1_pipeline), (port0 | port1)")
     
     (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
                              "i1_pipeline, nothing*2, (port0 | port1)")
     
     (define_insn_reservation "div" 8 (eq_attr "type" "div")
                              "i1_pipeline, div*7, div + (port0 | port1)")
     
     (define_insn_reservation "float" 3 (eq_attr "type" "float")
                              "f_pipeline, nothing, (port0 | port1))
     
     (define_bypass 4 "float" "simple,mult,div")

To simplify the description we could describe the following reservation

     (define_reservation "finish" "port0|port1")

and use it in all define_insn_reservation as in the following construction

     (define_insn_reservation "simple" 2 (eq_attr "type" "int")
                              "(i0_pipeline | i1_pipeline), finish")


Next: , Previous: Insn Attributes, Up: Machine Desc

16.20 Conditional Execution

A number of architectures provide for some form of conditional execution, or predication. The hallmark of this feature is the ability to nullify most of the instructions in the instruction set. When the instruction set is large and not entirely symmetric, it can be quite tedious to describe these forms directly in the .md file. An alternative is the define_cond_exec template.

     (define_cond_exec
       [predicate-pattern]
       "condition"
       "output-template")

predicate-pattern is the condition that must be true for the insn to be executed at runtime and should match a relational operator. One can use match_operator to match several relational operators at once. Any match_operand operands must have no more than one alternative.

condition is a C expression that must be true for the generated pattern to match.

output-template is a string similar to the define_insn output template (see Output Template), except that the ‘*’ and ‘@’ special cases do not apply. This is only useful if the assembly text for the predicate is a simple prefix to the main insn. In order to handle the general case, there is a global variable current_insn_predicate that will contain the entire predicate if the current insn is predicated, and will otherwise be NULL.

When define_cond_exec is used, an implicit reference to the predicable instruction attribute is made. See Insn Attributes. This attribute must be boolean (i.e. have exactly two elements in its list-of-values). Further, it must not be used with complex expressions. That is, the default and all uses in the insns must be a simple constant, not dependent on the alternative or anything else.

For each define_insn for which the predicable attribute is true, a new define_insn pattern will be generated that matches a predicated version of the instruction. For example,

     (define_insn "addsi"
       [(set (match_operand:SI 0 "register_operand" "r")
             (plus:SI (match_operand:SI 1 "register_operand" "r")
                      (match_operand:SI 2 "register_operand" "r")))]
       "test1"
       "add %2,%1,%0")
     
     (define_cond_exec
       [(ne (match_operand:CC 0 "register_operand" "c")
            (const_int 0))]
       "test2"
       "(%0)")

generates a new pattern

     (define_insn ""
       [(cond_exec
          (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
          (set (match_operand:SI 0 "register_operand" "r")
               (plus:SI (match_operand:SI 1 "register_operand" "r")
                        (match_operand:SI 2 "register_operand" "r"))))]
       "(test2) && (test1)"
       "(%3) add %2,%1,%0")


Next: , Previous: Conditional Execution, Up: Machine Desc

16.21 Constant Definitions

Using literal constants inside instruction patterns reduces legibility and can be a maintenance problem.

To overcome this problem, you may use the define_constants expression. It contains a vector of name-value pairs. From that point on, wherever any of the names appears in the MD file, it is as if the corresponding value had been written instead. You may use define_constants multiple times; each appearance adds more constants to the table. It is an error to redefine a constant with a different value.

To come back to the a29k load multiple example, instead of

     (define_insn ""
       [(match_parallel 0 "load_multiple_operation"
          [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
                (match_operand:SI 2 "memory_operand" "m"))
           (use (reg:SI 179))
           (clobber (reg:SI 179))])]
       ""
       "loadm 0,0,%1,%2")

You could write:

     (define_constants [
         (R_BP 177)
         (R_FC 178)
         (R_CR 179)
         (R_Q  180)
     ])
     
     (define_insn ""
       [(match_parallel 0 "load_multiple_operation"
          [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
                (match_operand:SI 2 "memory_operand" "m"))
           (use (reg:SI R_CR))
           (clobber (reg:SI R_CR))])]
       ""
       "loadm 0,0,%1,%2")

The constants that are defined with a define_constant are also output in the insn-codes.h header file as #defines.


Previous: Constant Definitions, Up: Machine Desc

16.22 Iterators

Ports often need to define similar patterns for more than one machine mode or for more than one rtx code. GCC provides some simple iterator facilities to make this process easier.


Next: , Up: Iterators

16.22.1 Mode Iterators

Ports often need to define similar patterns for two or more different modes. For example:

Mode iterators allow several patterns to be instantiated from one .md file template. They can be used with any type of rtx-based construct, such as a define_insn, define_split, or define_peephole2.


Next: , Up: Mode Iterators
16.22.1.1 Defining Mode Iterators

The syntax for defining a mode iterator is:

     (define_mode_iterator name [(mode1 "cond1") ... (moden "condn")])

This allows subsequent .md file constructs to use the mode suffix :name. Every construct that does so will be expanded n times, once with every use of :name replaced by :mode1, once with every use replaced by :mode2, and so on. In the expansion for a particular modei, every C condition will also require that condi be true.

For example:

     (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])

defines a new mode suffix :P. Every construct that uses :P will be expanded twice, once with every :P replaced by :SI and once with every :P replaced by :DI. The :SI version will only apply if Pmode == SImode and the :DI version will only apply if Pmode == DImode.

As with other .md conditions, an empty string is treated as “always true”. (mode "") can also be abbreviated to mode. For example:

     (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])

means that the :DI expansion only applies if TARGET_64BIT but that the :SI expansion has no such constraint.

Iterators are applied in the order they are defined. This can be significant if two iterators are used in a construct that requires substitutions. See Substitutions.


Next: , Previous: Defining Mode Iterators, Up: Mode Iterators
16.22.1.2 Substitution in Mode Iterators

If an .md file construct uses mode iterators, each version of the construct will often need slightly different strings or modes. For example:

GCC supports such variations through a system of “mode attributes”. There are two standard attributes: mode, which is the name of the mode in lower case, and MODE, which is the same thing in upper case. You can define other attributes using:

     (define_mode_attr name [(mode1 "value1") ... (moden "valuen")])

where name is the name of the attribute and valuei is the value associated with modei.

When GCC replaces some :iterator with :mode, it will scan each string and mode in the pattern for sequences of the form <iterator:attr>, where attr is the name of a mode attribute. If the attribute is defined for mode, the whole <...> sequence will be replaced by the appropriate attribute value.

For example, suppose an .md file has:

     (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
     (define_mode_attr load [(SI "lw") (DI "ld")])

If one of the patterns that uses :P contains the string "<P:load>\t%0,%1", the SI version of that pattern will use "lw\t%0,%1" and the DI version will use "ld\t%0,%1".

Here is an example of using an attribute for a mode:

     (define_mode_iterator LONG [SI DI])
     (define_mode_attr SHORT [(SI "HI") (DI "SI")])
     (define_insn ...
       (sign_extend:LONG (match_operand:<LONG:SHORT> ...)) ...)

The iterator: prefix may be omitted, in which case the substitution will be attempted for every iterator expansion.


Previous: Substitutions, Up: Mode Iterators
16.22.1.3 Mode Iterator Examples

Here is an example from the MIPS port. It defines the following modes and attributes (among others):

     (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
     (define_mode_attr d [(SI "") (DI "d")])

and uses the following template to define both subsi3 and subdi3:

     (define_insn "sub<mode>3"
       [(set (match_operand:GPR 0 "register_operand" "=d")
             (minus:GPR (match_operand:GPR 1 "register_operand" "d")
                        (match_operand:GPR 2 "register_operand" "d")))]
       ""
       "<d>subu\t%0,%1,%2"
       [(set_attr "type" "arith")
        (set_attr "mode" "<MODE>")])

This is exactly equivalent to:

     (define_insn "subsi3"
       [(set (match_operand:SI 0 "register_operand" "=d")
             (minus:SI (match_operand:SI 1 "register_operand" "d")
                       (match_operand:SI 2 "register_operand" "d")))]
       ""
       "subu\t%0,%1,%2"
       [(set_attr "type" "arith")
        (set_attr "mode" "SI")])
     
     (define_insn "subdi3"
       [(set (match_operand:DI 0 "register_operand" "=d")
             (minus:DI (match_operand:DI 1 "register_operand" "d")
                       (match_operand:DI 2 "register_operand" "d")))]
       ""
       "dsubu\t%0,%1,%2"
       [(set_attr "type" "arith")
        (set_attr "mode" "DI")])


Previous: Mode Iterators, Up: Iterators

16.22.2 Code Iterators

Code iterators operate in a similar way to mode iterators. See Mode Iterators.

The construct:

     (define_code_iterator name [(code1 "cond1") ... (coden "condn")])

defines a pseudo rtx code name that can be instantiated as codei if condition condi is true. Each codei must have the same rtx format. See RTL Classes.

As with mode iterators, each pattern that uses name will be expanded n times, once with all uses of name replaced by code1, once with all uses replaced by code2, and so on. See Defining Mode Iterators.

It is possible to define attributes for codes as well as for modes. There are two standard code attributes: code, the name of the code in lower case, and CODE, the name of the code in upper case. Other attributes are defined using:

     (define_code_attr name [(code1 "value1") ... (coden "valuen")])

Here's an example of code iterators in action, taken from the MIPS port:

     (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
                                     eq ne gt ge lt le gtu geu ltu leu])
     
     (define_expand "b<code>"
       [(set (pc)
             (if_then_else (any_cond:CC (cc0)
                                        (const_int 0))
                           (label_ref (match_operand 0 ""))
                           (pc)))]
       ""
     {
       gen_conditional_branch (operands, <CODE>);
       DONE;
     })

This is equivalent to:

     (define_expand "bunordered"
       [(set (pc)
             (if_then_else (unordered:CC (cc0)
                                         (const_int 0))
                           (label_ref (match_operand 0 ""))
                           (pc)))]
       ""
     {
       gen_conditional_branch (operands, UNORDERED);
       DONE;
     })
     
     (define_expand "bordered"
       [(set (pc)
             (if_then_else (ordered:CC (cc0)
                                       (const_int 0))
                           (label_ref (match_operand 0 ""))
                           (pc)))]
       ""
     {
       gen_conditional_branch (operands, ORDERED);
       DONE;
     })
     
     ...


Next: , Previous: Machine Desc, Up: Top

17 Target Description Macros and Functions

In addition to the file machine.md, a machine description includes a C header file conventionally given the name machine.h and a C source file named machine.c. The header file defines numerous macros that convey the information about the target machine that does not fit into the scheme of the .md file. The file tm.h should be a link to machine.h. The header file config.h includes tm.h and most compiler source files include config.h. The source file defines a variable targetm, which is a structure containing pointers to functions and data relating to the target machine. machine.c should also contain their definitions, if they are not defined elsewhere in GCC, and other functions called through the macros defined in the .h file.


Next: , Up: Target Macros

17.1 The Global targetm Variable

— Variable: struct gcc_target targetm

The target .c file must define the global targetm variable which contains pointers to functions and data relating to the target machine. The variable is declared in target.h; target-def.h defines the macro TARGET_INITIALIZER which is used to initialize the variable, and macros for the default initializers for elements of the structure. The .c file should override those macros for which the default definition is inappropriate. For example:

          #include "target.h"
          #include "target-def.h"
          
          /* Initialize the GCC target structure.  */
          
          #undef TARGET_COMP_TYPE_ATTRIBUTES
          #define TARGET_COMP_TYPE_ATTRIBUTES machine_comp_type_attributes
          
          struct gcc_target targetm = TARGET_INITIALIZER;

Where a macro should be defined in the .c file in this manner to form part of the targetm structure, it is documented below as a “Target Hook” with a prototype. Many macros will change in future from being defined in the .h file to being part of the targetm structure.


Next: , Previous: Target Structure, Up: Target Macros

17.2 Controlling the Compilation Driver, gcc

You can control the compilation driver.

— Macro: SWITCH_TAKES_ARG (char)

A C expression which determines whether the option -char takes arguments. The value should be the number of arguments that option takes–zero, for many options.

By default, this macro is defined as DEFAULT_SWITCH_TAKES_ARG, which handles the standard options properly. You need not define SWITCH_TAKES_ARG unless you wish to add additional options which take arguments. Any redefinition should call DEFAULT_SWITCH_TAKES_ARG and then check for additional options.

— Macro: WORD_SWITCH_TAKES_ARG (name)

A C expression which determines whether the option -name takes arguments. The value should be the number of arguments that option takes–zero, for many options. This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which handles the standard options properly. You need not define WORD_SWITCH_TAKES_ARG unless you wish to add additional options which take arguments. Any redefinition should call DEFAULT_WORD_SWITCH_TAKES_ARG and then check for additional options.

— Macro: SWITCH_CURTAILS_COMPILATION (char)

A C expression which determines whether the option -char stops compilation before the generation of an executable. The value is boolean, nonzero if the option does stop an executable from being generated, zero otherwise.

By default, this macro is defined as DEFAULT_SWITCH_CURTAILS_COMPILATION, which handles the standard options properly. You need not define SWITCH_CURTAILS_COMPILATION unless you wish to add additional options which affect the generation of an executable. Any redefinition should call DEFAULT_SWITCH_CURTAILS_COMPILATION and then check for additional options.

— Macro: SWITCHES_NEED_SPACES

A string-valued C expression which enumerates the options for which the linker needs a space between the option and its argument.

If this macro is not defined, the default value is "".

— Macro: TARGET_OPTION_TRANSLATE_TABLE

If defined, a list of pairs of strings, the first of which is a potential command line target to the gcc driver program, and the second of which is a space-separated (tabs and other whitespace are not supported) list of options with which to replace the first option. The target defining this list is responsible for assuring that the results are valid. Replacement options may not be the --opt style, they must be the -opt style. It is the intention of this macro to provide a mechanism for substitution that affects the multilibs chosen, such as one option that enables many options, some of which select multilibs. Example nonsensical definition, where -malt-abi, -EB, and -mspoo cause different multilibs to be chosen:

          #define TARGET_OPTION_TRANSLATE_TABLE \
          { "-fast",   "-march=fast-foo -malt-abi -I/usr/fast-foo" }, \
          { "-compat", "-EB -malign=4 -mspoo" }
— Macro: DRIVER_SELF_SPECS

A list of specs for the driver itself. It should be a suitable initializer for an array of strings, with no surrounding braces.

The driver applies these specs to its own command line between loading default specs files (but not command-line specified ones) and choosing the multilib directory or running any subcommands. It applies them in the order given, so each spec can depend on the options added by earlier ones. It is also possible to remove options using ‘%<option’ in the usual way.

This macro can be useful when a port has several interdependent target options. It provides a way of standardizing the command line so that the other specs are easier to write.

Do not define this macro if it does not need to do anything.

— Macro: OPTION_DEFAULT_SPECS

A list of specs used to support configure-time default options (i.e. --with options) in the driver. It should be a suitable initializer for an array of structures, each containing two strings, without the outermost pair of surrounding braces.

The first item in the pair is the name of the default. This must match the code in config.gcc for the target. The second item is a spec to apply if a default with this name was specified. The string ‘%(VALUE)’ in the spec will be replaced by the value of the default everywhere it occurs.

The driver will apply these specs to its own command line between loading default specs files and processing DRIVER_SELF_SPECS, using the same mechanism as DRIVER_SELF_SPECS.

Do not define this macro if it does not need to do anything.

— Macro: CPP_SPEC

A C string constant that tells the GCC driver program options to pass to CPP. It can also specify how to translate options you give to GCC into options for GCC to pass to the CPP.

Do not define this macro if it does not need to do anything.

— Macro: CPLUSPLUS_CPP_SPEC

This macro is just like CPP_SPEC, but is used for C++, rather than C. If you do not define this macro, then the value of CPP_SPEC (if any) will be used instead.

— Macro: CC1_SPEC

A C string constant that tells the GCC driver program options to pass to cc1, cc1plus, f771, and the other language front ends. It can also specify how to translate options you give to GCC into options for GCC to pass to front ends.

Do not define this macro if it does not need to do anything.

— Macro: CC1PLUS_SPEC

A C string constant that tells the GCC driver program options to pass to cc1plus. It can also specify how to translate options you give to GCC into options for GCC to pass to the cc1plus.

Do not define this macro if it does not need to do anything. Note that everything defined in CC1_SPEC is already passed to cc1plus so there is no need to duplicate the contents of CC1_SPEC in CC1PLUS_SPEC.

— Macro: ASM_SPEC

A C string constant that tells the GCC driver program options to pass to the assembler. It can also specify how to translate options you give to GCC into options for GCC to pass to the assembler. See the file sun3.h for an example of this.

Do not define this macro if it does not need to do anything.

— Macro: ASM_FINAL_SPEC

A C string constant that tells the GCC driver program how to run any programs which cleanup after the normal assembler. Normally, this is not needed. See the file mips.h for an example of this.

Do not define this macro if it does not need to do anything.

— Macro: AS_NEEDS_DASH_FOR_PIPED_INPUT

Define this macro, with no value, if the driver should give the assembler an argument consisting of a single dash, -, to instruct it to read from its standard input (which will be a pipe connected to the output of the compiler proper). This argument is given after any -o option specifying the name of the output file.

If you do not define this macro, the assembler is assumed to read its standard input if given no non-option arguments. If your assembler cannot read standard input at all, use a ‘%{pipe:%e}’ construct; see mips.h for instance.

— Macro: LINK_SPEC

A C string constant that tells the GCC driver program options to pass to the linker. It can also specify how to translate options you give to GCC into options for GCC to pass to the linker.

Do not define this macro if it does not need to do anything.

— Macro: LIB_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C library from the usual place. See gcc.c.

— Macro: LIBGCC_SPEC

Another C string constant that tells the GCC driver program how and when to place a reference to libgcc.a into the linker command line. This constant is placed both before and after the value of LIB_SPEC.

If this macro is not defined, the GCC driver provides a default that passes the string -lgcc to the linker.

— Macro: REAL_LIBGCC_SPEC

By default, if ENABLE_SHARED_LIBGCC is defined, the LIBGCC_SPEC is not directly used by the driver program but is instead modified to refer to different versions of libgcc.a depending on the values of the command line flags -static, -shared, -static-libgcc, and -shared-libgcc. On targets where these modifications are inappropriate, define REAL_LIBGCC_SPEC instead. REAL_LIBGCC_SPEC tells the driver how to place a reference to libgcc on the link command line, but, unlike LIBGCC_SPEC, it is used unmodified.

— Macro: USE_LD_AS_NEEDED

A macro that controls the modifications to LIBGCC_SPEC mentioned in REAL_LIBGCC_SPEC. If nonzero, a spec will be generated that uses –as-needed and the shared libgcc in place of the static exception handler library, when linking without any of -static, -static-libgcc, or -shared-libgcc.

— Macro: LINK_EH_SPEC

If defined, this C string constant is added to LINK_SPEC. When USE_LD_AS_NEEDED is zero or undefined, it also affects the modifications to LIBGCC_SPEC mentioned in REAL_LIBGCC_SPEC.

— Macro: STARTFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that STARTFILE_SPEC is used at the very beginning of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C startup file from the usual place. See gcc.c.

— Macro: ENDFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

— Macro: THREAD_MODEL_SPEC

GCC -v will print the thread model GCC was configured to use. However, this doesn't work on platforms that are multilibbed on thread models, such as AIX 4.3. On such platforms, define THREAD_MODEL_SPEC such that it evaluates to a string without blanks that names one of the recognized thread models. %*, the default value of this macro, will expand to the value of thread_file set in config.gcc.

— Macro: SYSROOT_SUFFIX_SPEC

Define this macro to add a suffix to the target sysroot when GCC is configured with a sysroot. This will cause GCC to search for usr/lib, et al, within sysroot+suffix.

— Macro: SYSROOT_HEADERS_SUFFIX_SPEC

Define this macro to add a headers_suffix to the target sysroot when GCC is configured with a sysroot. This will cause GCC to pass the updated sysroot+headers_suffix to CPP, causing it to search for usr/include, et al, within sysroot+headers_suffix.

— Macro: EXTRA_SPECS

Define this macro to provide additional specifications to put in the specs file that can be used in various specifications like CC1_SPEC.

The definition should be an initializer for an array of structures, containing a string constant, that defines the specification name, and a string constant that provides the specification.

Do not define this macro if it does not need to do anything.

EXTRA_SPECS is useful when an architecture contains several related targets, which have various ..._SPECS which are similar to each other, and the maintainer would like one central place to keep these definitions.

For example, the PowerPC System V.4 targets use EXTRA_SPECS to define either _CALL_SYSV when the System V calling sequence is used or _CALL_AIX when the older AIX-based calling sequence is used.

The config/rs6000/rs6000.h target file defines:

          #define EXTRA_SPECS \
            { "cpp_sysv_default", CPP_SYSV_DEFAULT },
          
          #define CPP_SYS_DEFAULT ""

The config/rs6000/sysv.h target file defines:

          #undef CPP_SPEC
          #define CPP_SPEC \
          "%{posix: -D_POSIX_SOURCE } \
          %{mcall-sysv: -D_CALL_SYSV } \
          %{!mcall-sysv: %(cpp_sysv_default) } \
          %{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"
          
          #undef CPP_SYSV_DEFAULT
          #define CPP_SYSV_DEFAULT "-D_CALL_SYSV"

while the config/rs6000/eabiaix.h target file defines CPP_SYSV_DEFAULT as:

          #undef CPP_SYSV_DEFAULT
          #define CPP_SYSV_DEFAULT "-D_CALL_AIX"
— Macro: LINK_LIBGCC_SPECIAL_1

Define this macro if the driver program should find the library libgcc.a. If you do not define this macro, the driver program will pass the argument -lgcc to tell the linker to do the search.

— Macro: LINK_GCC_C_SEQUENCE_SPEC

The sequence in which libgcc and libc are specified to the linker. By default this is %G %L %G.

— Macro: LINK_COMMAND_SPEC

A C string constant giving the complete command line need to execute the linker. When you do this, you will need to update your port each time a change is made to the link command line within gcc.c. Therefore, define this macro only if you need to completely redefine the command line for invoking the linker and there is no other way to accomplish the effect you need. Overriding this macro may be avoidable by overriding LINK_GCC_C_SEQUENCE_SPEC instead.

— Macro: LINK_ELIMINATE_DUPLICATE_LDIRECTORIES

A nonzero value causes collect2 to remove duplicate -Ldirectory search directories from linking commands. Do not give it a nonzero value if removing duplicate search directories changes the linker's semantics.

— Macro: MULTILIB_DEFAULTS

Define this macro as a C expression for the initializer of an array of string to tell the driver program which options are defaults for this target and thus do not need to be handled specially when using MULTILIB_OPTIONS.

Do not define this macro if MULTILIB_OPTIONS is not defined in the target makefile fragment or if none of the options listed in MULTILIB_OPTIONS are set by default. See Target Fragment.

— Macro: RELATIVE_PREFIX_NOT_LINKDIR

Define this macro to tell gcc that it should only translate a -B prefix into a -L linker option if the prefix indicates an absolute file name.

— Macro: MD_EXEC_PREFIX

If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX. MD_EXEC_PREFIX is not searched when the -b option is used, or the compiler is built as a cross compiler. If you define MD_EXEC_PREFIX, then be sure to add it to the list of directories used to find the assembler in configure.in.

— Macro: STANDARD_STARTFILE_PREFIX

Define this macro as a C string constant if you wish to override the standard choice of libdir as the default prefix to try when searching for startup files such as crt0.o. STANDARD_STARTFILE_PREFIX is not searched when the compiler is built as a cross compiler.

— Macro: STANDARD_STARTFILE_PREFIX_1

Define this macro as a C string constant if you wish to override the standard choice of /lib as a prefix to try after the default prefix when searching for startup files such as crt0.o. STANDARD_STARTFILE_PREFIX_1 is not searched when the compiler is built as a cross compiler.

— Macro: STANDARD_STARTFILE_PREFIX_2

Define this macro as a C string constant if you wish to override the standard choice of /lib as yet another prefix to try after the default prefix when searching for startup files such as crt0.o. STANDARD_STARTFILE_PREFIX_2 is not searched when the compiler is built as a cross compiler.

— Macro: MD_STARTFILE_PREFIX

If defined, this macro supplies an additional prefix to try after the standard prefixes. MD_EXEC_PREFIX is not searched when the -b option is used, or when the compiler is built as a cross compiler.

— Macro: MD_STARTFILE_PREFIX_1

If defined, this macro supplies yet another prefix to try after the standard prefixes. It is not searched when the -b option is used, or when the compiler is built as a cross compiler.

— Macro: INIT_ENVIRONMENT

Define this macro as a C string constant if you wish to set environment variables for programs called by the driver, such as the assembler and loader. The driver passes the value of this macro to putenv to initialize the necessary environment variables.

— Macro: LOCAL_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of /usr/local/include as the default prefix to try when searching for local header files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not search either /usr/local/include or its replacement.

— Macro: MODIFY_TARGET_NAME

Define this macro if you wish to define command-line switches that modify the default target name.

For each switch, you can include a string to be appended to the first part of the configuration name or a string to be deleted from the configuration name, if present. The definition should be an initializer for an array of structures. Each array element should have three elements: the switch name (a string constant, including the initial dash), one of the enumeration codes ADD or DELETE to indicate whether the string should be inserted or deleted, and the string to be inserted or deleted (a string constant).

For example, on a machine where ‘64’ at the end of the configuration name denotes a 64-bit target and you want the -32 and -64 switches to select between 32- and 64-bit targets, you would code

          #define MODIFY_TARGET_NAME \
            { { "-32", DELETE, "64"}, \
               {"-64", ADD, "64"}}
— Macro: SYSTEM_INCLUDE_DIR

Define this macro as a C string constant if you wish to specify a system-specific directory to search for header files before the standard directory. SYSTEM_INCLUDE_DIR comes before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

— Macro: STANDARD_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of /usr/include as the default prefix to try when searching for header files.

Cross compilers ignore this macro and do not search either /usr/include or its replacement.

— Macro: STANDARD_INCLUDE_COMPONENT

The “component” corresponding to STANDARD_INCLUDE_DIR. See INCLUDE_DEFAULTS, below, for the description of components. If you do not define this macro, no component is used.

— Macro: INCLUDE_DEFAULTS

Define this macro if you wish to override the entire default search path for include files. For a native compiler, the default search path usually consists of GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, GPLUSPLUS_INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addition, GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined automatically by Makefile, and specify private search areas for GCC. The directory GPLUSPLUS_INCLUDE_DIR is used only for C++ programs.

The definition should be an initializer for an array of structures. Each array element should have four elements: the directory name (a string constant), the component name (also a string constant), a flag for C++-only directories, and a flag showing that the includes in the directory don't need to be wrapped in extern ‘C when compiling C++. Mark the end of the array with a null element.

The component name denotes what GNU package the include file is part of, if any, in all uppercase letters. For example, it might be ‘GCC’ or ‘BINUTILS’. If the package is part of a vendor-supplied operating system, code the component name as ‘0’.

For example, here is the definition used for VAX/VMS:

          #define INCLUDE_DEFAULTS \
          {                                       \
            { "GNU_GXX_INCLUDE:", "G++", 1, 1},   \
            { "GNU_CC_INCLUDE:", "GCC", 0, 0},    \
            { "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0},  \
            { ".", 0, 0, 0},                      \
            { 0, 0, 0, 0}                         \
          }

Here is the order of prefixes tried for exec files:

  1. Any prefixes specified by the user with -B.
  2. The environment variable GCC_EXEC_PREFIX or, if GCC_EXEC_PREFIX is not set and the compiler has not been installed in the configure-time prefix, the location in which the compiler has actually been installed.
  3. The directories specified by the environment variable COMPILER_PATH.
  4. The macro STANDARD_EXEC_PREFIX, if the compiler has been installed in the configured-time prefix.
  5. The location /usr/libexec/gcc/, but only if this is a native compiler.
  6. The location /usr/lib/gcc/, but only if this is a native compiler.
  7. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.

Here is the order of prefixes tried for startfiles:

  1. Any prefixes specified by the user with -B.
  2. The environment variable GCC_EXEC_PREFIX or its automatically determined value based on the installed toolchain location.
  3. The directories specified by the environment variable LIBRARY_PATH (or port-specific name; native only, cross compilers do not use this).
  4. The macro STANDARD_EXEC_PREFIX, but only if the toolchain is installed in the configured prefix or this is a native compiler.
  5. The location /usr/lib/gcc/, but only if this is a native compiler.
  6. The macro MD_EXEC_PREFIX, if defined, but only if this is a native compiler.
  7. The macro MD_STARTFILE_PREFIX, if defined, but only if this is a native compiler, or we have a target system root.
  8. The macro MD_STARTFILE_PREFIX_1, if defined, but only if this is a native compiler, or we have a target system root.
  9. The macro STANDARD_STARTFILE_PREFIX, with any sysroot modifications. If this path is relative it will be prefixed by GCC_EXEC_PREFIX and the machine suffix or STANDARD_EXEC_PREFIX and the machine suffix.
  10. The macro STANDARD_STARTFILE_PREFIX_1, but only if this is a native compiler, or we have a target system root. The default for this macro is /lib/.
  11. The macro STANDARD_STARTFILE_PREFIX_2, but only if this is a native compiler, or we have a target system root. The default for this macro is /usr/lib/.


Next: , Previous: Driver, Up: Target Macros

17.3 Run-time Target Specification

Here are run-time target specifications.

— Macro: TARGET_CPU_CPP_BUILTINS ()

This function-like macro expands to a block of code that defines built-in preprocessor macros and assertions for the target CPU, using the functions builtin_define, builtin_define_std and builtin_assert. When the front end calls this macro it provides a trailing semicolon, and since it has finished command line option processing your code can use those results freely.

builtin_assert takes a string in the form you pass to the command-line option -A, such as cpu=mips, and creates the assertion. builtin_define takes a string in the form accepted by option -D and unconditionally defines the macro.

builtin_define_std takes a string representing the name of an object-like macro. If it doesn't lie in the user's namespace, builtin_define_std defines it unconditionally. Otherwise, it defines a version with two leading underscores, and another version with two leading and trailing underscores, and defines the original only if an ISO standard was not requested on the command line. For example, passing unix defines __unix, __unix__ and possibly unix; passing _mips defines __mips, __mips__ and possibly _mips, and passing _ABI64 defines only _ABI64.

You can also test for the C dialect being compiled. The variable c_language is set to one of clk_c, clk_cplusplus or clk_objective_c. Note that if we are preprocessing assembler, this variable will be clk_c but the function-like macro preprocessing_asm_p() will return true, so you might want to check for that first. If you need to check for strict ANSI, the variable flag_iso can be used. The function-like macro preprocessing_trad_p() can be used to check for traditional preprocessing.

— Macro: TARGET_OS_CPP_BUILTINS ()

Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for the target operating system instead.

— Macro: TARGET_OBJFMT_CPP_BUILTINS ()

Similarly to TARGET_CPU_CPP_BUILTINS but this macro is optional and is used for the target object format. elfos.h uses this macro to define __ELF__, so you probably do not need to define it yourself.

— Variable: extern int target_flags

This variable is declared in options.h, which is included before any target-specific headers.

— Variable: Target Hook int TARGET_DEFAULT_TARGET_FLAGS

This variable specifies the initial value of target_flags. Its default setting is 0.

— Target Hook: bool TARGET_HANDLE_OPTION (size_t code, const char *arg, int value)

This hook is called whenever the user specifies one of the target-specific options described by the .opt definition files (see Options). It has the opportunity to do some option-specific processing and should return true if the option is valid. The default definition does nothing but return true.

code specifies the OPT_name enumeration value associated with the selected option; name is just a rendering of the option name in which non-alphanumeric characters are replaced by underscores. arg specifies the string argument and is null if no argument was given. If the option is flagged as a UInteger (see Option properties), value is the numeric value of the argument. Otherwise value is 1 if the positive form of the option was used and 0 if the “no-” form was.

— Target Hook: bool TARGET_HANDLE_C_OPTION (size_t code, const char *arg, int value)

This target hook is called whenever the user specifies one of the target-specific C language family options described by the .opt definition files(see Options). It has the opportunity to do some option-specific processing and should return true if the option is valid. The default definition does nothing but return false.

In general, you should use TARGET_HANDLE_OPTION to handle options. However, if processing an option requires routines that are only available in the C (and related language) front ends, then you should use TARGET_HANDLE_C_OPTION instead.

— Macro: TARGET_VERSION

This macro is a C statement to print on stderr a string describing the particular machine description choice. Every machine description should define TARGET_VERSION. For example:

          #ifdef MOTOROLA
          #define TARGET_VERSION \
            fprintf (stderr, " (68k, Motorola syntax)");
          #else
          #define TARGET_VERSION \
            fprintf (stderr, " (68k, MIT syntax)");
          #endif
— Macro: OVERRIDE_OPTIONS

Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro OVERRIDE_OPTIONS to take account of this. This macro, if defined, is executed once just after all the command options have been parsed.

Don't use this macro to turn on various extra optimizations for -O. That is what OPTIMIZATION_OPTIONS is for.

— Macro: C_COMMON_OVERRIDE_OPTIONS

This is similar to OVERRIDE_OPTIONS but is only used in the C language frontends (C, Objective-C, C++, Objective-C++) and so can be used to alter option flag variables which only exist in those frontends.

— Macro: OPTIMIZATION_OPTIONS (level, size)

Some machines may desire to change what optimizations are performed for various optimization levels. This macro, if defined, is executed once just after the optimization level is determined and before the remainder of the command options have been parsed. Values set in this macro are used as the default values for the other command line options.

level is the optimization level specified; 2 if -O2 is specified, 1 if -O is specified, and 0 if neither is specified.

size is nonzero if -Os is specified and zero otherwise.

This macro is run once at program startup and when the optimization options are changed via #pragma GCC optimize or by using the optimize attribute.

Do not examine write_symbols in this macro! The debugging options are not supposed to alter the generated code.

— Target Hook: bool TARGET_HELP (void)

This hook is called in response to the user invoking --target-help on the command line. It gives the target a chance to display extra information on the target specific command line options found in its .opt file.

— Macro: CAN_DEBUG_WITHOUT_FP

Define this macro if debugging can be performed even without a frame pointer. If this macro is defined, GCC will turn on the -fomit-frame-pointer option whenever -O is specified.


Next: , Previous: Run-time Target, Up: Target Macros

17.4 Defining data structures for per-function information.

If the target needs to store information on a per-function basis, GCC provides a macro and a couple of variables to allow this. Note, just using statics to store the information is a bad idea, since GCC supports nested functions, so you can be halfway through encoding one function when another one comes along.

GCC defines a data structure called struct function which contains all of the data specific to an individual function. This structure contains a field called machine whose type is struct machine_function *, which can be used by targets to point to their own specific data.

If a target needs per-function specific data it should define the type struct machine_function and also the macro INIT_EXPANDERS. This macro should be used to initialize the function pointer init_machine_status. This pointer is explained below.

One typical use of per-function, target specific data is to create an RTX to hold the register containing the function's return address. This RTX can then be used to implement the __builtin_return_address function, for level 0.

Note—earlier implementations of GCC used a single data area to hold all of the per-function information. Thus when processing of a nested function began the old per-function data had to be pushed onto a stack, and when the processing was finished, it had to be popped off the stack. GCC used to provide function pointers called save_machine_status and restore_machine_status to handle the saving and restoring of the target specific information. Since the single data area approach is no longer used, these pointers are no longer supported.

— Macro: INIT_EXPANDERS

Macro called to initialize any target specific information. This macro is called once per function, before generation of any RTL has begun. The intention of this macro is to allow the initialization of the function pointer init_machine_status.

— Variable: void (*)(struct function *) init_machine_status

If this function pointer is non-NULL it will be called once per function, before function compilation starts, in order to allow the target to perform any target specific initialization of the struct function structure. It is intended that this would be used to initialize the machine of that structure.

struct machine_function structures are expected to be freed by GC. Generally, any memory that they reference must be allocated by using ggc_alloc, including the structure itself.


Next: , Previous: Per-Function Data, Up: Target Macros

17.5 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured in bits do not need to be constant. They can be C expressions that refer to static variables, such as the target_flags. See Run-time Target.

— Macro: BITS_BIG_ENDIAN

Define this macro to have the value 1 if the most significant bit in a byte has the lowest number; otherwise define it to have the value zero. This means that bit-field instructions count from the most significant bit. If the machine has no bit-field instructions, then this must still be defined, but it doesn't matter which value it is defined to. This macro need not be a constant.

This macro does not affect the way structure fields are packed into bytes or words; that is controlled by BYTES_BIG_ENDIAN.

— Macro: BYTES_BIG_ENDIAN

Define this macro to have the value 1 if the most significant byte in a word has the lowest number. This macro need not be a constant.

— Macro: WORDS_BIG_ENDIAN

Define this macro to have the value 1 if, in a multiword object, the most significant word has the lowest number. This applies to both memory locations and registers; GCC fundamentally assumes that the order of words in memory is the same as the order in registers. This macro need not be a constant.

— Macro: LIBGCC2_WORDS_BIG_ENDIAN

Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a constant value with the same meaning as WORDS_BIG_ENDIAN, which will be used only when compiling libgcc2.c. Typically the value will be set based on preprocessor defines.

— Macro: FLOAT_WORDS_BIG_ENDIAN

Define this macro to have the value 1 if DFmode, XFmode or TFmode floating point numbers are stored in memory with the word containing the sign bit at the lowest address; otherwise define it to have the value 0. This macro need not be a constant.

You need not define this macro if the ordering is the same as for multi-word integers.

— Macro: BITS_PER_UNIT

Define this macro to be the number of bits in an addressable storage unit (byte). If you do not define this macro the default is 8.

— Macro: BITS_PER_WORD

Number of bits in a word. If you do not define this macro, the default is BITS_PER_UNIT * UNITS_PER_WORD.

— Macro: MAX_BITS_PER_WORD

Maximum number of bits in a word. If this is undefined, the default is BITS_PER_WORD. Otherwise, it is the constant value that is the largest value that BITS_PER_WORD can have at run-time.

— Macro: UNITS_PER_WORD

Number of storage units in a word; normally the size of a general-purpose register, a power of two from 1 or 8.

— Macro: MIN_UNITS_PER_WORD

Minimum number of units in a word. If this is undefined, the default is UNITS_PER_WORD. Otherwise, it is the constant value that is the smallest value that UNITS_PER_WORD can have at run-time.

— Macro: UNITS_PER_SIMD_WORD (mode)

Number of units in the vectors that the vectorizer can produce for scalar mode mode. The default is equal to UNITS_PER_WORD, because the vectorizer can do some transformations even in absence of specialized SIMD hardware.

— Macro: POINTER_SIZE

Width of a pointer, in bits. You must specify a value no wider than the width of Pmode. If it is not equal to the width of Pmode, you must define POINTERS_EXTEND_UNSIGNED. If you do not specify a value the default is BITS_PER_WORD.

— Macro: POINTERS_EXTEND_UNSIGNED

A C expression that determines how pointers should be extended from ptr_mode to either Pmode or word_mode. It is greater than zero if pointers should be zero-extended, zero if they should be sign-extended, and negative if some other sort of conversion is needed. In the last case, the extension is done by the target's ptr_extend instruction.

You need not define this macro if the ptr_mode, Pmode and word_mode are all the same width.

— Macro: PROMOTE_MODE (m, unsignedp, type)

A macro to update m and unsignedp when an object whose type is type and which has the specified mode and signedness is to be stored in a register. This macro is only called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full register, define this macro to set m to word_mode if m is an integer mode narrower than BITS_PER_WORD. In most cases, only integer modes should be widened because wider-precision floating-point operations are usually more expensive than their narrower counterparts.

For most machines, the macro definition does not change unsignedp. However, some machines, have instructions that preferentially handle either signed or unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set unsignedp according to which kind of extension is more efficient.

Do not define this macro if it would never modify m.

— Macro: PROMOTE_FUNCTION_MODE

Like PROMOTE_MODE, but is applied to outgoing function arguments or function return values, as specified by TARGET_PROMOTE_FUNCTION_ARGS and TARGET_PROMOTE_FUNCTION_RETURN, respectively.

The default is PROMOTE_MODE.

— Target Hook: bool TARGET_PROMOTE_FUNCTION_ARGS (tree fntype)

This target hook should return true if the promotion described by PROMOTE_FUNCTION_MODE should be done for outgoing function arguments.

— Target Hook: bool TARGET_PROMOTE_FUNCTION_RETURN (tree fntype)

This target hook should return true if the promotion described by PROMOTE_FUNCTION_MODE should be done for the return value of functions.

If this target hook returns true, TARGET_FUNCTION_VALUE must perform the same promotions done by PROMOTE_FUNCTION_MODE.

— Macro: PARM_BOUNDARY

Normal alignment required for function parameters on the stack, in bits. All stack parameters receive at least this much alignment regardless of data type. On most machines, this is the same as the size of an integer.

— Macro: STACK_BOUNDARY

Define this macro to the minimum alignment enforced by hardware for the stack pointer on this machine. The definition is a C expression for the desired alignment (measured in bits). This value is used as a default if PREFERRED_STACK_BOUNDARY is not defined. On most machines, this should be the same as PARM_BOUNDARY.

— Macro: PREFERRED_STACK_BOUNDARY

Define this macro if you wish to preserve a certain alignment for the stack pointer, greater than what the hardware enforces. The definition is a C expression for the desired alignment (measured in bits). This macro must evaluate to a value equal to or larger than STACK_BOUNDARY.

— Macro: INCOMING_STACK_BOUNDARY

Define this macro if the incoming stack boundary may be different from PREFERRED_STACK_BOUNDARY. This macro must evaluate to a value equal to or larger than STACK_BOUNDARY.

— Macro: FUNCTION_BOUNDARY

Alignment required for a function entry point, in bits.

— Macro: BIGGEST_ALIGNMENT

Biggest alignment that any data type can require on this machine, in bits. Note that this is not the biggest alignment that is supported, just the biggest alignment that, when violated, may cause a fault.

— Macro: MALLOC_ABI_ALIGNMENT

Alignment, in bits, a C conformant malloc implementation has to provide. If not defined, the default value is BITS_PER_WORD.

— Macro: ATTRIBUTE_ALIGNED_VALUE

Alignment used by the __attribute__ ((aligned)) construct. If not defined, the default value is BIGGEST_ALIGNMENT.

— Macro: MINIMUM_ATOMIC_ALIGNMENT

If defined, the smallest alignment, in bits, that can be given to an object that can be referenced in one operation, without disturbing any nearby object. Normally, this is BITS_PER_UNIT, but may be larger on machines that don't have byte or half-word store operations.

— Macro: BIGGEST_FIELD_ALIGNMENT

Biggest alignment that any structure or union field can require on this machine, in bits. If defined, this overrides BIGGEST_ALIGNMENT for structure and union fields only, unless the field alignment has been set by the __attribute__ ((aligned (n))) construct.

— Macro: ADJUST_FIELD_ALIGN (field, computed)

An expression for the alignment of a structure field field if the alignment computed in the usual way (including applying of BIGGEST_ALIGNMENT and BIGGEST_FIELD_ALIGNMENT to the alignment) is computed. It overrides alignment only if the field alignment has not been set by the __attribute__ ((aligned (n))) construct.

— Macro: MAX_STACK_ALIGNMENT

Biggest stack alignment guaranteed by the backend. Use this macro to specify the maximum alignment of a variable on stack.

If not defined, the default value is STACK_BOUNDARY.

— Macro: MAX_OFILE_ALIGNMENT

Biggest alignment supported by the object file format of this machine. Use this macro to limit the alignment which can be specified using the __attribute__ ((aligned (n))) construct. If not defined, the default value is BIGGEST_ALIGNMENT.

On systems that use ELF, the default (in config/elfos.h) is the largest supported 32-bit ELF section alignment representable on a 32-bit host e.g. ‘(((unsigned HOST_WIDEST_INT) 1 << 28) * 8)’. On 32-bit ELF the largest supported section alignment in bits is ‘(0x80000000 * 8)’, but this is not representable on 32-bit hosts.

— Macro: DATA_ALIGNMENT (type, basic-align)

If defined, a C expression to compute the alignment for a variable in the static store. type is the data type, and basic-align is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. Another is to cause character arrays to be word-aligned so that strcpy calls that copy constants to character arrays can be done inline.

— Macro: CONSTANT_ALIGNMENT (constant, basic-align)

If defined, a C expression to compute the alignment given to a constant that is being placed in memory. constant is the constant and basic-align is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be word aligned so that strcpy calls that copy constants can be done inline.

— Macro: LOCAL_ALIGNMENT (type, basic-align)

If defined, a C expression to compute the alignment for a variable in the local store. type is the data type, and basic-align is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines.

— Macro: STACK_SLOT_ALIGNMENT (type, mode, basic-align)

If defined, a C expression to compute the alignment for stack slot. type is the data type, mode is the widest mode available, and basic-align is the alignment that the slot would ordinarily have. The value of this macro is used instead of that alignment to align the slot.

If this macro is not defined, then basic-align is used when type is NULL. Otherwise, LOCAL_ALIGNMENT will be used.

This macro is to set alignment of stack slot to the maximum alignment of all possible modes which the slot may have.

— Macro: LOCAL_DECL_ALIGNMENT (decl)

If defined, a C expression to compute the alignment for a local variable decl.

If this macro is not defined, then LOCAL_ALIGNMENT (TREE_TYPE (decl), DECL_ALIGN (decl)) is used.

One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines.

— Macro: MINIMUM_ALIGNMENT (exp, mode, align)

If defined, a C expression to compute the minimum required alignment for dynamic stack realignment purposes for exp (a type or decl), mode, assuming normal alignment align.

If this macro is not defined, then align will be used.

— Macro: EMPTY_FIELD_BOUNDARY

Alignment in bits to be given to a structure bit-field that follows an empty field such as int : 0;.

If PCC_BITFIELD_TYPE_MATTERS is true, it overrides this macro.

— Macro: STRUCTURE_SIZE_BOUNDARY

Number of bits which any structure or union's size must be a multiple of. Each structure or union's size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

— Macro: STRICT_ALIGNMENT

Define this macro to be the value 1 if instructions will fail to work if given data not on the nominal alignment. If instructions will merely go slower in that case, define this macro as 0.

— Macro: PCC_BITFIELD_TYPE_MATTERS

Define this if you wish to imitate the way many other C compilers handle alignment of bit-fields and the structures that contain them.

The behavior is that the type written for a named bit-field (int, short, or other integer type) imposes an alignment for the entire structure, as if the structure really did contain an ordinary field of that type. In addition, the bit-field is placed within the structure so that it would fit within such a field, not crossing a boundary for it.

Thus, on most machines, a named bit-field whose type is written as int would not cross a four-byte boundary, and would force four-byte alignment for the whole structure. (The alignment used may not be four bytes; it is controlled by the other alignment parameters.)

An unnamed bit-field will not affect the alignment of the containing structure.

If the macro is defined, its definition should be a C expression; a nonzero value for the expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bit-fields may cross more than one alignment boundary. The compiler can support such references if there are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference memory.

The other known way of making bit-fields work is to define STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. Then every structure can be accessed with fullwords.

Unless the machine has bit-field instructions or you define STRUCTURE_SIZE_BOUNDARY that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GCC use the same conventions for laying out bit-fields as are used by another compiler, here is how to investigate what the other compiler does. Compile and run this program:

          struct foo1
          {
            char x;
            char :0;
            char y;
          };
          
          struct foo2
          {
            char x;
            int :0;
            char y;
          };
          
          main ()
          {
            printf ("Size of foo1 is %d\n",
                    sizeof (struct foo1));
            printf ("Size of foo2 is %d\n",
                    sizeof (struct foo2));
            exit (0);
          }

If this prints 2 and 5, then the compiler's behavior is what you would get from PCC_BITFIELD_TYPE_MATTERS.

— Macro: BITFIELD_NBYTES_LIMITED

Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to aligning a bit-field within the structure.

— Target Hook: bool TARGET_ALIGN_ANON_BITFIELD (void)

When PCC_BITFIELD_TYPE_MATTERS is true this hook will determine whether unnamed bitfields affect the alignment of the containing structure. The hook should return true if the structure should inherit the alignment requirements of an unnamed bitfield's type.

— Target Hook: bool TARGET_NARROW_VOLATILE_BITFIELD (void)

This target hook should return true if accesses to volatile bitfields should use the narrowest mode possible. It should return false if these accesses should use the bitfield container type.

The default is !TARGET_STRICT_ALIGN.

— Macro: MEMBER_TYPE_FORCES_BLK (field, mode)

Return 1 if a structure or array containing field should be accessed using BLKMODE.

If field is the only field in the structure, mode is its mode, otherwise mode is VOIDmode. mode is provided in the case where structures of one field would require the structure's mode to retain the field's mode.

Normally, this is not needed.

— Macro: ROUND_TYPE_ALIGN (type, computed, specified)

Define this macro as an expression for the alignment of a type (given by type as a tree node) if the alignment computed in the usual way is computed and the alignment explicitly specified was specified.

The default is to use specified if it is larger; otherwise, use the smaller of computed and BIGGEST_ALIGNMENT

— Macro: MAX_FIXED_MODE_SIZE

An integer expression for the size in bits of the largest integer machine mode that should actually be used. All integer machine modes of this size or smaller can be used for structures and unions with the appropriate sizes. If this macro is undefined, GET_MODE_BITSIZE (DImode) is assumed.

— Macro: STACK_SAVEAREA_MODE (save_level)

If defined, an expression of type enum machine_mode that specifies the mode of the save area operand of a save_stack_level named pattern (see Standard Names). save_level is one of SAVE_BLOCK, SAVE_FUNCTION, or SAVE_NONLOCAL and selects which of the three named patterns is having its mode specified.

You need not define this macro if it always returns Pmode. You would most commonly define this macro if the save_stack_level patterns need to support both a 32- and a 64-bit mode.

— Macro: STACK_SIZE_MODE

If defined, an expression of type enum machine_mode that specifies the mode of the size increment operand of an allocate_stack named pattern (see Standard Names).

You need not define this macro if it always returns word_mode. You would most commonly define this macro if the allocate_stack pattern needs to support both a 32- and a 64-bit mode.

— Target Hook: enum machine_mode TARGET_LIBGCC_CMP_RETURN_MODE ()

This target hook should return the mode to be used for the return value of compare instructions expanded to libgcc calls. If not defined word_mode is returned which is the right choice for a majority of targets.

— Target Hook: enum machine_mode TARGET_LIBGCC_SHIFT_COUNT_MODE ()

This target hook should return the mode to be used for the shift count operand of shift instructions expanded to libgcc calls. If not defined word_mode is returned which is the right choice for a majority of targets.

— Macro: ROUND_TOWARDS_ZERO

If defined, this macro should be true if the prevailing rounding mode is towards zero.

Defining this macro only affects the way libgcc.a emulates floating-point arithmetic.

Not defining this macro is equivalent to returning zero.

— Macro: LARGEST_EXPONENT_IS_NORMAL (size)

This macro should return true if floats with size bits do not have a NaN or infinity representation, but use the largest exponent for normal numbers instead.

Defining this macro only affects the way libgcc.a emulates floating-point arithmetic.

The default definition of this macro returns false for all sizes.

— Target Hook: bool TARGET_VECTOR_OPAQUE_P (tree type)

This target hook should return true a vector is opaque. That is, if no cast is needed when copying a vector value of type type into another vector lvalue of the same size. Vector opaque types cannot be initialized. The default is that there are no such types.

— Target Hook: bool TARGET_MS_BITFIELD_LAYOUT_P (tree record_type)

This target hook returns true if bit-fields in the given record_type are to be laid out following the rules of Microsoft Visual C/C++, namely: (i) a bit-field won't share the same storage unit with the previous bit-field if their underlying types have different sizes, and the bit-field will be aligned to the highest alignment of the underlying types of itself and of the previous bit-field; (ii) a zero-sized bit-field will affect the alignment of the whole enclosing structure, even if it is unnamed; except that (iii) a zero-sized bit-field will be disregarded unless it follows another bit-field of nonzero size. If this hook returns true, other macros that control bit-field layout are ignored.

When a bit-field is inserted into a packed record, the whole size of the underlying type is used by one or more same-size adjacent bit-fields (that is, if its long:3, 32 bits is used in the record, and any additional adjacent long bit-fields are packed into the same chunk of 32 bits. However, if the size changes, a new field of that size is allocated). In an unpacked record, this is the same as using alignment, but not equivalent when packing.

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-fields are in use, it will take precedence for that field, but the alignment of the rest of the structure may affect its placement.

— Target Hook: bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void)

Returns true if the target supports decimal floating point.

— Target Hook: bool TARGET_FIXED_POINT_SUPPORTED_P (void)

Returns true if the target supports fixed-point arithmetic.

— Target Hook: void TARGET_EXPAND_TO_RTL_HOOK (void)

This hook is called just before expansion into rtl, allowing the target to perform additional initializations or analysis before the expansion. For example, the rs6000 port uses it to allocate a scratch stack slot for use in copying SDmode values between memory and floating point registers whenever the function being expanded has any SDmode usage.

— Target Hook: void TARGET_INSTANTIATE_DECLS (void)

This hook allows the backend to perform additional instantiations on rtl that are not actually in any insns yet, but will be later.

— Target Hook: const char * TARGET_MANGLE_TYPE (tree type)

If your target defines any fundamental types, or any types your target uses should be mangled differently from the default, define this hook to return the appropriate encoding for these types as part of a C++ mangled name. The type argument is the tree structure representing the type to be mangled. The hook may be applied to trees which are not target-specific fundamental types; it should return NULL for all such types, as well as arguments it does not recognize. If the return value is not NULL, it must point to a statically-allocated string constant.

Target-specific fundamental types might be new fundamental types or qualified versions of ordinary fundamental types. Encode new fundamental types as ‘n name’, where name is the name used for the type in source code, and n is the length of name in decimal. Encode qualified versions of ordinary types as ‘n name code’, where name is the name used for the type qualifier in source code, n is the length of name as above, and code is the code used to represent the unqualified version of this type. (See write_builtin_type in cp/mangle.c for the list of codes.) In both cases the spaces are for clarity; do not include any spaces in your string.

This hook is applied to types prior to typedef resolution. If the mangled name for a particular type depends only on that type's main variant, you can perform typedef resolution yourself using TYPE_MAIN_VARIANT before mangling.

The default version of this hook always returns NULL, which is appropriate for a target that does not define any new fundamental types.


Next: , Previous: Storage Layout, Up: Target Macros

17.6 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types used in programs being compiled. Unlike the macros in the previous section, these apply to specific features of C and related languages, rather than to fundamental aspects of storage layout.

— Macro: INT_TYPE_SIZE

A C expression for the size in bits of the type int on the target machine. If you don't define this, the default is one word.

— Macro: SHORT_TYPE_SIZE

A C expression for the size in bits of the type short on the target machine. If you don't define this, the default is half a word. (If this would be less than one storage unit, it is rounded up to one unit.)

— Macro: LONG_TYPE_SIZE

A C expression for the size in bits of the type long on the target machine. If you don't define this, the default is one word.

— Macro: ADA_LONG_TYPE_SIZE

On some machines, the size used for the Ada equivalent of the type long by a native Ada compiler differs from that used by C. In that situation, define this macro to be a C expression to be used for the size of that type. If you don't define this, the default is the value of LONG_TYPE_SIZE.

— Macro: LONG_LONG_TYPE_SIZE

A C expression for the size in bits of the type long long on the target machine. If you don't define this, the default is two words. If you want to support GNU Ada on your machine, the value of this macro must be at least 64.

— Macro: CHAR_TYPE_SIZE

A C expression for the size in bits of the type char on the target machine. If you don't define this, the default is BITS_PER_UNIT.

— Macro: BOOL_TYPE_SIZE

A C expression for the size in bits of the C++ type bool and C99 type _Bool on the target machine. If you don't define this, and you probably shouldn't, the default is CHAR_TYPE_SIZE.

— Macro: FLOAT_TYPE_SIZE

A C expression for the size in bits of the type float on the target machine. If you don't define this, the default is one word.

— Macro: DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type double on the target machine. If you don't define this, the default is two words.

— Macro: LONG_DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type long double on the target machine. If you don't define this, the default is two words.

— Macro: SHORT_FRACT_TYPE_SIZE

A C expression for the size in bits of the type short _Fract on the target machine. If you don't define this, the default is BITS_PER_UNIT.

— Macro: FRACT_TYPE_SIZE

A C expression for the size in bits of the type _Fract on the target machine. If you don't define this, the default is BITS_PER_UNIT * 2.

— Macro: LONG_FRACT_TYPE_SIZE

A C expression for the size in bits of the type long _Fract on the target machine. If you don't define this, the default is BITS_PER_UNIT * 4.

— Macro: LONG_LONG_FRACT_TYPE_SIZE

A C expression for the size in bits of the type long long _Fract on the target machine. If you don't define this, the default is BITS_PER_UNIT * 8.

— Macro: SHORT_ACCUM_TYPE_SIZE

A C expression for the size in bits of the type short _Accum on the target machine. If you don't define this, the default is BITS_PER_UNIT * 2.

— Macro: ACCUM_TYPE_SIZE

A C expression for the size in bits of the type _Accum on the target machine. If you don't define this, the default is BITS_PER_UNIT * 4.

— Macro: LONG_ACCUM_TYPE_SIZE

A C expression for the size in bits of the type long _Accum on the target machine. If you don't define this, the default is BITS_PER_UNIT * 8.

— Macro: LONG_LONG_ACCUM_TYPE_SIZE

A C expression for the size in bits of the type long long _Accum on the target machine. If you don't define this, the default is BITS_PER_UNIT * 16.

— Macro: LIBGCC2_LONG_DOUBLE_TYPE_SIZE

Define this macro if LONG_DOUBLE_TYPE_SIZE is not constant or if you want routines in libgcc2.a for a size other than LONG_DOUBLE_TYPE_SIZE. If you don't define this, the default is LONG_DOUBLE_TYPE_SIZE.

— Macro: LIBGCC2_HAS_DF_MODE

Define this macro if neither LIBGCC2_DOUBLE_TYPE_SIZE nor LIBGCC2_LONG_DOUBLE_TYPE_SIZE is DFmode but you want DFmode routines in libgcc2.a anyway. If you don't define this and either LIBGCC2_DOUBLE_TYPE_SIZE or LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 64 then the default is 1, otherwise it is 0.

— Macro: LIBGCC2_HAS_XF_MODE

Define this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not XFmode but you want XFmode routines in libgcc2.a anyway. If you don't define this and LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 80 then the default is 1, otherwise it is 0.

— Macro: LIBGCC2_HAS_TF_MODE

Define this macro if LIBGCC2_LONG_DOUBLE_TYPE_SIZE is not TFmode but you want TFmode routines in libgcc2.a anyway. If you don't define this and LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 128 then the default is 1, otherwise it is 0.

— Macro: SF_SIZE
— Macro: DF_SIZE
— Macro: XF_SIZE
— Macro: TF_SIZE

Define these macros to be the size in bits of the mantissa of SFmode, DFmode, XFmode and TFmode values, if the defaults in libgcc2.h are inappropriate. By default, FLT_MANT_DIG is used for SF_SIZE, LDBL_MANT_DIG for XF_SIZE and TF_SIZE, and DBL_MANT_DIG or LDBL_MANT_DIG for DF_SIZE according to whether LIBGCC2_DOUBLE_TYPE_SIZE or LIBGCC2_LONG_DOUBLE_TYPE_SIZE is 64.

— Macro: TARGET_FLT_EVAL_METHOD

A C expression for the value for FLT_EVAL_METHOD in float.h, assuming, if applicable, that the floating-point control word is in its default state. If you do not define this macro the value of FLT_EVAL_METHOD will be zero.

— Macro: WIDEST_HARDWARE_FP_SIZE

A C expression for the size in bits of the widest floating-point format supported by the hardware. If you define this macro, you must specify a value less than or equal to the value of LONG_DOUBLE_TYPE_SIZE. If you do not define this macro, the value of LONG_DOUBLE_TYPE_SIZE is the default.

— Macro: DEFAULT_SIGNED_CHAR

An expression whose value is 1 or 0, according to whether the type char should be signed or unsigned by default. The user can always override this default with the options -fsigned-char and -funsigned-char.

— Target Hook: bool TARGET_DEFAULT_SHORT_ENUMS (void)

This target hook should return true if the compiler should give an enum type only as many bytes as it takes to represent the range of possible values of that type. It should return false if all enum types should be allocated like int.

The default is to return false.

— Macro: SIZE_TYPE

A C expression for a string describing the name of the data type to use for size values. The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces, and write first any length keyword, then unsigned if appropriate, and finally int. The string must exactly match one of the data type names defined in the function init_decl_processing in the file c-decl.c. You may not omit int or change the order—that would cause the compiler to crash on startup.

If you don't define this macro, the default is "long unsigned int".

— Macro: PTRDIFF_TYPE

A C expression for a string describing the name of the data type to use for the result of subtracting two pointers. The typedef name ptrdiff_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is "long int".

— Macro: WCHAR_TYPE

A C expression for a string describing the name of the data type to use for wide characters. The typedef name wchar_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is "int".

— Macro: WCHAR_TYPE_SIZE

A C expression for the size in bits of the data type for wide characters. This is used in cpp, which cannot make use of WCHAR_TYPE.

— Macro: WINT_TYPE

A C expression for a string describing the name of the data type to use for wide characters passed to printf and returned from getwc. The typedef name wint_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is "unsigned int".

— Macro: INTMAX_TYPE

A C expression for a string describing the name of the data type that can represent any value of any standard or extended signed integer type. The typedef name intmax_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is the first of "int", "long int", or "long long int" that has as much precision as long long int.

— Macro: UINTMAX_TYPE

A C expression for a string describing the name of the data type that can represent any value of any standard or extended unsigned integer type. The typedef name uintmax_t is defined using the contents of the string. See SIZE_TYPE above for more information.

If you don't define this macro, the default is the first of "unsigned int", "long unsigned int", or "long long unsigned int" that has as much precision as long long unsigned int.

— Macro: TARGET_PTRMEMFUNC_VBIT_LOCATION

The C++ compiler represents a pointer-to-member-function with a struct that looks like:

            struct {
              union {
                void (*fn)();
                ptrdiff_t vtable_index;
              };
              ptrdiff_t delta;
            };

The C++ compiler must use one bit to indicate whether the function that will be called through a pointer-to-member-function is virtual. Normally, we assume that the low-order bit of a function pointer must always be zero. Then, by ensuring that the vtable_index is odd, we can distinguish which variant of the union is in use. But, on some platforms function pointers can be odd, and so this doesn't work. In that case, we use the low-order bit of the delta field, and shift the remainder of the delta field to the left.

GCC will automatically make the right selection about where to store this bit using the FUNCTION_BOUNDARY setting for your platform. However, some platforms such as ARM/Thumb have FUNCTION_BOUNDARY set such that functions always start at even addresses, but the lowest bit of pointers to functions indicate whether the function at that address is in ARM or Thumb mode. If this is the case of your architecture, you should define this macro to ptrmemfunc_vbit_in_delta.

In general, you should not have to define this macro. On architectures in which function addresses are always even, according to FUNCTION_BOUNDARY, GCC will automatically define this macro to ptrmemfunc_vbit_in_pfn.

— Macro: TARGET_VTABLE_USES_DESCRIPTORS

Normally, the C++ compiler uses function pointers in vtables. This macro allows the target to change to use “function descriptors” instead. Function descriptors are found on targets for whom a function pointer is actually a small data structure. Normally the data structure consists of the actual code address plus a data pointer to which the function's data is relative.

If vtables are used, the value of this macro should be the number of words that the function descriptor occupies.

— Macro: TARGET_VTABLE_ENTRY_ALIGN

By default, the vtable entries are void pointers, the so the alignment is the same as pointer alignment. The value of this macro specifies the alignment of the vtable entry in bits. It should be defined only when special alignment is necessary. */

— Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE

There are a few non-descriptor entries in the vtable at offsets below zero. If these entries must be padded (say, to preserve the alignment specified by TARGET_VTABLE_ENTRY_ALIGN), set this to the number of words in each data entry.


Next: , Previous: Type Layout, Up: Target Macros

17.7 Register Usage

This section explains how to describe what registers the target machine has, and how (in general) they can be used.

The description of which registers a specific instruction can use is done with register classes; see Register Classes. For information on using registers to access a stack frame, see Frame Registers. For passing values in registers, see Register Arguments. For returning values in registers, see Scalar Return.


Next: , Up: Registers

17.7.1 Basic Characteristics of Registers

Registers have various characteristics.

— Macro: FIRST_PSEUDO_REGISTER

Number of hardware registers known to the compiler. They receive numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register's number really is assigned the number FIRST_PSEUDO_REGISTER.

— Macro: FIXED_REGISTERS

An initializer that says which registers are used for fixed purposes all throughout the compiled code and are therefore not available for general allocation. These would include the stack pointer, the frame pointer (except on machines where that can be used as a general register when no frame pointer is needed), the program counter on machines where that is considered one of the addressable registers, and any other numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options -ffixed-reg, -fcall-used-reg and -fcall-saved-reg.

— Macro: CALL_USED_REGISTERS

Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function.

— Macro: CALL_REALLY_USED_REGISTERS

Like CALL_USED_REGISTERS except this macro doesn't require that the entire set of FIXED_REGISTERS be included. (CALL_USED_REGISTERS must be a superset of FIXED_REGISTERS). This macro is optional. If not specified, it defaults to the value of CALL_USED_REGISTERS.

— Macro: HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)

A C expression that is nonzero if it is not permissible to store a value of mode mode in hard register number regno across a call without some part of it being clobbered. For most machines this macro need not be defined. It is only required for machines that do not preserve the entire contents of a register across a call.

— Macro: CONDITIONAL_REGISTER_USAGE

Zero or more C statements that may conditionally modify five variables fixed_regs, call_used_regs, global_regs, reg_names, and reg_class_contents, to take into account any dependence of these register sets on target flags. The first three of these are of type char [] (interpreted as Boolean vectors). global_regs is a const char *[], and reg_class_contents is a HARD_REG_SET. Before the macro is called, fixed_regs, call_used_regs, reg_class_contents, and reg_names have been initialized from FIXED_REGISTERS, CALL_USED_REGISTERS, REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively. global_regs has been cleared, and any -ffixed-reg, -fcall-used-reg and -fcall-saved-reg command options have been applied.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for each of the registers in the classes which should not be used by GCC. Also define the macro REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT to return NO_REGS if it is called with a letter for a class that shouldn't be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.)

— Macro: INCOMING_REGNO (out)

Define this macro if the target machine has register windows. This C expression returns the register number as seen by the called function corresponding to the register number out as seen by the calling function. Return out if register number out is not an outbound register.

— Macro: OUTGOING_REGNO (in)

Define this macro if the target machine has register windows. This C expression returns the register number as seen by the calling function corresponding to the register number in as seen by the called function. Return in if register number in is not an inbound register.

— Macro: LOCAL_REGNO (regno)

Define this macro if the target machine has register windows. This C expression returns true if the register is call-saved but is in the register window. Unlike most call-saved registers, such registers need not be explicitly restored on function exit or during non-local gotos.

— Macro: PC_REGNUM

If the program counter has a register number, define this as that register number. Otherwise, do not define it.


Next: , Previous: Register Basics, Up: Registers

17.7.2 Order of Allocation of Registers

Registers are allocated in order.

— Macro: REG_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers in the order in which GCC should prefer to use them (from most preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else being equal).

One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer that lists the highest numbered allocable register first.

— Macro: ORDER_REGS_FOR_LOCAL_ALLOC

A C statement (sans semicolon) to choose the order in which to allocate hard registers for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0 should be the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order before execution of the macro.

On most machines, it is not necessary to define this macro.

— Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno)

In some case register allocation order is not enough for the Integrated Register Allocator (IRA) to generate a good code. If this macro is defined, it should return a floating point value based on regno. The cost of using regno for a pseudo will be increased by approximately the pseudo's usage frequency times the value returned by this macro. Not defining this macro is equivalent to having it always return 0.0.

On most machines, it is not necessary to define this macro.


Next: , Previous: Allocation Order, Up: Registers

17.7.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which machine modes) each register can hold, and how many consecutive registers are needed for a given mode.

— Macro: HARD_REGNO_NREGS (regno, mode)

A C expression for the number of consecutive hard registers, starting at register number regno, required to hold a value of mode mode. This macro must never return zero, even if a register cannot hold the requested mode - indicate that with HARD_REGNO_MODE_OK and/or CANNOT_CHANGE_MODE_CLASS instead.

On a machine where all registers are exactly one word, a suitable definition of this macro is

          #define HARD_REGNO_NREGS(REGNO, MODE)            \
             ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
              / UNITS_PER_WORD)
— Macro: HARD_REGNO_NREGS_HAS_PADDING (regno, mode)

A C expression that is nonzero if a value of mode mode, stored in memory, ends with padding that causes it to take up more space than in registers starting at register number regno (as determined by multiplying GCC's notion of the size of the register when containing this mode by the number of registers returned by HARD_REGNO_NREGS). By default this is zero.

For example, if a floating-point value is stored in three 32-bit registers but takes up 128 bits in memory, then this would be nonzero.

This macros only needs to be defined if there are cases where subreg_get_info would otherwise wrongly determine that a subreg can be represented by an offset to the register number, when in fact such a subreg would contain some of the padding not stored in registers and so not be representable.

— Macro: HARD_REGNO_NREGS_WITH_PADDING (regno, mode)

For values of regno and mode for which HARD_REGNO_NREGS_HAS_PADDING returns nonzero, a C expression returning the greater number of registers required to hold the value including any padding. In the example above, the value would be four.

— Macro: REGMODE_NATURAL_SIZE (mode)

Define this macro if the natural size of registers that hold values of mode mode is not the word size. It is a C expression that should give the natural size in bytes for the specified mode. It is used by the register allocator to try to optimize its results. This happens for example on SPARC 64-bit where the natural size of floating-point registers is still 32-bit.

— Macro: HARD_REGNO_MODE_OK (regno, mode)

A C expression that is nonzero if it is permissible to store a value of mode mode in hard register number regno (or in several registers starting with that one). For a machine where all registers are equivalent, a suitable definition is

          #define HARD_REGNO_MODE_OK(REGNO, MODE) 1

You need not include code to check for the numbers of fixed registers, because the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs. You can implement that by defining this macro to reject odd register numbers for such modes.

The minimum requirement for a mode to be OK in a register is that the ‘movmode’ instruction pattern support moves between the register and other hard register in the same class and that moving a value into the register and back out not alter it.

Since the same instruction used to move word_mode will work for all narrower integer modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish between these modes, provided you define patterns ‘movhi’, etc., to take advantage of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed only in floating point registers. This is not true. Any registers that can hold integers can safely hold a floating point machine mode, whether or not floating arithmetic can be done on it in those registers. Integer move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, HARD_REGNO_MODE_OK should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one and retrieve it unchanged without a trap, then any machine mode may go in a floating register, so you can define this macro to say so.

The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for those instructions.

On some machines, the floating registers are especially slow to access, so that it is better to store a value in a stack frame than in such a register if floating point arithmetic is not being done. As long as the floating registers are not in class GENERAL_REGS, they will not be used unless some pattern's constraint asks for one.

— Macro: HARD_REGNO_RENAME_OK (from, to)

A C expression that is nonzero if it is OK to rename a hard register from to another hard register to.

One common use of this macro is to prevent renaming of a register to another register that is not saved by a prologue in an interrupt handler.

The default is always nonzero.

— Macro: MODES_TIEABLE_P (mode1, mode2)

A C expression that is nonzero if a value of mode mode1 is accessible in mode mode2 without copying.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2) are always the same for any r, then MODES_TIEABLE_P (mode1, mode2) should be nonzero. If they differ for any r, you should define this macro to return zero unless some other mechanism ensures the accessibility of the value in a narrower mode.

You should define this macro to return nonzero in as many cases as possible since doing so will allow GCC to perform better register allocation.

— Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int regno)

This target hook should return true if it is OK to use a hard register regno as scratch reg in peephole2.

One common use of this macro is to prevent using of a register that is not saved by a prologue in an interrupt handler.

The default version of this hook always returns true.

— Macro: AVOID_CCMODE_COPIES

Define this macro if the compiler should avoid copies to/from CCmode registers. You should only define this macro if support for copying to/from CCmode is incomplete.


Next: , Previous: Values in Registers, Up: Registers

17.7.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently if it does not make its own register window. Often this means it is required to receive its arguments in the registers where they are passed by the caller, instead of the registers where they would normally arrive.

The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term “leaf function” to mean a function that is suitable for this special handling, so that functions with no calls are not necessarily “leaf functions”.

GCC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the registers in order to output a leaf function. The following macros accomplish this.

— Macro: LEAF_REGISTERS

Name of a char vector, indexed by hard register number, which contains 1 for a register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked here should be the ones before renumbering—those that GCC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment of leaf functions.

— Macro: LEAF_REG_REMAP (regno)

A C expression whose value is the register number to which regno should be renumbered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renumbering, then the expression should yield −1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment of leaf functions, and registers need to be renumbered to do this.

TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must usually treat leaf functions specially. They can test the C variable current_function_is_leaf which is nonzero for leaf functions. current_function_is_leaf is set prior to local register allocation and is valid for the remaining compiler passes. They can also test the C variable current_function_uses_only_leaf_regs which is nonzero for leaf functions which only use leaf registers. current_function_uses_only_leaf_regs is valid after all passes that modify the instructions have been run and is only useful if LEAF_REGISTERS is defined.


Previous: Leaf Functions, Up: Registers

17.7.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack. Stack registers are normally written by pushing onto the stack, and are numbered relative to the top of the stack.

Currently, GCC can only handle one group of stack-like registers, and they must be consecutively numbered. Furthermore, the existing support for stack-like registers is specific to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like registers, you will need to do substantial work on reg-stack.c and write your machine description to cooperate with it, as well as defining these macros.

— Macro: STACK_REGS

Define this if the machine has any stack-like registers.

— Macro: FIRST_STACK_REG

The number of the first stack-like register. This one is the top of the stack.

— Macro: LAST_STACK_REG

The number of the last stack-like register. This one is the bottom of the stack.


Next: , Previous: Registers, Up: Target Macros

17.8 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain registers may not be allowed for indexed addressing; certain registers may not be allowed in some instructions. These machine restrictions are described to the compiler using register classes.

You define a number of register classes, giving each one a name and saying which of the registers belong to it. Then you can specify register classes that are allowed as operands to particular instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named ALL_REGS and contain all the registers. Another class must be named NO_REGS and contain no registers. Often the union of two classes will be another class; however, this is not required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about the name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS is the same as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number than y.

The way classes other than GENERAL_REGS are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows either a floating point (coprocessor) register or a general register for a certain operand, you should define a class FLOAT_OR_GENERAL_REGS which includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are contained in it; for each pair of classes, the largest class contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to specify this requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the operations for single-byte values (QImode) are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This is so that PREFERRED_RELOAD_CLASS can always have a possible value to return.

— Data type: enum reg_class

An enumerated type that must be defined with all the register class names as enumerated values. NO_REGS must be first. ALL_REGS must be the last register class, followed by one more enumerated value, LIM_REG_CLASSES, which is not a register class but rather tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type int. The number serves as an index in many of the tables described below.

— Macro: N_REG_CLASSES

The number of distinct register classes, defined as follows:

          #define N_REG_CLASSES (int) LIM_REG_CLASSES
— Macro: REG_CLASS_NAMES

An initializer containing the names of the register classes as C string constants. These names are used in writing some of the debugging dumps.

— Macro: REG_CLASS_CONTENTS

An initializer containing the contents of the register classes, as integers which are bit masks. The nth integer specifies the contents of class n. The way the integer mask is interpreted is that register r is in the class if mask & (1 << r) is 1.

When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, braced groupings containing several integers. Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET which is defined in hard-reg-set.h. In this situation, the first integer in each sub-initializer corresponds to registers 0 through 31, the second integer to registers 32 through 63, and so on.

— Macro: REGNO_REG_CLASS (regno)

A C expression whose value is a register class containing hard register regno. In general there is more than one such class; choose a class which is minimal, meaning that no smaller class also contains the register.

— Macro: BASE_REG_CLASS

A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement.

— Macro: MODE_BASE_REG_CLASS (mode)

This is a variation of the BASE_REG_CLASS macro which allows the selection of a base register in a mode dependent manner. If mode is VOIDmode then it should return the same value as BASE_REG_CLASS.

— Macro: MODE_BASE_REG_REG_CLASS (mode)

A C expression whose value is the register class to which a valid base register must belong in order to be used in a base plus index register address. You should define this macro if base plus index addresses have different requirements than other base register uses.

— Macro: MODE_CODE_BASE_REG_CLASS (mode, outer_code, index_code)

A C expression whose value is the register class to which a valid base register must belong. outer_code and index_code define the context in which the base register occurs. outer_code is the code of the immediately enclosing expression (MEM for the top level of an address, ADDRESS for something that occurs in an address_operand). index_code is the code of the corresponding index expression if outer_code is PLUS; SCRATCH otherwise.

— Macro: INDEX_REG_CLASS

A macro whose definition is the name of the class to which a valid index register must belong. An index register is one used in an address where its value is either multiplied by a scale factor or added to another register (as well as added to a displacement).

— Macro: REGNO_OK_FOR_BASE_P (num)

A C expression which is nonzero if register number num is suitable for use as a base register in operand addresses. It may be either a suitable hard register or a pseudo register that has been allocated such a hard register.

— Macro: REGNO_MODE_OK_FOR_BASE_P (num, mode)

A C expression that is just like REGNO_OK_FOR_BASE_P, except that that expression may examine the mode of the memory reference in mode. You should define this macro if the mode of the memory reference affects whether a register may be used as a base register. If you define this macro, the compiler will use it instead of REGNO_OK_FOR_BASE_P. The mode may be VOIDmode for addresses that appear outside a MEM, i.e., as an address_operand.

— Macro: REGNO_MODE_OK_FOR_REG_BASE_P (num, mode)

A C expression which is nonzero if register number num is suitable for use as a base register in base plus index operand addresses, accessing memory in mode mode. It may be either a suitable hard register or a pseudo register that has been allocated such a hard register. You should define this macro if base plus index addresses have different requirements than other base register uses.

Use of this macro is deprecated; please use the more general REGNO_MODE_CODE_OK_FOR_BASE_P.

— Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (num, mode, outer_code, index_code)

A C expression that is just like REGNO_MODE_OK_FOR_BASE_P, except that that expression may examine the context in which the register appears in the memory reference. outer_code is the code of the immediately enclosing expression (MEM if at the top level of the address, ADDRESS for something that occurs in an address_operand). index_code is the code of the corresponding index expression if outer_code is PLUS; SCRATCH otherwise. The mode may be VOIDmode for addresses that appear outside a MEM, i.e., as an address_operand.

— Macro: REGNO_OK_FOR_INDEX_P (num)

A C expression which is nonzero if register number num is suitable for use as an index register in operand addresses. It may be either a suitable hard register or a pseudo register that has been allocated such a hard register.

The difference between an index register and a base register is that the index register may be scaled. If an address involves the sum of two registers, neither one of them scaled, then either one may be labeled the “base” and the other the “index”; but whichever labeling is used must fit the machine's constraints of which registers may serve in each capacity. The compiler will try both labelings, looking for one that is valid, and will reload one or both registers only if neither labeling works.

— Macro: PREFERRED_RELOAD_CLASS (x, class)

A C expression that places additional restrictions on the register class to use when it is necessary to copy value x into a register in class class. The value is a register class; perhaps class, or perhaps another, smaller class. On many machines, the following definition is safe:

          #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example, on the 68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the value of this macro is always DATA_REGS as long as class includes the data registers. Requiring a data register guarantees that a ‘moveq’ will be used.

One case where PREFERRED_RELOAD_CLASS must not return class is if x is a legitimate constant which cannot be loaded into some register class. By returning NO_REGS you can force x into a memory location. For example, rs6000 can load immediate values into general-purpose registers, but does not have an instruction for loading an immediate value into a floating-point register, so PREFERRED_RELOAD_CLASS returns NO_REGS when x is a floating-point constant. If the constant can't be loaded into any kind of register, code generation will be better if LEGITIMATE_CONSTANT_P makes the constant illegitimate instead of using PREFERRED_RELOAD_CLASS.

If an insn has pseudos in it after register allocation, reload will go through the alternatives and call repeatedly PREFERRED_RELOAD_CLASS to find the best one. Returning NO_REGS, in this case, makes reload add a ! in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa).

— Macro: PREFERRED_OUTPUT_RELOAD_CLASS (x, class)

Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If you don't define this macro, the default is to use class, unchanged.

You can also use PREFERRED_OUTPUT_RELOAD_CLASS to discourage reload from using some alternatives, like PREFERRED_RELOAD_CLASS.

— Macro: LIMIT_RELOAD_CLASS (mode, class)

A C expression that places additional restrictions on the register class to use when it is necessary to be able to hold a value of mode mode in a reload register for which class class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain modes that simply can't go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don't define this macro unless the target machine has limitations which require the macro to do something nontrivial.

— Target Hook: enum reg_class TARGET_SECONDARY_RELOAD (bool in_p, rtx x, enum reg_class reload_class, enum machine_mode reload_mode, secondary_reload_info *sri)

Many machines have some registers that cannot be copied directly to or from memory or even from other types of registers. An example is the ‘MQ’ register, which on most machines, can only be copied to or from general registers, but not memory. Below, we shall be using the term 'intermediate register' when a move operation cannot be performed directly, but has to be done by copying the source into the intermediate register first, and then copying the intermediate register to the destination. An intermediate register always has the same mode as source and destination. Since it holds the actual value being copied, reload might apply optimizations to re-use an intermediate register and eliding the copy from the source when it can determine that the intermediate register still holds the required value.

Another kind of secondary reload is required on some machines which allow copying all registers to and from memory, but require a scratch register for stores to some memory locations (e.g., those with symbolic address on the RT, and those with certain symbolic address on the SPARC when compiling PIC). Scratch registers need not have the same mode as the value being copied, and usually hold a different value that that being copied. Special patterns in the md file are needed to describe how the copy is performed with the help of the scratch register; these patterns also describe the number, register class(es) and mode(s) of the scratch register(s).

In some cases, both an intermediate and a scratch register are required.

For input reloads, this target hook is called with nonzero in_p, and x is an rtx that needs to be copied to a register of class reload_class in reload_mode. For output reloads, this target hook is called with zero in_p, and a register of class reload_class needs to be copied to rtx x in reload_mode.

If copying a register of reload_class from/to x requires an intermediate register, the hook secondary_reload should return the register class required for this intermediate register. If no intermediate register is required, it should return NO_REGS. If more than one intermediate register is required, describe the one that is closest in the copy chain to the reload register.

If scratch registers are needed, you also have to describe how to perform the copy from/to the reload register to/from this closest intermediate register. Or if no intermediate register is required, but still a scratch register is needed, describe the copy from/to the reload register to/from the reload operand x.

You do this by setting sri->icode to the instruction code of a pattern in the md file which performs the move. Operands 0 and 1 are the output and input of this copy, respectively. Operands from operand 2 onward are for scratch operands. These scratch operands must have a mode, and a single-register-class output constraint.

When an intermediate register is used, the secondary_reload hook will be called again to determine how to copy the intermediate register to/from the reload operand x, so your hook must also have code to handle the register class of the intermediate operand.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be in a hard register or in memory. Use true_regnum to find out; it will return −1 if the pseudo is in memory and the hard register number if it is in a register.

Scratch operands in memory (constraint "=m" / "=&m") are currently not supported. For the time being, you will have to continue to use SECONDARY_MEMORY_NEEDED for that purpose.

copy_cost also uses this target hook to find out how values are copied. If you want it to include some extra cost for the need to allocate (a) scratch register(s), set sri->extra_cost to the additional cost. Or if two dependent moves are supposed to have a lower cost than the sum of the individual moves due to expected fortuitous scheduling and/or special forwarding logic, you can set sri->extra_cost to a negative amount.

— Macro: SECONDARY_RELOAD_CLASS (class, mode, x)
— Macro: SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)
— Macro: SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

These macros are obsolete, new ports should use the target hook TARGET_SECONDARY_RELOAD instead.

These are obsolete macros, replaced by the TARGET_SECONDARY_RELOAD target hook. Older ports still define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying x to a register class in mode requires an intermediate register, you were supposed to define SECONDARY_INPUT_RELOAD_CLASS to return the largest register class all of whose registers can be used as intermediate registers or scratch registers.

If copying a register class in mode to x requires an intermediate or scratch register, SECONDARY_OUTPUT_RELOAD_CLASS was supposed to be defined be defined to return the largest register class required. If the requirements for input and output reloads were the same, the macro SECONDARY_RELOAD_CLASS should have been used instead of defining both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no spare register is needed; i.e., if x can be directly copied to or from a register of class in mode without requiring a scratch register. Do not define this macro if it would always return NO_REGS.

If a scratch register is required (either with or without an intermediate register), you were supposed to define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see Standard Names. These patterns, which were normally implemented with a define_expand, should be similar to the ‘movm’ patterns, except that operand 2 is the scratch register.

These patterns need constraints for the reload register and scratch register that contain a single register class. If the original reload register (whose class is class) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional reload registers are required. Their classes are obtained from the constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be in a hard register or in memory. Use true_regnum to find out; it will return −1 if the pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location must be used to perform the copy and the movm pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers.

— Macro: SECONDARY_MEMORY_NEEDED (class1, class2, m)

Certain machines have the property that some registers cannot be copied to some other registers without using memory. Define this macro on those machines to be a C expression that is nonzero if objects of mode m in registers of class1 can only be copied to registers of class class2 by storing a register of class1 into memory and loading that memory location into a register of class2.

Do not define this macro if its value would always be zero.

— Macro: SECONDARY_MEMORY_NEEDED_RTX (mode)

Normally when SECONDARY_MEMORY_NEEDED is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED.

— Macro: SECONDARY_MEMORY_NEEDED_MODE (mode)

When the compiler needs a secondary memory location to copy between two registers of mode mode, it normally allocates sufficient memory to hold a quantity of BITS_PER_WORD bits and performs the store and load operations in a mode that many bits wide and whose class is the same as that of mode.

This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the registers in a narrower mode, which some machines prohibit for floating-point registers.

However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those machines, the default widening will not work correctly and you must define this macro to suppress that widening in some cases. See the file alpha.h for details.

Do not define this macro if you do not define SECONDARY_MEMORY_NEEDED or if widening mode to a mode that is BITS_PER_WORD bits wide is correct for your machine.

— Macro: SMALL_REGISTER_CLASSES

On some machines, it is risky to let hard registers live across arbitrary insns. Typically, these machines have instructions that require values to be in specific registers (like an accumulator), and reload will fail if the required hard register is used for another purpose across such an insn.

Define SMALL_REGISTER_CLASSES to be an expression with a nonzero value on these machines. When this macro has a nonzero value, the compiler will try to minimize the lifetime of hard registers.

It is always safe to define this macro with a nonzero value, but if you unnecessarily define it, you will reduce the amount of optimizations that can be performed in some cases. If you do not define this macro with a nonzero value when it is required, the compiler will run out of spill registers and print a fatal error message. For most machines, you should not define this macro at all.

— Macro: CLASS_LIKELY_SPILLED_P (class)

A C expression whose value is nonzero if pseudos that have been assigned to registers of class class would likely be spilled because registers of class are needed for spill registers.

The default value of this macro returns 1 if class has exactly one register and zero otherwise. On most machines, this default should be used. Only define this macro to some other expression if pseudos allocated by local-alloc.c end up in memory because their hard registers were needed for spill registers. If this macro returns nonzero for those classes, those pseudos will only be allocated by global.c, which knows how to reallocate the pseudo to another register. If there would not be another register available for reallocation, you should not change the definition of this macro since the only effect of such a definition would be to slow down register allocation.

— Macro: CLASS_MAX_NREGS (class, mode)

A C expression for the maximum number of consecutive registers of class class needed to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the macro CLASS_MAX_NREGS (class, mode) should be the maximum value of HARD_REGNO_NREGS (regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload pass.

— Macro: CANNOT_CHANGE_MODE_CLASS (from, to, class)

If defined, a C expression that returns nonzero for a class for which a change from mode from to mode to is invalid.

For the example, loading 32-bit integer or floating-point objects into floating-point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32 bits, as would be the case for a normal register. Therefore, alpha.h defines CANNOT_CHANGE_MODE_CLASS as below:

          #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
            (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
             ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
— Target Hook: const enum reg_class * TARGET_IRA_COVER_CLASSES ()

Return an array of cover classes for the Integrated Register Allocator (IRA). Cover classes are a set of non-intersecting register classes covering all hard registers used for register allocation purposes. If a move between two registers in the same cover class is possible, it should be cheaper than a load or store of the registers. The array is terminated by a LIM_REG_CLASSES element.

This hook is called once at compiler startup, after the command-line options have been processed. It is then re-examined by every call to target_reinit.

The default implementation returns IRA_COVER_CLASSES, if defined, otherwise there is no default implementation. You must define either this macro or IRA_COVER_CLASSES in order to use the integrated register allocator with Chaitin-Briggs coloring. If the macro is not defined, the only available coloring algorithm is Chow's priority coloring.

— Macro: IRA_COVER_CLASSES

See the documentation for TARGET_IRA_COVER_CLASSES.


Next: , Previous: Register Classes, Up: Target Macros

17.9 Obsolete Macros for Defining Constraints

Machine-specific constraints can be defined with these macros instead of the machine description constructs described in Define Constraints. This mechanism is obsolete. New ports should not use it; old ports should convert to the new mechanism.

— Macro: CONSTRAINT_LEN (char, str)

For the constraint at the start of str, which starts with the letter c, return the length. This allows you to have register class / constant / extra constraints that are longer than a single letter; you don't need to define this macro if you can do with single-letter constraints only. The definition of this macro should use DEFAULT_CONSTRAINT_LEN for all the characters that you don't want to handle specially. There are some sanity checks in genoutput.c that check the constraint lengths for the md file, so you can also use this macro to help you while you are transitioning from a byzantine single-letter-constraint scheme: when you return a negative length for a constraint you want to re-use, genoutput will complain about every instance where it is used in the md file.

— Macro: REG_CLASS_FROM_LETTER (char)

A C expression which defines the machine-dependent operand constraint letters for register classes. If char is such a letter, the value should be the register class corresponding to it. Otherwise, the value should be NO_REGS. The register letter ‘r’, corresponding to class GENERAL_REGS, will not be passed to this macro; you do not need to handle it.

— Macro: REG_CLASS_FROM_CONSTRAINT (char, str)

Like REG_CLASS_FROM_LETTER, but you also get the constraint string passed in str, so that you can use suffixes to distinguish between different variants.

— Macro: CONST_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters (‘I’, ‘J’, ‘K’, ...P’) that specify particular ranges of integer values. If c is one of those letters, the expression should check that value, an integer, is in the appropriate range and return 1 if so, 0 otherwise. If c is not one of those letters, the value should be 0 regardless of value.

— Macro: CONST_OK_FOR_CONSTRAINT_P (value, c, str)

Like CONST_OK_FOR_LETTER_P, but you also get the constraint string passed in str, so that you can use suffixes to distinguish between different variants.

— Macro: CONST_DOUBLE_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters that specify particular ranges of const_double values (‘G’ or ‘H’).

If c is one of those letters, the expression should check that value, an RTX of code const_double, is in the appropriate range and return 1 if so, 0 otherwise. If c is not one of those letters, the value should be 0 regardless of value.

const_double is used for all floating-point constants and for DImode fixed-point constants. A given letter can accept either or both kinds of values. It can use GET_MODE to distinguish between these kinds.

— Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (value, c, str)

Like CONST_DOUBLE_OK_FOR_LETTER_P, but you also get the constraint string passed in str, so that you can use suffixes to distinguish between different variants.

— Macro: EXTRA_CONSTRAINT (value, c)

A C expression that defines the optional machine-dependent constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Any letter that is not elsewhere defined and not matched by REG_CLASS_FROM_LETTER / REG_CLASS_FROM_CONSTRAINT may be used. Normally this macro will not be defined.

If it is required for a particular target machine, it should return 1 if value corresponds to the operand type represented by the constraint letter c. If c is not defined as an extra constraint, the value returned should be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. Constraint letter ‘Q’ is defined as representing a memory address that does not contain a symbolic address. An alternative is specified with a ‘Q’ constraint on the input and ‘r’ on the output. The next alternative specifies ‘m’ on the input and a register class that does not include r0 on the output.

— Macro: EXTRA_CONSTRAINT_STR (value, c, str)

Like EXTRA_CONSTRAINT, but you also get the constraint string passed in str, so that you can use suffixes to distinguish between different variants.

— Macro: EXTRA_MEMORY_CONSTRAINT (c, str)

A C expression that defines the optional machine-dependent constraint letters, amongst those accepted by EXTRA_CONSTRAINT, that should be treated like memory constraints by the reload pass.

It should return 1 if the operand type represented by the constraint at the start of str, the first letter of which is the letter c, comprises a subset of all memory references including all those whose address is simply a base register. This allows the reload pass to reload an operand, if it does not directly correspond to the operand type of c, by copying its address into a base register.

For example, on the S/390, some instructions do not accept arbitrary memory references, but only those that do not make use of an index register. The constraint letter ‘Q’ is defined via EXTRA_CONSTRAINT as representing a memory address of this type. If the letter ‘Q’ is marked as EXTRA_MEMORY_CONSTRAINT, a ‘Q’ constraint can handle any memory operand, because the reload pass knows it can be reloaded by copying the memory address into a base register if required. This is analogous to the way a ‘o’ constraint can handle any memory operand.

— Macro: EXTRA_ADDRESS_CONSTRAINT (c, str)

A C expression that defines the optional machine-dependent constraint letters, amongst those accepted by EXTRA_CONSTRAINT / EXTRA_CONSTRAINT_STR, that should be treated like address constraints by the reload pass.

It should return 1 if the operand type represented by the constraint at the start of str, which starts with the letter c, comprises a subset of all memory addresses including all those that consist of just a base register. This allows the reload pass to reload an operand, if it does not directly correspond to the operand type of str, by copying it into a base register.

Any constraint marked as EXTRA_ADDRESS_CONSTRAINT can only be used with the address_operand predicate. It is treated analogously to the ‘p’ constraint.


Next: , Previous: Old Constraints, Up: Target Macros

17.10 Stack Layout and Calling Conventions

This describes the stack layout and calling conventions.


Next: , Up: Stack and Calling

17.10.1 Basic Stack Layout

Here is the basic stack layout.

— Macro: STACK_GROWS_DOWNWARD

Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address.

When we say, “define this macro if ...”, it means that the compiler checks this macro only with #ifdef so the precise definition used does not matter.

— Macro: STACK_PUSH_CODE

This macro defines the operation used when something is pushed on the stack. In RTL, a push operation will be (set (mem (STACK_PUSH_CODE (reg sp))) ...)

The choices are PRE_DEC, POST_DEC, PRE_INC, and POST_INC. Which of these is correct depends on the stack direction and on whether the stack pointer points to the last item on the stack or whether it points to the space for the next item on the stack.

The default is PRE_DEC when STACK_GROWS_DOWNWARD is defined, which is almost always right, and PRE_INC otherwise, which is often wrong.

— Macro: FRAME_GROWS_DOWNWARD

Define this macro to nonzero value if the addresses of local variable slots are at negative offsets from the frame pointer.

— Macro: ARGS_GROW_DOWNWARD

Define this macro if successive arguments to a function occupy decreasing addresses on the stack.

— Macro: STARTING_FRAME_OFFSET

Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot's offset by subtracting the first slot's length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the length of the first slot to the value STARTING_FRAME_OFFSET.

— Macro: STACK_ALIGNMENT_NEEDED

Define to zero to disable final alignment of the stack during reload. The nonzero default for this macro is suitable for most ports.

On ports where STARTING_FRAME_OFFSET is nonzero or where there is a register save block following the local block that doesn't require alignment to STACK_BOUNDARY, it may be beneficial to disable stack alignment and do it in the backend.

— Macro: STACK_POINTER_OFFSET

Offset from the stack pointer register to the first location at which outgoing arguments are placed. If not specified, the default value of zero is used. This is the proper value for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at which outgoing arguments are placed.

— Macro: FIRST_PARM_OFFSET (fundecl)

Offset from the argument pointer register to the first argument's address. On some machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument's address.

— Macro: STACK_DYNAMIC_OFFSET (fundecl)

Offset from the stack pointer register to an item dynamically allocated on the stack, e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the outgoing arguments. The default is correct for most machines. See function.c for details.

— Macro: INITIAL_FRAME_ADDRESS_RTX

A C expression whose value is RTL representing the address of the initial stack frame. This address is passed to RETURN_ADDR_RTX and DYNAMIC_CHAIN_ADDRESS. If you don't define this macro, a reasonable default value will be used. Define this macro in order to make frame pointer elimination work in the presence of __builtin_frame_address (count) and __builtin_return_address (count) for count not equal to zero.

— Macro: DYNAMIC_CHAIN_ADDRESS (frameaddr)

A C expression whose value is RTL representing the address in a stack frame where the pointer to the caller's frame is stored. Assume that frameaddr is an RTL expression for the address of the stack frame itself.

If you don't define this macro, the default is to return the value of frameaddr—that is, the stack frame address is also the address of the stack word that points to the previous frame.

— Macro: SETUP_FRAME_ADDRESSES

If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For example, on the SPARC, we must flush all of the register windows to the stack before we can access arbitrary stack frames. You will seldom need to define this macro.

— Target Hook: bool TARGET_BUILTIN_SETJMP_FRAME_VALUE ()

This target hook should return an rtx that is used to store the address of the current frame into the built in setjmp buffer. The default value, virtual_stack_vars_rtx, is correct for most machines. One reason you may need to define this target hook is if hard_frame_pointer_rtx is the appropriate value on your machine.

— Macro: FRAME_ADDR_RTX (frameaddr)

A C expression whose value is RTL representing the value of the frame address for the current frame. frameaddr is the frame pointer of the current frame. This is used for __builtin_frame_address. You need only define this macro if the frame address is not the same as the frame pointer. Most machines do not need to define it.

— Macro: RETURN_ADDR_RTX (count, frameaddr)

A C expression whose value is RTL representing the value of the return address for the frame count steps up from the current frame, after the prologue. frameaddr is the frame pointer of the count frame, or the frame pointer of the count − 1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined.

The value of the expression must always be the correct address when count is zero, but may be NULL_RTX if there is no way to determine the return address of other frames.

— Macro: RETURN_ADDR_IN_PREVIOUS_FRAME

Define this if the return address of a particular stack frame is accessed from the frame pointer of the previous stack frame.

— Macro: INCOMING_RETURN_ADDR_RTX

A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before the prologue. This RTL is either a REG, indicating that the return value is saved in ‘REG’, or a MEM representing a location in the stack.

You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2.

If this RTL is a REG, you should also define DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO).

— Macro: DWARF_ALT_FRAME_RETURN_COLUMN

A C expression whose value is an integer giving a DWARF 2 column number that may be used as an alternative return column. The column must not correspond to any gcc hard register (that is, it must not be in the range of DWARF_FRAME_REGNUM).

This macro can be useful if DWARF_FRAME_RETURN_COLUMN is set to a general register, but an alternative column needs to be used for signal frames. Some targets have also used different frame return columns over time.

— Macro: DWARF_ZERO_REG

A C expression whose value is an integer giving a DWARF 2 register number that is considered to always have the value zero. This should only be defined if the target has an architected zero register, and someone decided it was a good idea to use that register number to terminate the stack backtrace. New ports should avoid this.

— Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *label, rtx pattern, int index)

This target hook allows the backend to emit frame-related insns that contain UNSPECs or UNSPEC_VOLATILEs. The DWARF 2 call frame debugging info engine will invoke it on insns of the form

          (set (reg) (unspec [...] UNSPEC_INDEX))

and

          (set (reg) (unspec_volatile [...] UNSPECV_INDEX)).

to let the backend emit the call frame instructions. label is the CFI label attached to the insn, pattern is the pattern of the insn and index is UNSPEC_INDEX or UNSPECV_INDEX.

— Macro: INCOMING_FRAME_SP_OFFSET

A C expression whose value is an integer giving the offset, in bytes, from the value of the stack pointer register to the top of the stack frame at the beginning of any function, before the prologue. The top of the frame is defined to be the value of the stack pointer in the previous frame, just before the call instruction.

You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2.

— Macro: ARG_POINTER_CFA_OFFSET (fundecl)

A C expression whose value is an integer giving the offset, in bytes, from the argument pointer to the canonical frame address (cfa). The final value should coincide with that calculated by INCOMING_FRAME_SP_OFFSET. Which is unfortunately not usable during virtual register instantiation.

The default value for this macro is FIRST_PARM_OFFSET (fundecl), which is correct for most machines; in general, the arguments are found immediately before the stack frame. Note that this is not the case on some targets that save registers into the caller's frame, such as SPARC and rs6000, and so such targets need to define this macro.

You only need to define this macro if the default is incorrect, and you want to support call frame debugging information like that provided by DWARF 2.

— Macro: FRAME_POINTER_CFA_OFFSET (fundecl)

If defined, a C expression whose value is an integer giving the offset in bytes from the frame pointer to the canonical frame address (cfa). The final value should coincide with that calculated by INCOMING_FRAME_SP_OFFSET.

Normally the CFA is calculated as an offset from the argument pointer, via ARG_POINTER_CFA_OFFSET, but if the argument pointer is variable due to the ABI, this may not be possible. If this macro is defined, it implies that the virtual register instantiation should be based on the frame pointer instead of the argument pointer. Only one of FRAME_POINTER_CFA_OFFSET and ARG_POINTER_CFA_OFFSET should be defined.

— Macro: CFA_FRAME_BASE_OFFSET (fundecl)

If defined, a C expression whose value is an integer giving the offset in bytes from the canonical frame address (cfa) to the frame base used in DWARF 2 debug information. The default is zero. A different value may reduce the size of debug information on some ports.


Next: , Previous: Frame Layout, Up: Stack and Calling

17.10.2 Exception Handling Support

— Macro: EH_RETURN_DATA_REGNO (N)

A C expression whose value is the Nth register number used for data by exception handlers, or INVALID_REGNUM if fewer than N registers are usable.

The exception handling library routines communicate with the exception handlers via a set of agreed upon registers. Ideally these registers should be call-clobbered; it is possible to use call-saved registers, but may negatively impact code size. The target must support at least 2 data registers, but should define 4 if there are enough free registers.

You must define this macro if you want to support call frame exception handling like that provided by DWARF 2.

— Macro: EH_RETURN_STACKADJ_RTX

A C expression whose value is RTL representing a location in which to store a stack adjustment to be applied before function return. This is used to unwind the stack to an exception handler's call frame. It will be assigned zero on code paths that return normally.

Typically this is a call-clobbered hard register that is otherwise untouched by the epilogue, but could also be a stack slot.

Do not define this macro if the stack pointer is saved and restored by the regular prolog and epilog code in the call frame itself; in this case, the exception handling library routines will update the stack location to be restored in place. Otherwise, you must define this macro if you want to support call frame exception handling like that provided by DWARF 2.

— Macro: EH_RETURN_HANDLER_RTX

A C expression whose value is RTL representing a location in which to store the address of an exception handler to which we should return. It will not be assigned on code paths that return normally.

Typically this is the location in the call frame at which the normal return address is stored. For targets that return by popping an address off the stack, this might be a memory address just below the target call frame rather than inside the current call frame. If defined, EH_RETURN_STACKADJ_RTX will have already been assigned, so it may be used to calculate the location of the target call frame.

Some targets have more complex requirements than storing to an address calculable during initial code generation. In that case the eh_return instruction pattern should be used instead.

If you want to support call frame exception handling, you must define either this macro or the eh_return instruction pattern.

— Macro: RETURN_ADDR_OFFSET

If defined, an integer-valued C expression for which rtl will be generated to add it to the exception handler address before it is searched in the exception handling tables, and to subtract it again from the address before using it to return to the exception handler.

— Macro: ASM_PREFERRED_EH_DATA_FORMAT (code, global)

This macro chooses the encoding of pointers embedded in the exception handling sections. If at all possible, this should be defined such that the exception handling section will not require dynamic relocations, and so may be read-only.

code is 0 for data, 1 for code labels, 2 for function pointers. global is true if the symbol may be affected by dynamic relocations. The macro should return a combination of the DW_EH_PE_* defines as found in dwarf2.h.

If this macro is not defined, pointers will not be encoded but represented directly.

— Macro: ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (file, encoding, size, addr, done)

This macro allows the target to emit whatever special magic is required to represent the encoding chosen by ASM_PREFERRED_EH_DATA_FORMAT. Generic code takes care of pc-relative and indirect encodings; this must be defined if the target uses text-relative or data-relative encodings.

This is a C statement that branches to done if the format was handled. encoding is the format chosen, size is the number of bytes that the format occupies, addr is the SYMBOL_REF to be emitted.

— Macro: MD_UNWIND_SUPPORT

A string specifying a file to be #include'd in unwind-dw2.c. The file so included typically defines MD_FALLBACK_FRAME_STATE_FOR.

— Macro: MD_FALLBACK_FRAME_STATE_FOR (context, fs)

This macro allows the target to add CPU and operating system specific code to the call-frame unwinder for use when there is no unwind data available. The most common reason to implement this macro is to unwind through signal frames.

This macro is called from uw_frame_state_for in unwind-dw2.c, unwind-dw2-xtensa.c and unwind-ia64.c. context is an _Unwind_Context; fs is an _Unwind_FrameState. Examine context->ra for the address of the code being executed and context->cfa for the stack pointer value. If the frame can be decoded, the register save addresses should be updated in fs and the macro should evaluate to _URC_NO_REASON. If the frame cannot be decoded, the macro should evaluate to _URC_END_OF_STACK.

For proper signal handling in Java this macro is accompanied by MAKE_THROW_FRAME, defined in libjava/include/*-signal.h headers.

— Macro: MD_HANDLE_UNWABI (context, fs)

This macro allows the target to add operating system specific code to the call-frame unwinder to handle the IA-64 .unwabi unwinding directive, usually used for signal or interrupt frames.

This macro is called from uw_update_context in unwind-ia64.c. context is an _Unwind_Context; fs is an _Unwind_FrameState. Examine fs->unwabi for the abi and context in the .unwabi directive. If the .unwabi directive can be handled, the register save addresses should be updated in fs.

— Macro: TARGET_USES_WEAK_UNWIND_INFO

A C expression that evaluates to true if the target requires unwind info to be given comdat linkage. Define it to be 1 if comdat linkage is necessary. The default is 0.


Next: , Previous: Exception Handling, Up: Stack and Calling

17.10.3 Specifying How Stack Checking is Done

GCC will check that stack references are within the boundaries of the stack, if the option -fstack-check is specified, in one of three ways:

  1. If the value of the STACK_CHECK_BUILTIN macro is nonzero, GCC will assume that you have arranged for full stack checking to be done at appropriate places in the configuration files. GCC will not do other special processing.
  2. If STACK_CHECK_BUILTIN is zero and the value of the STACK_CHECK_STATIC_BUILTIN macro is nonzero, GCC will assume that you have arranged for static stack checking (checking of the static stack frame of functions) to be done at appropriate places in the configuration files. GCC will only emit code to do dynamic stack checking (checking on dynamic stack allocations) using the third approach below.
  3. If neither of the above are true, GCC will generate code to periodically “probe” the stack pointer using the values of the macros defined below.

If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, GCC will change its allocation strategy for large objects if the option -fstack-check is specified: they will always be allocated dynamically if their size exceeds STACK_CHECK_MAX_VAR_SIZE bytes.

— Macro: STACK_CHECK_BUILTIN

A nonzero value if stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if stack checking is require by the ABI of your machine or if you would like to do stack checking in some more efficient way than the generic approach. The default value of this macro is zero.

— Macro: STACK_CHECK_STATIC_BUILTIN

A nonzero value if static stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if you would like to do static stack checking in some more efficient way than the generic approach. The default value of this macro is zero.

— Macro: STACK_CHECK_PROBE_INTERVAL

An integer representing the interval at which GCC must generate stack probe instructions. You will normally define this macro to be no larger than the size of the “guard pages” at the end of a stack area. The default value of 4096 is suitable for most systems.

— Macro: STACK_CHECK_PROBE_LOAD

An integer which is nonzero if GCC should perform the stack probe as a load instruction and zero if GCC should use a store instruction. The default is zero, which is the most efficient choice on most systems.

— Macro: STACK_CHECK_PROTECT

The number of bytes of stack needed to recover from a stack overflow, for languages where such a recovery is supported. The default value of 75 words should be adequate for most machines.

The following macros are relevant only if neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether in the opposite case.

— Macro: STACK_CHECK_MAX_FRAME_SIZE

The maximum size of a stack frame, in bytes. GCC will generate probe instructions in non-leaf functions to ensure at least this many bytes of stack are available. If a stack frame is larger than this size, stack checking will not be reliable and GCC will issue a warning. The default is chosen so that GCC only generates one instruction on most systems. You should normally not change the default value of this macro.

— Macro: STACK_CHECK_FIXED_FRAME_SIZE

GCC uses this value to generate the above warning message. It represents the amount of fixed frame used by a function, not including space for any callee-saved registers, temporaries and user variables. You need only specify an upper bound for this amount and will normally use the default of four words.

— Macro: STACK_CHECK_MAX_VAR_SIZE

The maximum size, in bytes, of an object that GCC will place in the fixed area of the stack frame when the user specifies -fstack-check. GCC computed the default from the values of the above macros and you will normally not need to override that default.


Next: , Previous: Stack Checking, Up: Stack and Calling

17.10.4 Registers That Address the Stack Frame

This discusses registers that address the stack frame.

— Macro: STACK_POINTER_REGNUM

The register number of the stack pointer register, which must also be a fixed register according to FIXED_REGISTERS. On most machines, the hardware determines which register this is.

— Macro: FRAME_POINTER_REGNUM

The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, the hardware determines which register this is. On other machines, you can choose any register you wish for this purpose.

— Macro: HARD_FRAME_POINTER_REGNUM

On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define FRAME_POINTER_REGNUM the number of a special, fixed register to be used internally until the offset is known, and define HARD_FRAME_POINTER_REGNUM to be the actual hard register number used for the frame pointer.

You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame pointer and the automatic variables until after register allocation has been completed. When this macro is defined, you must also indicate in your definition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

— Macro: ARG_POINTER_REGNUM

The register number of the arg pointer register, which is used to access the function's argument list. On some machines, this is the same as the frame pointer register. On some machines, the hardware determines which register this is. On other machines, you can choose any register you wish for this purpose. If this is not the same register as the frame pointer register, then you must mark it as a fixed register according to FIXED_REGISTERS, or arrange to be able to eliminate it (see Elimination).

— Macro: RETURN_ADDRESS_POINTER_REGNUM

The register number of the return address pointer register, which is used to access the current function's return address from the stack. On some machines, the return address is not at a fixed offset from the frame pointer or stack pointer or argument pointer. This register can be defined to point to the return address on the stack, and then be converted by ELIMINABLE_REGS into either the frame pointer or stack pointer.

Do not define this macro unless there is no other way to get the return address from the stack.

— Macro: STATIC_CHAIN_REGNUM
— Macro: STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function's static chain pointer. If register windows are used, the register number as seen by the called function is STATIC_CHAIN_INCOMING_REGNUM, while the register number as seen by the calling function is STATIC_CHAIN_REGNUM. If these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined; instead, the next two macros should be defined.

— Macro: STATIC_CHAIN
— Macro: STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give the locations as seen by the calling and called functions, respectively. Often the former will be at an offset from the stack pointer and the latter at an offset from the frame pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will have been initialized prior to the use of these macros and should be used to refer to those items.

If the static chain is passed in a register, the two previous macros should be defined instead.

— Macro: DWARF_FRAME_REGISTERS

This macro specifies the maximum number of hard registers that can be saved in a call frame. This is used to size data structures used in DWARF2 exception handling.

Prior to GCC 3.0, this macro was needed in order to establish a stable exception handling ABI in the face of adding new hard registers for ISA extensions. In GCC 3.0 and later, the EH ABI is insulated from changes in the number of hard registers. Nevertheless, this macro can still be used to reduce the runtime memory requirements of the exception handling routines, which can be substantial if the ISA contains a lot of registers that are not call-saved.

If this macro is not defined, it defaults to FIRST_PSEUDO_REGISTER.

— Macro: PRE_GCC3_DWARF_FRAME_REGISTERS

This macro is similar to DWARF_FRAME_REGISTERS, but is provided for backward compatibility in pre GCC 3.0 compiled code.

If this macro is not defined, it defaults to DWARF_FRAME_REGISTERS.

— Macro: DWARF_REG_TO_UNWIND_COLUMN (regno)

Define this macro if the target's representation for dwarf registers is different than the internal representation for unwind column. Given a dwarf register, this macro should return the internal unwind column number to use instead.

See the PowerPC's SPE target for an example.

— Macro: DWARF_FRAME_REGNUM (regno)

Define this macro if the target's representation for dwarf registers used in .eh_frame or .debug_frame is different from that used in other debug info sections. Given a GCC hard register number, this macro should return the .eh_frame register number. The default is DBX_REGISTER_NUMBER (regno).

— Macro: DWARF2_FRAME_REG_OUT (regno, for_eh)

Define this macro to map register numbers held in the call frame info that GCC has collected using DWARF_FRAME_REGNUM to those that should be output in .debug_frame (for_eh is zero) and .eh_frame (for_eh is nonzero). The default is to return regno.


Next: , Previous: Frame Registers, Up: Stack and Calling

17.10.5 Eliminating Frame Pointer and Arg Pointer

This is about eliminating the frame pointer and arg pointer.

— Macro: FRAME_POINTER_REQUIRED

A C expression which is nonzero if a function must have and use a frame pointer. This expression is evaluated in the reload pass. If its value is nonzero the function will have a frame pointer.

The expression can in principle examine the current function and decide according to the facts, but on most machines the constant 0 or the constant 1 suffices. Use 0 when the machine allows code to be generated with no frame pointer, and doing so saves some time or space. Use 1 when there is no possible advantage to avoiding a frame pointer.

In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of what FRAME_POINTER_REQUIRED says. You don't need to worry about them.

In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you mark it as a fixed register. See FIXED_REGISTERS for more information.

— Macro: INITIAL_FRAME_POINTER_OFFSET (depth-var)

A C statement to store in the variable depth-var the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from information such as the result of get_frame_size () and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is defined to always be true; in that case, you may set depth-var to anything.

— Macro: ELIMINABLE_REGS

If defined, this macro specifies a table of register pairs used to eliminate unneeded registers that point into the stack frame. If it is not defined, the only elimination attempted by the compiler is to replace references to the frame pointer with references to the stack pointer.

The definition of this macro is a list of structure initializations, each of which specifies an original and replacement register.

On some machines, the position of the argument pointer is not known until the compilation is completed. In such a case, a separate hard register must be used for the argument pointer. This register can be eliminated by replacing it with either the frame pointer or the argument pointer, depending on whether or not the frame pointer has been eliminated.

In this case, you might specify:

          #define ELIMINABLE_REGS  \
          {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
           {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
           {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is specified first since that is the preferred elimination.

— Macro: CAN_ELIMINATE (from-reg, to-reg)

A C expression that returns nonzero if the compiler is allowed to try to replace register number from-reg with register number to-reg. This macro need only be defined if ELIMINABLE_REGS is defined, and will usually be the constant 1, since most of the cases preventing register elimination are things that the compiler already knows about.

— Macro: INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)

This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the initial difference between the specified pair of registers. This macro must be defined if ELIMINABLE_REGS is defined.


Next: , Previous: Elimination, Up: Stack and Calling

17.10.6 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following section for other macros that control passing certain arguments in registers.

— Target Hook: bool TARGET_PROMOTE_PROTOTYPES (tree fntype)

This target hook returns true if an argument declared in a prototype as an integral type smaller than int should actually be passed as an int. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines. The default is to not promote prototypes.

— Macro: PUSH_ARGS

A C expression. If nonzero, push insns will be used to pass outgoing arguments. If the target machine does not have a push instruction, set it to zero. That directs GCC to use an alternate strategy: to allocate the entire argument block and then store the arguments into it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too.

— Macro: PUSH_ARGS_REVERSED

A C expression. If nonzero, function arguments will be evaluated from last to first, rather than from first to last. If this macro is not defined, it defaults to PUSH_ARGS on targets where the stack and args grow in opposite directions, and 0 otherwise.

— Macro: PUSH_ROUNDING (npushed)

A C expression that is the number of bytes actually pushed onto the stack when an instruction attempts to push npushed bytes.

On some machines, the definition

          #define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually push two bytes in an attempt to maintain alignment. Then the definition should be

          #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

— Macro: ACCUMULATE_OUTGOING_ARGS

A C expression. If nonzero, the maximum amount of space required for outgoing arguments will be computed and placed into the variable current_function_outgoing_args_size. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount.

Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.

— Macro: REG_PARM_STACK_SPACE (fndecl)

Define this macro if functions should assume that stack space has been allocated for arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed in registers for the function represented by fndecl, which can be zero if GCC is calling a library function. The argument fndecl can be the FUNCTION_DECL, or the type itself of the function.

This space can be allocated by the caller, or be a part of the machine-dependent stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

— Macro: OUTGOING_REG_PARM_STACK_SPACE (fntype)

Define this to a nonzero value if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers when calling a function of fntype. fntype may be NULL if the function called is a library function.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for these arguments counts in the value of current_function_outgoing_args_size.

— Macro: STACK_PARMS_IN_REG_PARM_AREA

Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parameters don't skip the area specified by it.

Normally, when a parameter is not passed in registers, it is placed on the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and causes the parameter to be passed on the stack in its natural location.

— Macro: RETURN_POPS_ARGS (fundecl, funtype, stack-size)

A C expression that should indicate the number of bytes of its own arguments that a function pops on returning, or 0 if the function pops no arguments and the caller must therefore pop them all after the function returns.

fundecl is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type FUNCTION_DECL that describes the declaration of the function. From this you can obtain the DECL_ATTRIBUTES of the function.

funtype is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type FUNCTION_TYPE that describes the data type of the function. From this it is possible to obtain the data types of the value and arguments (if known).

When a call to a library function is being considered, fundecl will contain an identifier node for the library function. Thus, if you need to distinguish among various library functions, you can do so by their names. Note that “library function” in this context means a function used to perform arithmetic, whose name is known specially in the compiler and was not mentioned in the C code being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function.

On the VAX, all functions always pop their arguments, so the definition of this macro is stack-size. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling convention is available in which functions that take a fixed number of arguments pop them but other functions (such as printf) pop nothing (the caller pops all). When this convention is in use, funtype is examined to determine whether a function takes a fixed number of arguments.

— Macro: CALL_POPS_ARGS (cum)

A C expression that should indicate the number of bytes a call sequence pops off the stack. It is added to the value of RETURN_POPS_ARGS when compiling a function call.

cum is the variable in which all arguments to the called function have been accumulated.

On certain architectures, such as the SH5, a call trampoline is used that pops certain registers off the stack, depending on the arguments that have been passed to the function. Since this is a property of the call site, not of the called function, RETURN_POPS_ARGS is not appropriate.


Next: , Previous: Stack Arguments, Up: Stack and Calling

17.10.7 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are passed in registers or how they are arranged in the stack.

— Macro: FUNCTION_ARG (cum, mode, type, named)

A C expression that controls whether a function argument is passed in a register, and which register.

The arguments are cum, which summarizes all the previous arguments; mode, the machine mode of the argument; type, the data type of the argument as a tree node or 0 if that is not known (which happens for C support library functions); and named, which is 1 for an ordinary argument and 0 for nameless arguments that correspond to ‘...’ in the called function's prototype. type can be an incomplete type if a syntax error has previously occurred.

The value of the expression is usually either a reg RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack.

For machines like the VAX and 68000, where normally all arguments are pushed, zero suffices as a definition.

The value of the expression can also be a parallel RTX. This is used when an argument is passed in multiple locations. The mode of the parallel should be the mode of the entire argument. The parallel holds any number of expr_list pairs; each one describes where part of the argument is passed. In each expr_list the first operand must be a reg RTX for the hard register in which to pass this part of the argument, and the mode of the register RTX indicates how large this part of the argument is. The second operand of the expr_list is a const_int which gives the offset in bytes into the entire argument of where this part starts. As a special exception the first expr_list in the parallel RTX may have a first operand of zero. This indicates that the entire argument is also stored on the stack.

The last time this macro is called, it is called with MODE == VOIDmode, and its result is passed to the call or call_value pattern as operands 2 and 3 respectively.

The usual way to make the ISO library stdarg.h work on a machine where some arguments are usually passed in registers, is to cause nameless arguments to be passed on the stack instead. This is done by making FUNCTION_ARG return 0 whenever named is 0.

You may use the hook targetm.calls.must_pass_in_stack in the definition of this macro to determine if this argument is of a type that must be passed in the stack. If REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns nonzero for such an argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined, the argument will be computed in the stack and then loaded into a register.

— Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode mode, tree type)

This target hook should return true if we should not pass type solely in registers. The file expr.h defines a definition that is usually appropriate, refer to expr.h for additional documentation.

— Macro: FUNCTION_INCOMING_ARG (cum, mode, type, named)

Define this macro if the target machine has “register windows”, so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes the value, and FUNCTION_INCOMING_ARG should be defined in a similar fashion to tell the function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

— Target Hook: int TARGET_ARG_PARTIAL_BYTES (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, bool named)

This target hook returns the number of bytes at the beginning of an argument that must be put in registers. The value must be zero for arguments that are passed entirely in registers or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first few words of arguments are passed in registers, and the rest on the stack. If a multi-word argument (a double or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many bytes should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by the caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

— Target Hook: bool TARGET_PASS_BY_REFERENCE (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, bool named)

This target hook should return true if an argument at the position indicated by cum should be passed by reference. This predicate is queried after target independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type).

If the hook returns true, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type.

— Target Hook: bool TARGET_CALLEE_COPIES (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, bool named)

The function argument described by the parameters to this hook is known to be passed by reference. The hook should return true if the function argument should be copied by the callee instead of copied by the caller.

For any argument for which the hook returns true, if it can be determined that the argument is not modified, then a copy need not be generated.

The default version of this hook always returns false.

— Macro: CUMULATIVE_ARGS

A C type for declaring a variable that is used as the first argument of FUNCTION_ARG and other related values. For some target machines, the type int suffices and can hold the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to store anything in CUMULATIVE_ARGS; however, the data structure must exist and should not be empty, so use int.

— Macro: OVERRIDE_ABI_FORMAT (fndecl)

If defined, this macro is called before generating any code for a function, but after the cfun descriptor for the function has been created. The back end may use this macro to update cfun to reflect an ABI other than that which would normally be used by default. If the compiler is generating code for a compiler-generated function, fndecl may be NULL.

— Macro: INIT_CUMULATIVE_ARGS (cum, fntype, libname, fndecl, n_named_args)

A C statement (sans semicolon) for initializing the variable cum for the state at the beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value of fntype is the tree node for the data type of the function which will receive the args, or 0 if the args are to a compiler support library function. For direct calls that are not libcalls, fndecl contain the declaration node of the function. fndecl is also set when INIT_CUMULATIVE_ARGS is used to find arguments for the function being compiled. n_named_args is set to the number of named arguments, including a structure return address if it is passed as a parameter, when making a call. When processing incoming arguments, n_named_args is set to −1.

When processing a call to a compiler support library function, libname identifies which one. It is a symbol_ref rtx which contains the name of the function, as a string. libname is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either libname or fntype is nonzero, but never both of them at once.

— Macro: INIT_CUMULATIVE_LIBCALL_ARGS (cum, mode, libname)

Like INIT_CUMULATIVE_ARGS but only used for outgoing libcalls, it gets a MODE argument instead of fntype, that would be NULL. indirect would always be zero, too. If this macro is not defined, INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0) is used instead.

— Macro: INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)

Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the arguments for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_ARGS is used instead.

The value passed for libname is always 0, since library routines with special calling conventions are never compiled with GCC. The argument libname exists for symmetry with INIT_CUMULATIVE_ARGS.

— Macro: FUNCTION_ARG_ADVANCE (cum, mode, type, named)

A C statement (sans semicolon) to update the summarizer variable cum to advance past an argument in the argument list. The values mode, type and named describe that argument. Once this is done, the variable cum is suitable for analyzing the following argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on the stack. The compiler knows how to track the amount of stack space used for arguments without any special help.

— Macro: FUNCTION_ARG_OFFSET (mode, type)

If defined, a C expression that is the number of bytes to add to the offset of the argument passed in memory. This is needed for the SPU, which passes char and short arguments in the preferred slot that is in the middle of the quad word instead of starting at the top.

— Macro: FUNCTION_ARG_PADDING (mode, type)

If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value should be of type enum direction: either upward to pad above the argument, downward to pad below, or none to inhibit padding.

The amount of padding is always just enough to reach the next multiple of FUNCTION_ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-endian machines, the default is to pad upward. For big-endian machines, the default is to pad downward for an argument of constant size shorter than an int, and upward otherwise.

— Macro: PAD_VARARGS_DOWN

If defined, a C expression which determines whether the default implementation of va_arg will attempt to pad down before reading the next argument, if that argument is smaller than its aligned space as controlled by PARM_BOUNDARY. If this macro is not defined, all such arguments are padded down if BYTES_BIG_ENDIAN is true.

— Macro: BLOCK_REG_PADDING (mode, type, first)

Specify padding for the last element of a block move between registers and memory. first is nonzero if this is the only element. Defining this macro allows better control of register function parameters on big-endian machines, without using PARALLEL rtl. In particular, MUST_PASS_IN_STACK need not test padding and mode of types in registers, as there is no longer a "wrong" part of a register; For example, a three byte aggregate may be passed in the high part of a register if so required.

— Macro: FUNCTION_ARG_BOUNDARY (mode, type)

If defined, a C expression that gives the alignment boundary, in bits, of an argument with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all arguments.

— Macro: FUNCTION_ARG_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which function arguments are sometimes passed. This does not include implicit arguments such as the static chain and the structure-value address. On many machines, no registers can be used for this purpose since all function arguments are pushed on the stack.

— Target Hook: bool TARGET_SPLIT_COMPLEX_ARG (tree type)

This hook should return true if parameter of type type are passed as two scalar parameters. By default, GCC will attempt to pack complex arguments into the target's word size. Some ABIs require complex arguments to be split and treated as their individual components. For example, on AIX64, complex floats should be passed in a pair of floating point registers, even though a complex float would fit in one 64-bit floating point register.

The default value of this hook is NULL, which is treated as always false.

— Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void)

This hook returns a type node for va_list for the target. The default version of the hook returns void*.

— Target Hook: tree TARGET_FN_ABI_VA_LIST (tree fndecl)

This hook returns the va_list type of the calling convention specified by fndecl. The default version of this hook returns va_list_type_node.

— Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree type)

This hook returns the va_list type of the calling convention specified by the type of type. If type is not a valid va_list type, it returns NULL_TREE.

— Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree valist, tree type, tree *pre_p, tree *post_p)

This hook performs target-specific gimplification of VA_ARG_EXPR. The first two parameters correspond to the arguments to va_arg; the latter two are as in gimplify.c:gimplify_expr.

— Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode mode)

Define this to return nonzero if the port can handle pointers with machine mode mode. The default version of this hook returns true for both ptr_mode and Pmode.

— Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode mode)

Define this to return nonzero if the port is prepared to handle insns involving scalar mode mode. For a scalar mode to be considered supported, all the basic arithmetic and comparisons must work.

The default version of this hook returns true for any mode required to handle the basic C types (as defined by the port). Included here are the double-word arithmetic supported by the code in optabs.c.

— Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode mode)

Define this to return nonzero if the port is prepared to handle insns involving vector mode mode. At the very least, it must have move patterns for this mode.


Next: , Previous: Register Arguments, Up: Stack and Calling

17.10.8 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can fit in registers.

— Target Hook: rtx TARGET_FUNCTION_VALUE (tree ret_type, tree fn_decl_or_type, bool outgoing)

Define this to return an RTX representing the place where a function returns or receives a value of data type ret_type, a tree node node representing a data type. fn_decl_or_type is a tree node representing FUNCTION_DECL or FUNCTION_TYPE of a function being called. If outgoing is false, the hook should compute the register in which the caller will see the return value. Otherwise, the hook should return an RTX representing the place where a function returns a value.

On many machines, only TYPE_MODE (ret_type) is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode.) The value of the expression is usually a reg RTX for the hard register where the return value is stored. The value can also be a parallel RTX, if the return value is in multiple places. See FUNCTION_ARG for an explanation of the parallel form. Note that the callee will populate every location specified in the parallel, but if the first element of the parallel contains the whole return value, callers will use that element as the canonical location and ignore the others. The m68k port uses this type of parallel to return pointers in both ‘%a0’ (the canonical location) and ‘%d0’.

If TARGET_PROMOTE_FUNCTION_RETURN returns true, you must apply the same promotion rules specified in PROMOTE_MODE if valtype is a scalar type.

If the precise function being called is known, func is a tree node (FUNCTION_DECL) for it; otherwise, func is a null pointer. This makes it possible to use a different value-returning convention for specific functions when all their calls are known.

Some target machines have “register windows” so that the register in which a function returns its value is not the same as the one in which the caller sees the value. For such machines, you should return different RTX depending on outgoing.

TARGET_FUNCTION_VALUE is not used for return values with aggregate data types, because these are returned in another way. See TARGET_STRUCT_VALUE_RTX and related macros, below.

— Macro: FUNCTION_VALUE (valtype, func)

This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target instead.

— Macro: FUNCTION_OUTGOING_VALUE (valtype, func)

This macro has been deprecated. Use TARGET_FUNCTION_VALUE for a new target instead.

— Macro: LIBCALL_VALUE (mode)

A C expression to create an RTX representing the place where a library function returns a value of mode mode.

Note that “library function” in this context means a compiler support routine, used to perform arithmetic, whose name is known specially by the compiler and was not mentioned in the C code being compiled.

— Macro: FUNCTION_VALUE_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which the values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair (for a value of type double, say) need not be recognized by this macro. So for most machines, this definition suffices:

          #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use different registers for the return value, this macro should recognize only the caller's register numbers.

— Macro: TARGET_ENUM_VA_LIST (idx, pname, ptype)

This target macro is used in function c_common_nodes_and_builtins to iterate through the target specific builtin types for va_list. The variable idx is used as iterator. pname has to be a pointer to a const char * and ptype a pointer to a tree typed variable. The arguments pname and ptype are used to store the result of this macro and are set to the name of the va_list builtin type and its internal type. If the return value of this macro is zero, then there is no more element. Otherwise the IDX should be increased for the next call of this macro to iterate through all types.

— Macro: APPLY_RESULT_SIZE

Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space than is implied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return value.

— Target Hook: bool TARGET_RETURN_IN_MSB (tree type)

This hook should return true if values of type type are returned at the most significant end of a register (in other words, if they are padded at the least significant end). You can assume that type is returned in a register; the caller is required to check this.

Note that the register provided by TARGET_FUNCTION_VALUE must be able to hold the complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the most significant end of a 4-byte register, TARGET_FUNCTION_VALUE should provide an SImode rtx.


Next: , Previous: Scalar Return, Up: Stack and Calling

17.10.9 How Large Values Are Returned

When a function value's mode is BLKmode (and in some other cases), the value is not returned according to TARGET_FUNCTION_VALUE (see Scalar Return). Instead, the caller passes the address of a block of memory in which the value should be stored. This address is called the structure value address.

This section describes how to control returning structure values in memory.

— Target Hook: bool TARGET_RETURN_IN_MEMORY (tree type, tree fntype)

This target hook should return a nonzero value to say to return the function value in memory, just as large structures are always returned. Here type will be the data type of the value, and fntype will be the type of the function doing the returning, or NULL for libcalls.

Note that values of mode BLKmode must be explicitly handled by this function. Also, the option -fpcc-struct-return takes effect regardless of this macro. On most systems, it is possible to leave the hook undefined; this causes a default definition to be used, whose value is the constant 1 for BLKmode values, and 0 otherwise.

Do not use this hook to indicate that structures and unions should always be returned in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

— Macro: DEFAULT_PCC_STRUCT_RETURN

Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should be defined only if needed for compatibility with other compilers or with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided by the TARGET_RETURN_IN_MEMORY target hook.

If not defined, this defaults to the value 1.

— Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree fndecl, int incoming)

This target hook should return the location of the structure value address (normally a mem or reg), or 0 if the address is passed as an “invisible” first argument. Note that fndecl may be NULL, for libcalls. You do not need to define this target hook if the address is always passed as an “invisible” first argument.

On some architectures the place where the structure value address is found by the called function is not the same place that the caller put it. This can be due to register windows, or it could be because the function prologue moves it to a different place. incoming is 1 or 2 when the location is needed in the context of the called function, and 0 in the context of the caller.

If incoming is nonzero and the address is to be found on the stack, return a mem which refers to the frame pointer. If incoming is 2, the result is being used to fetch the structure value address at the beginning of a function. If you need to emit adjusting code, you should do it at this point.

— Macro: PCC_STATIC_STRUCT_RETURN

Define this macro if the usual system convention on the target machine for returning structures and unions is for the called function to return the address of a static variable containing the value.

Do not define this if the usual system convention is for the caller to pass an address to the subroutine.

This macro has effect in -fpcc-struct-return mode, but it does nothing when you use -freg-struct-return mode.


Next: , Previous: Aggregate Return, Up: Stack and Calling

17.10.10 Caller-Saves Register Allocation

If you enable it, GCC can save registers around function calls. This makes it possible to use call-clobbered registers to hold variables that must live across calls.

— Macro: CALLER_SAVE_PROFITABLE (refs, calls)

A C expression to determine whether it is worthwhile to consider placing a pseudo-register in a call-clobbered hard register and saving and restoring it around each function call. The expression should be 1 when this is worth doing, and 0 otherwise.

If you don't define this macro, a default is used which is good on most machines: 4 * calls < refs.

— Macro: HARD_REGNO_CALLER_SAVE_MODE (regno, nregs)

A C expression specifying which mode is required for saving nregs of a pseudo-register in call-clobbered hard register regno. If regno is unsuitable for caller save, VOIDmode should be returned. For most machines this macro need not be defined since GCC will select the smallest suitable mode.


Next: , Previous: Caller Saves, Up: Stack and Calling

17.10.11 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue) code.

— Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *file, HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for entry to a function. The prologue is responsible for setting up the stack frame, initializing the frame pointer register, saving registers that must be saved, and allocating size additional bytes of storage for the local variables. size is an integer. file is a stdio stream to which the assembler code should be output.

The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_live: element r is nonzero if hard register r is used anywhere within the function. This implies the function prologue should save register r, provided it is not one of the call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use regs_ever_live.)

On machines that have “register windows”, the function entry code does not save on the stack the registers that are in the windows, even if they are supposed to be preserved by function calls; instead it takes appropriate steps to “push” the register stack, if any non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable frame_pointer_needed. The variable's value will be 1 at run time in a function that needs a frame pointer. See Elimination.

The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated in the order listed, with the last listed region closest to the top of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where required by standard or by a debugger, there is no reason why the stack layout used by GCC need agree with that used by other compilers for a machine.

— Target Hook: void TARGET_ASM_FUNCTION_END_PROLOGUE (FILE *file)

If defined, a function that outputs assembler code at the end of a prologue. This should be used when the function prologue is being emitted as RTL, and you have some extra assembler that needs to be emitted. See prologue instruction pattern.

— Target Hook: void TARGET_ASM_FUNCTION_BEGIN_EPILOGUE (FILE *file)

If defined, a function that outputs assembler code at the start of an epilogue. This should be used when the function epilogue is being emitted as RTL, and you have some extra assembler that needs to be emitted. See epilogue instruction pattern.

— Target Hook: void TARGET_ASM_FUNCTION_EPILOGUE (FILE *file, HOST_WIDE_INT size)

If defined, a function that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the saved registers and stack pointer to their values when the function was called, and returning control to the caller. This macro takes the same arguments as the macro TARGET_ASM_FUNCTION_PROLOGUE, and the registers to restore are determined from regs_ever_live and CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that instruction the name ‘return’ and do not define the macro TARGET_ASM_FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the TARGET_ASM_FUNCTION_EPILOGUE to be used. If you want the target switches to control whether return instructions or epilogues are used, define a ‘return’ pattern with a validity condition that tests the target switches appropriately. If the ‘return’ pattern's validity condition is false, epilogues will be used.

On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable frame_pointer_needed. The variable's value will be 1 when compiling a function that needs a frame pointer.

Normally, TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE must treat leaf functions specially. The C variable current_function_is_leaf is nonzero for such a function. See Leaf Functions.

On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 when given -mrtd pops arguments in functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their own arguments. TARGET_ASM_FUNCTION_EPILOGUE needs to know what was decided. The variable that is called current_function_pops_args is the number of bytes of its arguments that a function should pop. See Scalar Return.

— Macro: EXIT_IGNORE_STACK

Define this macro as a C expression that is nonzero if the return instruction or the function epilogue ignores the value of the stack pointer; in other words, if it is safe to delete an instruction to adjust the stack pointer before a return from the function. The default is 0.

Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a final stack adjustment in a function that has no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

— Macro: EPILOGUE_USES (regno)

Define this macro as a C expression that is nonzero for registers that are used by the epilogue or the ‘return’ pattern. The stack and frame pointer registers are already assumed to be used as needed.

— Macro: EH_USES (regno)

Define this macro as a C expression that is nonzero for registers that are used by the exception handling mechanism, and so should be considered live on entry to an exception edge.

— Macro: DELAY_SLOTS_FOR_EPILOGUE

Define this macro if the function epilogue contains delay slots to which instructions from the rest of the function can be “moved”. The definition should be a C expression whose value is an integer representing the number of delay slots there.

— Macro: ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)

A C expression that returns 1 if insn can be placed in delay slot number n of the epilogue.

The argument n is an integer which identifies the delay slot now being considered (since different slots may have different rules of eligibility). It is never negative and is always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_EPILOGUE returns). If you reject a particular insn for a given delay slot, in principle, it may be reconsidered for a subsequent delay slot. Also, other insns may (at least in principle) be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made with insn_list objects, stored in the variable current_function_epilogue_delay_list. The insn for the first delay slot comes first in the list. Your definition of the macro TARGET_ASM_FUNCTION_EPILOGUE should fill the delay slots by outputting the insns in this list, usually by calling final_scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_EPILOGUE.

— Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function)

A function that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual function, adjusting the implicit object parameter before handing control off to the real function.

First, emit code to add the integer delta to the location that contains the incoming first argument. Assume that this argument contains a pointer, and is the one used to pass the this pointer in C++. This is the incoming argument before the function prologue, e.g. ‘%o0’ on a sparc. The addition must preserve the values of all other incoming arguments.

Then, if vcall_offset is nonzero, an additional adjustment should be made after adding delta. In particular, if p is the adjusted pointer, the following adjustment should be made:

          p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)]

After the additions, emit code to jump to function, which is a FUNCTION_DECL. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will return to whoever called the current ‘thunk’.

The effect must be as if function had been called directly with the adjusted first argument. This macro is responsible for emitting all of the code for a thunk function; TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are not invoked.

The thunk_fndecl is redundant. (delta and function have already been extracted from it.) It might possibly be useful on some targets, but probably not.

If you do not define this macro, the target-independent code in the C++ front end will generate a less efficient heavyweight thunk that calls function instead of jumping to it. The generic approach does not support varargs.

— Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function)

A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be able to output the assembler code for the thunk function specified by the arguments it is passed, and false otherwise. In the latter case, the generic approach will be used by the C++ front end, with the limitations previously exposed.


Next: , Previous: Function Entry, Up: Stack and Calling

17.10.12 Generating Code for Profiling

These macros will help you generate code for profiling.

— Macro: FUNCTION_PROFILER (file, labelno)

A C statement or compound statement to output to file some assembler code to call the profiling subroutine mcount.

The details of how mcount expects to be called are determined by your operating system environment, not by GCC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that results.

Older implementations of mcount expect the address of a counter variable to be loaded into some register. The name of this variable is ‘LP’ followed by the number labelno, so you would generate the name using ‘LP%d’ in a fprintf.

— Macro: PROFILE_HOOK

A C statement or compound statement to output to file some assembly code to call the profiling subroutine mcount even the target does not support profiling.

— Macro: NO_PROFILE_COUNTERS

Define this macro to be an expression with a nonzero value if the mcount subroutine on your system does not need a counter variable allocated for each function. This is true for almost all modern implementations. If you define this macro, you must not use the labelno argument to FUNCTION_PROFILER.

— Macro: PROFILE_BEFORE_PROLOGUE

Define this macro if the code for function profiling should come before the function prologue. Normally, the profiling code comes after.


Next: , Previous: Profiling, Up: Stack and Calling

17.10.13 Permitting tail calls

— Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree decl, tree exp)

True if it is ok to do sibling call optimization for the specified call expression exp. decl will be the called function, or NULL if this is an indirect call.

It is not uncommon for limitations of calling conventions to prevent tail calls to functions outside the current unit of translation, or during PIC compilation. The hook is used to enforce these restrictions, as the sibcall md pattern can not fail, or fall over to a “normal” call. The criteria for successful sibling call optimization may vary greatly between different architectures.

— Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap *regs)

Add any hard registers to regs that are live on entry to the function. This hook only needs to be defined to provide registers that cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved registers, STATIC_CHAIN_INCOMING_REGNUM, STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM, EH_USES, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the PIC_OFFSET_TABLE_REGNUM.


Previous: Tail Calls, Up: Stack and Calling

17.10.14 Stack smashing protection

— Target Hook: tree TARGET_STACK_PROTECT_GUARD (void)

This hook returns a DECL node for the external variable to use for the stack protection guard. This variable is initialized by the runtime to some random value and is used to initialize the guard value that is placed at the top of the local stack frame. The type of this variable must be ptr_type_node.

The default version of this hook creates a variable called ‘__stack_chk_guard’, which is normally defined in libgcc2.c.

— Target Hook: tree TARGET_STACK_PROTECT_FAIL (void)

This hook returns a tree expression that alerts the runtime that the stack protect guard variable has been modified. This expression should involve a call to a noreturn function.

The default version of this hook invokes a function called ‘__stack_chk_fail’, taking no arguments. This function is normally defined in libgcc2.c.


Next: , Previous: Stack and Calling, Up: Target Macros

17.11 Implementing the Varargs Macros

GCC comes with an implementation of <varargs.h> and <stdarg.h> that work without change on machines that pass arguments on the stack. Other machines require their own implementations of varargs, and the two machine independent header files must have conditionals to include it.

ISO <stdarg.h> differs from traditional <varargs.h> mainly in the calling convention for va_start. The traditional implementation takes just one argument, which is the variable in which to store the argument pointer. The ISO implementation of va_start takes an additional second argument. The user is supposed to write the last named argument of the function here.

However, va_start should not use this argument. The way to find the end of the named arguments is with the built-in functions described below.

— Macro: __builtin_saveregs ()

Use this built-in function to save the argument registers in memory so that the varargs mechanism can access them. Both ISO and traditional versions of va_start must use __builtin_saveregs, unless you use TARGET_SETUP_INCOMING_VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the control of the target hook TARGET_EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine written in assembler language, found in libgcc2.c.

Code generated for the call to __builtin_saveregs appears at the beginning of the function, as opposed to where the call to __builtin_saveregs is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes.

— Macro: __builtin_args_info (category)

Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for arguments, each for a particular category of data types. (For example, on some machines, floating-point registers are used for floating-point arguments while other arguments are passed in the general registers.) To make non-varargs functions use the proper calling convention, you have defined the CUMULATIVE_ARGS data type to record how many registers in each category have been used so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS after the ordinary argument layout is finished with it, with category specifying which word to access. Thus, the value indicates the first unused register in a given category.

Normally, you would use __builtin_args_info in the implementation of va_start, accessing each category just once and storing the value in the va_list object. This is because va_list will have to update the values, and there is no way to alter the values accessed by __builtin_args_info.

— Macro: __builtin_next_arg (lastarg)

This is the equivalent of __builtin_args_info, for stack arguments. It returns the address of the first anonymous stack argument, as type void *. If ARGS_GROW_DOWNWARD, it returns the address of the location above the first anonymous stack argument. Use it in va_start to initialize the pointer for fetching arguments from the stack. Also use it in va_start to verify that the second parameter lastarg is the last named argument of the current function.

— Macro: __builtin_classify_type (object)

Since each machine has its own conventions for which data types are passed in which kind of register, your implementation of va_arg has to embody these conventions. The easiest way to categorize the specified data type is to use __builtin_classify_type together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its data type. It returns an integer describing what kind of type that is—integer, floating, pointer, structure, and so on.

The file typeclass.h defines an enumeration that you can use to interpret the values of __builtin_classify_type.

These machine description macros help implement varargs:

— Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void)

If defined, this hook produces the machine-specific code for a call to __builtin_saveregs. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains the value to use as the return of __builtin_saveregs.

— Target Hook: void TARGET_SETUP_INCOMING_VARARGS (CUMULATIVE_ARGS *args_so_far, enum machine_mode mode, tree type, int *pretend_args_size, int second_time)

This target hook offers an alternative to using __builtin_saveregs and defining the hook TARGET_EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register arguments into the stack so that all the arguments appear to have been passed consecutively on the stack. Once this is done, you can use the standard implementation of varargs that works for machines that pass all their arguments on the stack.

The argument args_so_far points to the CUMULATIVE_ARGS data structure, containing the values that are obtained after processing the named arguments. The arguments mode and type describe the last named argument—its machine mode and its data type as a tree node.

The target hook should do two things: first, push onto the stack all the argument registers not used for the named arguments, and second, store the size of the data thus pushed into the int-valued variable pointed to by pretend_args_size. The value that you store here will serve as additional offset for setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time without knowing their data types, TARGET_SETUP_INCOMING_VARARGS is only useful on machines that have just a single category of argument register and use it uniformly for all data types.

If the argument second_time is nonzero, it means that the arguments of the function are being analyzed for the second time. This happens for an inline function, which is not actually compiled until the end of the source file. The hook TARGET_SETUP_INCOMING_VARARGS should not generate any instructions in this case.

— Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (CUMULATIVE_ARGS *ca)

Define this hook to return true if the location where a function argument is passed depends on whether or not it is a named argument.

This hook controls how the named argument to FUNCTION_ARG is set for varargs and stdarg functions. If this hook returns true, the named argument is always true for named arguments, and false for unnamed arguments. If it returns false, but TARGET_PRETEND_OUTGOING_VARARGS_NAMED returns true, then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named.

You need not define this hook if it always returns zero.

— Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED

If you need to conditionally change ABIs so that one works with TARGET_SETUP_INCOMING_VARARGS, but the other works like neither TARGET_SETUP_INCOMING_VARARGS nor TARGET_STRICT_ARGUMENT_NAMING was defined, then define this hook to return true if TARGET_SETUP_INCOMING_VARARGS is used, false otherwise. Otherwise, you should not define this hook.


Next: , Previous: Varargs, Up: Target Macros

17.12 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of a nested function is taken. It normally resides on the stack, in the stack frame of the containing function. These macros tell GCC how to generate code to allocate and initialize a trampoline.

The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of the nested function. On CISC machines such as the m68k, this requires two instructions, a move immediate and a jump. Then the two addresses exist in the trampoline as word-long immediate operands. On RISC machines, it is often necessary to load each address into a register in two parts. Then pieces of each address form separate immediate operands.

The code generated to initialize the trampoline must store the variable parts—the static chain value and the function address—into the immediate operands of the instructions. On a CISC machine, this is simply a matter of copying each address to a memory reference at the proper offset from the start of the trampoline. On a RISC machine, it may be necessary to take out pieces of the address and store them separately.

— Macro: TRAMPOLINE_TEMPLATE (file)

A C statement to output, on the stream file, assembler code for a block of data that contains the constant parts of a trampoline. This code should not include a label—the label is taken care of automatically.

If you do not define this macro, it means no template is needed for the target. Do not define this macro on systems where the block move code to copy the trampoline into place would be larger than the code to generate it on the spot.

— Macro: TRAMPOLINE_SECTION

Return the section into which the trampoline template is to be placed (see Sections). The default value is readonly_data_section.

— Macro: TRAMPOLINE_SIZE

A C expression for the size in bytes of the trampoline, as an integer.

— Macro: TRAMPOLINE_ALIGNMENT

Alignment required for trampolines, in bits.

If you don't define this macro, the value of BIGGEST_ALIGNMENT is used for aligning trampolines.

— Macro: INITIALIZE_TRAMPOLINE (addr, fnaddr, static_chain)

A C statement to initialize the variable parts of a trampoline. addr is an RTX for the address of the trampoline; fnaddr is an RTX for the address of the nested function; static_chain is an RTX for the static chain value that should be passed to the function when it is called.

— Macro: TRAMPOLINE_ADJUST_ADDRESS (addr)

A C statement that should perform any machine-specific adjustment in the address of the trampoline. Its argument contains the address that was passed to INITIALIZE_TRAMPOLINE. In case the address to be used for a function call should be different from the address in which the template was stored, the different address should be assigned to addr. If this macro is not defined, addr will be used for function calls.

If this macro is not defined, by default the trampoline is allocated as a stack slot. This default is right for most machines. The exceptions are machines where it is impossible to execute instructions in the stack area. On such machines, you may have to implement a separate stack, using this macro in conjunction with TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compilation status of the immediate containing function of the function which the trampoline is for. The stack slot for the trampoline is in the stack frame of this containing function. Other allocation strategies probably must do something analogous with this information.

Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack location fails to clear the memory in the instruction cache, so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to make all trampolines identical, by having them jump to a standard subroutine. The former technique makes trampoline execution faster; the latter makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macro.

— Macro: CLEAR_INSN_CACHE (beg, end)

If defined, expands to a C expression clearing the instruction cache in the specified interval. The definition of this macro would typically be a series of asm statements. Both beg and end are both pointer expressions.

The operating system may also require the stack to be made executable before calling the trampoline. To implement this requirement, define the following macro.

— Macro: ENABLE_EXECUTE_STACK

Define this macro if certain operations must be performed before executing code located on the stack. The macro should expand to a series of C file-scope constructs (e.g. functions) and provide a unique entry point named __enable_execute_stack. The target is responsible for emitting calls to the entry point in the code, for example from the INITIALIZE_TRAMPOLINE macro.

To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in its cache line. Look in m68k.h as a guide.

— Macro: TRANSFER_FROM_TRAMPOLINE

Define this macro if trampolines need a special subroutine to do their work. The macro should expand to a series of asm statements which will be compiled with GCC. They go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use one asm statement to generate an assembler label, and another to make the label global. Then trampolines can use that label to jump directly to your special assembler code.


Next: , Previous: Trampolines, Up: Target Macros

17.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

— Macro: DECLARE_LIBRARY_RENAMES

This macro, if defined, should expand to a piece of C code that will get expanded when compiling functions for libgcc.a. It can be used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide.

— Target Hook: void TARGET_INIT_LIBFUNCS (void)

This hook should declare additional library routines or rename existing ones, using the functions set_optab_libfunc and init_one_libfunc defined in optabs.c. init_optabs calls this macro after initializing all the normal library routines.

The default is to do nothing. Most ports don't need to define this hook.

— Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)

This macro should return true if the library routine that implements the floating point comparison operator comparison in mode mode will return a boolean, and false if it will return a tristate.

GCC's own floating point libraries return tristates from the comparison operators, so the default returns false always. Most ports don't need to define this macro.

— Macro: TARGET_LIB_INT_CMP_BIASED

This macro should evaluate to true if the integer comparison functions (like __cmpdi2) return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are equal, and 2 to indicate that the first operand is greater than the second. If this macro evaluates to false the comparison functions return −1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines in libgcc.a, you do not need to define this macro.

— Macro: US_SOFTWARE_GOFAST

Define this macro if your system C library uses the US Software GOFAST library to provide floating point emulation.

In addition to defining this macro, your architecture must set TARGET_INIT_LIBFUNCS to gofast_maybe_init_libfuncs, or else call that function from its version of that hook. It is defined in config/gofast.h, which must be included by your architecture's cpu.c file. See sparc/sparc.c for an example.

If this macro is defined, the TARGET_FLOAT_LIB_COMPARE_RETURNS_BOOL target hook must return false for SFmode and DFmode comparisons.

— Macro: TARGET_EDOM

The value of EDOM on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt to deposit the value of EDOM into errno directly. Look in /usr/include/errno.h to find the value of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by calling the library function and letting it report the error. If mathematical functions on your system use matherr when there is an error, then you should leave TARGET_EDOM undefined so that matherr is used normally.

— Macro: GEN_ERRNO_RTX

Define this macro as a C expression to create an rtl expression that refers to the global “variable” errno. (On certain systems, errno may not actually be a variable.) If you don't define this macro, a reasonable default is used.

— Macro: TARGET_C99_FUNCTIONS

When this macro is nonzero, GCC will implicitly optimize sin calls into sinf and similarly for other functions defined by C99 standard. The default is zero because a number of existing systems lack support for these functions in their runtime so this macro needs to be redefined to one on systems that do support the C99 runtime.

— Macro: TARGET_HAS_SINCOS

When this macro is nonzero, GCC will implicitly optimize calls to sin and cos with the same argument to a call to sincos. The default is zero. The target has to provide the following functions:

          void sincos(double x, double *sin, double *cos);
          void sincosf(float x, float *sin, float *cos);
          void sincosl(long double x, long double *sin, long double *cos);
— Macro: NEXT_OBJC_RUNTIME

Define this macro to generate code for Objective-C message sending using the calling convention of the NeXT system. This calling convention involves passing the object, the selector and the method arguments all at once to the method-lookup library function.

The default calling convention passes just the object and the selector to the lookup function, which returns a pointer to the method.


Next: , Previous: Library Calls, Up: Target Macros

17.14 Addressing Modes

This is about addressing modes.

— Macro: HAVE_PRE_INCREMENT
— Macro: HAVE_PRE_DECREMENT
— Macro: HAVE_POST_INCREMENT
— Macro: HAVE_POST_DECREMENT

A C expression that is nonzero if the machine supports pre-increment, pre-decrement, post-increment, or post-decrement addressing respectively.

— Macro: HAVE_PRE_MODIFY_DISP
— Macro: HAVE_POST_MODIFY_DISP

A C expression that is nonzero if the machine supports pre- or post-address side-effect generation involving constants other than the size of the memory operand.

— Macro: HAVE_PRE_MODIFY_REG
— Macro: HAVE_POST_MODIFY_REG

A C expression that is nonzero if the machine supports pre- or post-address side-effect generation involving a register displacement.

— Macro: CONSTANT_ADDRESS_P (x)

A C expression that is 1 if the RTX x is a constant which is a valid address. On most machines, this can be defined as CONSTANT_P (x), but a few machines are more restrictive in which constant addresses are supported.

— Macro: CONSTANT_P (x)

CONSTANT_P, which is defined by target-independent code, accepts integer-values expressions whose values are not explicitly known, such as symbol_ref, label_ref, and high expressions and const arithmetic expressions, in addition to const_int and const_double expressions.

— Macro: MAX_REGS_PER_ADDRESS

A number, the maximum number of registers that can appear in a valid memory address. Note that it is up to you to specify a value equal to the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever accept.

— Macro: GO_IF_LEGITIMATE_ADDRESS (mode, x, label)

A C compound statement with a conditional goto label; executed if x (an RTX) is a legitimate memory address on the target machine for a memory operand of mode mode.

It usually pays to define several simpler macros to serve as subroutines for this one. Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. In contexts where some kind of register is required, a pseudo-register with no hard register must be rejected.

The non-strict variant is used in other passes. It must be defined to accept all pseudo-registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the macro REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base registers, one for index registers, and so on) are typically among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need have two variants; the higher levels of macros may be the same whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer are stored inside a const RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are not marked with const. It assumes that a naked plus indicates indexing. If so, then you must reject such naked constant sums as illegitimate addresses, so that none of them will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, define the target hook TARGET_ENCODE_SECTION_INFO to store the information into the symbol_ref, and then check for it here. When you see a const, you will have to look inside it to find the symbol_ref in order to determine the section. See Assembler Format.

— Macro: TARGET_MEM_CONSTRAINT

A single character to be used instead of the default 'm' character for general memory addresses. This defines the constraint letter which matches the memory addresses accepted by GO_IF_LEGITIMATE_ADDRESS_P. Define this macro if you want to support new address formats in your back end without changing the semantics of the 'm' constraint. This is necessary in order to preserve functionality of inline assembly constructs using the 'm' constraint.

— Macro: FIND_BASE_TERM (x)

A C expression to determine the base term of address x, or to provide a simplified version of x from which alias.c can easily find the base term. This macro is used in only two places: find_base_value and find_base_term in alias.c.

It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses.

The typical use of this macro is to handle addresses containing a label_ref or symbol_ref within an UNSPEC.

— Macro: LEGITIMIZE_ADDRESS (x, oldx, mode, win)

A C compound statement that attempts to replace x with a valid memory address for an operand of mode mode. win will be a C statement label elsewhere in the code; the macro definition may use

          GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will be the operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it transforms x into a more legitimate form, it should assign x (which will always be a C variable) a new value.

It is not necessary for this macro to come up with a legitimate address. The compiler has standard ways of doing so in all cases. In fact, it is safe to omit this macro. But often a machine-dependent strategy can generate better code.

— Macro: LEGITIMIZE_RELOAD_ADDRESS (x, mode, opnum, type, ind_levels, win)

A C compound statement that attempts to replace x, which is an address that needs reloading, with a valid memory address for an operand of mode mode. win will be a C statement label elsewhere in the code. It is not necessary to define this macro, but it might be useful for performance reasons.

For example, on the i386, it is sometimes possible to use a single reload register instead of two by reloading a sum of two pseudo registers into a register. On the other hand, for number of RISC processors offsets are limited so that often an intermediate address needs to be generated in order to address a stack slot. By defining LEGITIMIZE_RELOAD_ADDRESS appropriately, the intermediate addresses generated for adjacent some stack slots can be made identical, and thus be shared.

Note: This macro should be used with caution. It is necessary to know something of how reload works in order to effectively use this, and it is quite easy to produce macros that build in too much knowledge of reload internals.

Note: This macro must be able to reload an address created by a previous invocation of this macro. If it fails to handle such addresses then the compiler may generate incorrect code or abort.

The macro definition should use push_reload to indicate parts that need reloading; opnum, type and ind_levels are usually suitable to be passed unaltered to push_reload.

The code generated by this macro must not alter the substructure of x. If it transforms x into a more legitimate form, it should assign x (which will always be a C variable) a new value. This also applies to parts that you change indirectly by calling push_reload.

The macro definition may use strict_memory_address_p to test if the address has become legitimate.

If you want to change only a part of x, one standard way of doing this is to use copy_rtx. Note, however, that it unshares only a single level of rtl. Thus, if the part to be changed is not at the top level, you'll need to replace first the top level. It is not necessary for this macro to come up with a legitimate address; but often a machine-dependent strategy can generate better code.

— Macro: GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)

A C statement or compound statement with a conditional goto label; executed if memory address x (an RTX) can have different meanings depending on the machine mode of the memory reference it is used for or if the address is valid for some modes but not others.

Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or decrement is the size of the operand being addressed. Some machines have other mode-dependent addresses. Many RISC machines have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

— Macro: LEGITIMATE_CONSTANT_P (x)

A C expression that is nonzero if x is a legitimate constant for an immediate operand on the target machine. You can assume that x satisfies CONSTANT_P, so you need not check this. In fact, ‘1’ is a suitable definition for this macro on machines where anything CONSTANT_P is valid.

— Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx x)

This hook is used to undo the possibly obfuscating effects of the LEGITIMIZE_ADDRESS and LEGITIMIZE_RELOAD_ADDRESS target macros. Some backend implementations of these macros wrap symbol references inside an UNSPEC rtx to represent PIC or similar addressing modes. This target hook allows GCC's optimizers to understand the semantics of these opaque UNSPECs by converting them back into their original form.

— Target Hook: bool TARGET_CANNOT_FORCE_CONST_MEM (rtx x)

This hook should return true if x is of a form that cannot (or should not) be spilled to the constant pool. The default version of this hook returns false.

The primary reason to define this hook is to prevent reload from deciding that a non-legitimate constant would be better reloaded from the constant pool instead of spilling and reloading a register holding the constant. This restriction is often true of addresses of TLS symbols for various targets.

— Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine_mode mode, rtx x)

This hook should return true if pool entries for constant x can be placed in an object_block structure. mode is the mode of x.

The default version returns false for all constants.

— Target Hook: tree TARGET_BUILTIN_RECIPROCAL (enum tree_code fn, bool tm_fn, bool sqrt)

This hook should return the DECL of a function that implements reciprocal of the builtin function with builtin function code fn, or NULL_TREE if such a function is not available. tm_fn is true when fn is a code of a machine-dependent builtin function. When sqrt is true, additional optimizations that apply only to the reciprocal of a square root function are performed, and only reciprocals of sqrt function are valid.

— Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void)

This hook should return the DECL of a function f that given an address addr as an argument returns a mask m that can be used to extract from two vectors the relevant data that resides in addr in case addr is not properly aligned.

The autovectorizer, when vectorizing a load operation from an address addr that may be unaligned, will generate two vector loads from the two aligned addresses around addr. It then generates a REALIGN_LOAD operation to extract the relevant data from the two loaded vectors. The first two arguments to REALIGN_LOAD, v1 and v2, are the two vectors, each of size VS, and the third argument, OFF, defines how the data will be extracted from these two vectors: if OFF is 0, then the returned vector is v2; otherwise, the returned vector is composed from the last VS-OFF elements of v1 concatenated to the first OFF elements of v2.

If this hook is defined, the autovectorizer will generate a call to f (using the DECL tree that this hook returns) and will use the return value of f as the argument OFF to REALIGN_LOAD. Therefore, the mask m returned by f should comply with the semantics expected by REALIGN_LOAD described above. If this hook is not defined, then addr will be used as the argument OFF to REALIGN_LOAD, in which case the low log2(VS)-1 bits of addr will be considered.

— Target Hook: tree TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN (tree x)

This hook should return the DECL of a function f that implements widening multiplication of the even elements of two input vectors of type x.

If this hook is defined, the autovectorizer will use it along with the TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD target hook when vectorizing widening multiplication in cases that the order of the results does not have to be preserved (e.g. used only by a reduction computation). Otherwise, the widen_mult_hi/lo idioms will be used.

— Target Hook: tree TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD (tree x)

This hook should return the DECL of a function f that implements widening multiplication of the odd elements of two input vectors of type x.

If this hook is defined, the autovectorizer will use it along with the TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN target hook when vectorizing widening multiplication in cases that the order of the results does not have to be preserved (e.g. used only by a reduction computation). Otherwise, the widen_mult_hi/lo idioms will be used.

— Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (enum tree_code code, tree type)

This hook should return the DECL of a function that implements conversion of the input vector of type type. If type is an integral type, the result of the conversion is a vector of floating-point type of the same size. If type is a floating-point type, the result of the conversion is a vector of integral type of the same size. code specifies how the conversion is to be applied (truncation, rounding, etc.).

If this hook is defined, the autovectorizer will use the TARGET_VECTORIZE_BUILTIN_CONVERSION target hook when vectorizing conversion. Otherwise, it will return NULL_TREE.

— Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION (enum built_in_function code, tree vec_type_out, tree vec_type_in)

This hook should return the decl of a function that implements the vectorized variant of the builtin function with builtin function code code or NULL_TREE if such a function is not available. The return type of the vectorized function shall be of vector type vec_type_out and the argument types should be vec_type_in.


Next: , Previous: Addressing Modes, Up: Target Macros

17.15 Anchored Addresses

GCC usually addresses every static object as a separate entity. For example, if we have:

     static int a, b, c;
     int foo (void) { return a + b + c; }

the code for foo will usually calculate three separate symbolic addresses: those of a, b and c. On some targets, it would be better to calculate just one symbolic address and access the three variables relative to it. The equivalent pseudocode would be something like:

     int foo (void)
     {
       register int *xr = &x;
       return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
     }

(which isn't valid C). We refer to shared addresses like x as “section anchors”. Their use is controlled by -fsection-anchors.

The hooks below describe the target properties that GCC needs to know in order to make effective use of section anchors. It won't use section anchors at all unless either TARGET_MIN_ANCHOR_OFFSET or TARGET_MAX_ANCHOR_OFFSET is set to a nonzero value.

— Variable: Target Hook HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET

The minimum offset that should be applied to a section anchor. On most targets, it should be the smallest offset that can be applied to a base register while still giving a legitimate address for every mode. The default value is 0.

— Variable: Target Hook HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET

Like TARGET_MIN_ANCHOR_OFFSET, but the maximum (inclusive) offset that should be applied to section anchors. The default value is 0.

— Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx x)

Write the assembly code to define section anchor x, which is a SYMBOL_REF for which ‘SYMBOL_REF_ANCHOR_P (x)’ is true. The hook is called with the assembly output position set to the beginning of SYMBOL_REF_BLOCK (x).

If ASM_OUTPUT_DEF is available, the hook's default definition uses it to define the symbol as ‘. + SYMBOL_REF_BLOCK_OFFSET (x)’. If ASM_OUTPUT_DEF is not available, the hook's default definition is NULL, which disables the use of section anchors altogether.

— Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (rtx x)

Return true if GCC should attempt to use anchors to access SYMBOL_REF x. You can assume ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’ and ‘!SYMBOL_REF_ANCHOR_P (x)’.

The default version is correct for most targets, but you might need to intercept this hook to handle things like target-specific attributes or target-specific sections.


Next: , Previous: Anchored Addresses, Up: Target Macros

17.16 Condition Code Status

This describes the condition code status.

The file conditions.h defines a variable cc_status to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is currently based, and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional machine-specific information by defining CC_STATUS_MDEP.

— Macro: CC_STATUS_MDEP

C code for a data type which is used for declaring the mdep component of cc_status. It defaults to int.

This macro is not used on machines that do not use cc0.

— Macro: CC_STATUS_MDEP_INIT

A C expression to initialize the mdep field to “empty”. The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it.

This macro is not used on machines that do not use cc0.

— Macro: NOTICE_UPDATE_CC (exp, insn)

A C compound statement to set the components of cc_status appropriately for an insn insn whose body is exp. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that explicitly set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually NOTICE_UPDATE_CC can leave cc_status unaltered for such insns. But suppose that the previous insn set the condition code based on location ‘a4@(102)’ and the current insn stores a new value in ‘a4’. Although the condition code is not changed by this, it will no longer be true that it reflects the contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter cc_status in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results of peephole optimization: insns whose patterns are parallel RTXs containing various reg, mem or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What NOTICE_UPDATE_CC should do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an attribute (see Insn Attributes) named, for example, ‘cc’. This avoids having detailed information about patterns in two places, the md file and in NOTICE_UPDATE_CC.

— Macro: SELECT_CC_MODE (op, x, y)

Returns a mode from class MODE_CC to be used when comparison operation code op is applied to rtx x and y. For example, on the SPARC, SELECT_CC_MODE is defined as (see see Jump Patterns for a description of the reason for this definition)

          #define SELECT_CC_MODE(OP,X,Y) \
            (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT          \
             ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode)    \
             : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS    \
                 || GET_CODE (X) == NEG) \
                ? CC_NOOVmode : CCmode))

You should define this macro if and only if you define extra CC modes in machine-modes.def.

— Macro: CANONICALIZE_COMPARISON (code, op0, op1)

On some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, the Alpha does not have a GT comparison, but you can use an LT comparison instead and swap the order of the operands.

On such machines, define this macro to be a C statement to do any required conversions. code is the initial comparison code and op0 and op1 are the left and right operands of the comparison, respectively. You should modify code, op0, and op1 as required.

GCC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in the md file.

You need not define this macro if it would never change the comparison code or operands.

— Macro: REVERSIBLE_CC_MODE (mode)

A C expression whose value is one if it is always safe to reverse a comparison whose mode is mode. If SELECT_CC_MODE can ever return mode for a floating-point inequality comparison, then REVERSIBLE_CC_MODE (mode) must be zero.

You need not define this macro if it would always returns zero or if the floating-point format is anything other than IEEE_FLOAT_FORMAT. For example, here is the definition used on the SPARC, where floating-point inequality comparisons are always given CCFPEmode:

          #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)
— Macro: REVERSE_CONDITION (code, mode)

A C expression whose value is reversed condition code of the code for comparison done in CC_MODE mode. The macro is used only in case REVERSIBLE_CC_MODE (mode) is nonzero. Define this macro in case machine has some non-standard way how to reverse certain conditionals. For instance in case all floating point conditions are non-trapping, compiler may freely convert unordered compares to ordered one. Then definition may look like:

          #define REVERSE_CONDITION(CODE, MODE) \
             ((MODE) != CCFPmode ? reverse_condition (CODE) \
              : reverse_condition_maybe_unordered (CODE))
— Macro: REVERSE_CONDEXEC_PREDICATES_P (op1, op2)

A C expression that returns true if the conditional execution predicate op1, a comparison operation, is the inverse of op2 and vice versa. Define this to return 0 if the target has conditional execution predicates that cannot be reversed safely. There is no need to validate that the arguments of op1 and op2 are the same, this is done separately. If no expansion is specified, this macro is defined as follows:

          #define REVERSE_CONDEXEC_PREDICATES_P (x, y) \
             (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
— Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *, unsigned int *)

On targets which do not use (cc0), and which use a hard register rather than a pseudo-register to hold condition codes, the regular CSE passes are often not able to identify cases in which the hard register is set to a common value. Use this hook to enable a small pass which optimizes such cases. This hook should return true to enable this pass, and it should set the integers to which its arguments point to the hard register numbers used for condition codes. When there is only one such register, as is true on most systems, the integer pointed to by the second argument should be set to INVALID_REGNUM.

The default version of this hook returns false.

— Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum machine_mode, enum machine_mode)

On targets which use multiple condition code modes in class MODE_CC, it is sometimes the case that a comparison can be validly done in more than one mode. On such a system, define this target hook to take two mode arguments and to return a mode in which both comparisons may be validly done. If there is no such mode, return VOIDmode.

The default version of this hook checks whether the modes are the same. If they are, it returns that mode. If they are different, it returns VOIDmode.


Next: , Previous: Condition Code, Up: Target Macros

17.17 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

— Macro: REGISTER_MOVE_COST (mode, from, to)

A C expression for the cost of moving data of mode mode from a register in class from to one in class to. The classes are expressed using the enumeration values such as GENERAL_REGS. A value of 2 is the default; other values are interpreted relative to that.

It is not required that the cost always equal 2 when from is the same as to; on some machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You should do this if the ‘movm’ pattern's constraints do not allow such copying.

— Macro: MEMORY_MOVE_COST (mode, class, in)

A C expression for the cost of moving data of mode mode between a register of class class and memory; in is zero if the value is to be written to memory, nonzero if it is to be read in. This cost is relative to those in REGISTER_MOVE_COST. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost.

If you do not define this macro, GCC uses a default cost of 4 plus the cost of copying via a secondary reload register, if one is needed. If your machine requires a secondary reload register to copy between memory and a register of class but the reload mechanism is more complex than copying via an intermediate, define this macro to reflect the actual cost of the move.

GCC defines the function memory_move_secondary_cost if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base value of 4 is not correct for your machine, define this macro to add some other value to the result of that function. The arguments to that function are the same as to this macro.

— Macro: BRANCH_COST (speed_p, predictable_p)

A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. Parameter speed_p is true when the branch in question should be optimized for speed. When it is false, BRANCH_COST should be returning value optimal for code size rather then performance considerations. predictable_p is true for well predictable branches. On many architectures the BRANCH_COST can be reduced then.

Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GCC would ordinarily expect.

— Macro: SLOW_BYTE_ACCESS

Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest containing object; when it is defined, a fullword load will be used if alignment permits. Unless bytes accesses are faster than word accesses, using word accesses is preferable since it may eliminate subsequent memory access if subsequent accesses occur to other fields in the same word of the structure, but to different bytes.

— Macro: SLOW_UNALIGNED_ACCESS (mode, alignment)

Define this macro to be the value 1 if memory accesses described by the mode and alignment parameters have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler.

When this macro is nonzero, the compiler will act as if STRICT_ALIGNMENT were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined. If this macro is defined, it should produce a nonzero value when STRICT_ALIGNMENT is nonzero.

— Macro: MOVE_RATIO

The threshold of number of scalar memory-to-memory move insns, below which a sequence of insns should be generated instead of a string move insn or a library call. Increasing the value will always make code faster, but eventually incurs high cost in increased code size.

Note that on machines where the corresponding move insn is a define_expand that emits a sequence of insns, this macro counts the number of such sequences.

If you don't define this, a reasonable default is used.

— Macro: MOVE_BY_PIECES_P (size, alignment)

A C expression used to determine whether move_by_pieces will be used to copy a chunk of memory, or whether some other block move mechanism will be used. Defaults to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

— Macro: MOVE_MAX_PIECES

A C expression used by move_by_pieces to determine the largest unit a load or store used to copy memory is. Defaults to MOVE_MAX.

— Macro: CLEAR_RATIO

The threshold of number of scalar move insns, below which a sequence of insns should be generated to clear memory instead of a string clear insn or a library call. Increasing the value will always make code faster, but eventually incurs high cost in increased code size.

If you don't define this, a reasonable default is used.

— Macro: CLEAR_BY_PIECES_P (size, alignment)

A C expression used to determine whether clear_by_pieces will be used to clear a chunk of memory, or whether some other block clear mechanism will be used. Defaults to 1 if move_by_pieces_ninsns returns less than CLEAR_RATIO.

— Macro: SET_RATIO

The threshold of number of scalar move insns, below which a sequence of insns should be generated to set memory to a constant value, instead of a block set insn or a library call. Increasing the value will always make code faster, but eventually incurs high cost in increased code size.

If you don't define this, it defaults to the value of MOVE_RATIO.

— Macro: SET_BY_PIECES_P (size, alignment)

A C expression used to determine whether store_by_pieces will be used to set a chunk of memory to a constant value, or whether some other mechanism will be used. Used by __builtin_memset when storing values other than constant zero. Defaults to 1 if move_by_pieces_ninsns returns less than SET_RATIO.

— Macro: STORE_BY_PIECES_P (size, alignment)

A C expression used to determine whether store_by_pieces will be used to set a chunk of memory to a constant string value, or whether some other mechanism will be used. Used by __builtin_strcpy when called with a constant source string. Defaults to 1 if move_by_pieces_ninsns returns less than MOVE_RATIO.

— Macro: USE_LOAD_POST_INCREMENT (mode)

A C expression used to determine whether a load postincrement is a good thing to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

— Macro: USE_LOAD_POST_DECREMENT (mode)

A C expression used to determine whether a load postdecrement is a good thing to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

— Macro: USE_LOAD_PRE_INCREMENT (mode)

A C expression used to determine whether a load preincrement is a good thing to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

— Macro: USE_LOAD_PRE_DECREMENT (mode)

A C expression used to determine whether a load predecrement is a good thing to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

— Macro: USE_STORE_POST_INCREMENT (mode)

A C expression used to determine whether a store postincrement is a good thing to use for a given mode. Defaults to the value of HAVE_POST_INCREMENT.

— Macro: USE_STORE_POST_DECREMENT (mode)

A C expression used to determine whether a store postdecrement is a good thing to use for a given mode. Defaults to the value of HAVE_POST_DECREMENT.

— Macro: USE_STORE_PRE_INCREMENT (mode)

This macro is used to determine whether a store preincrement is a good thing to use for a given mode. Defaults to the value of HAVE_PRE_INCREMENT.

— Macro: USE_STORE_PRE_DECREMENT (mode)

This macro is used to determine whether a store predecrement is a good thing to use for a given mode. Defaults to the value of HAVE_PRE_DECREMENT.

— Macro: NO_FUNCTION_CSE

Define this macro if it is as good or better to call a constant function address than to call an address kept in a register.

— Macro: RANGE_TEST_NON_SHORT_CIRCUIT

Define this macro if a non-short-circuit operation produced by ‘fold_range_test ()’ is optimal. This macro defaults to true if BRANCH_COST is greater than or equal to the value 2.

— Target Hook: bool TARGET_RTX_COSTS (rtx x, int code, int outer_code, int *total)

This target hook describes the relative costs of RTL expressions.

The cost may depend on the precise form of the expression, which is available for examination in x, and the rtx code of the expression in which it is contained, found in outer_code. code is the expression code—redundant, since it can be obtained with GET_CODE (x).

In implementing this hook, you can use the construct COSTS_N_INSNS (n) to specify a cost equal to n fast instructions.

On entry to the hook, *total contains a default estimate for the cost of the expression. The hook should modify this value as necessary. Traditionally, the default costs are COSTS_N_INSNS (5) for multiplications, COSTS_N_INSNS (7) for division and modulus operations, and COSTS_N_INSNS (1) for all other operations.

When optimizing for code size, i.e. when optimize_size is nonzero, this target hook should be used to estimate the relative size cost of an expression, again relative to COSTS_N_INSNS.

The hook returns true when all subexpressions of x have been processed, and false when rtx_cost should recurse.

— Target Hook: int TARGET_ADDRESS_COST (rtx address)

This hook computes the cost of an addressing mode that contains address. If not defined, the cost is computed from the address expression and the TARGET_RTX_COST hook.

For most CISC machines, the default cost is a good approximation of the true cost of the addressing mode. However, on RISC machines, all instructions normally have the same length and execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the same, lowest, cost, the one that is the most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant is used twice in the same basic block. When this macro is not defined, the address will be computed in a register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect reference, this will produce an additional instruction and possibly require an additional register. Proper specification of this macro eliminates this overhead for such machines.

This hook is never called with an invalid address.

On machines where an address involving more than one register is as cheap as an address computation involving only one register, defining TARGET_ADDRESS_COST to reflect this can cause two registers to be live over a region of code where only one would have been if TARGET_ADDRESS_COST were not defined in that manner. This effect should be considered in the definition of this macro. Equivalent costs should probably only be given to addresses with different numbers of registers on machines with lots of registers.


Next: , Previous: Costs, Up: Target Macros

17.18 Adjusting the Instruction Scheduler

The instruction scheduler may need a fair amount of machine-specific adjustment in order to produce good code. GCC provides several target hooks for this purpose. It is usually enough to define just a few of them: try the first ones in this list first.

— Target Hook: int TARGET_SCHED_ISSUE_RATE (void)

This hook returns the maximum number of instructions that can ever issue at the same time on the target machine. The default is one. Although the insn scheduler can define itself the possibility of issue an insn on the same cycle, the value can serve as an additional constraint to issue insns on the same simulated processor cycle (see hooks ‘TARGET_SCHED_REORDER’ and ‘TARGET_SCHED_REORDER2’). This value must be constant over the entire compilation. If you need it to vary depending on what the instructions are, you must use ‘TARGET_SCHED_VARIABLE_ISSUE’.

— Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *file, int verbose, rtx insn, int more)

This hook is executed by the scheduler after it has scheduled an insn from the ready list. It should return the number of insns which can still be issued in the current cycle. The default is ‘more - 1’ for insns other than CLOBBER and USE, which normally are not counted against the issue rate. You should define this hook if some insns take more machine resources than others, so that fewer insns can follow them in the same cycle. file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n. insn is the instruction that was scheduled.

— Target Hook: int TARGET_SCHED_ADJUST_COST (rtx insn, rtx link, rtx dep_insn, int cost)

This function corrects the value of cost based on the relationship between insn and dep_insn through the dependence link. It should return the new value. The default is to make no adjustment to cost. This can be used for example to specify to the scheduler using the traditional pipeline description that an output- or anti-dependence does not incur the same cost as a data-dependence. If the scheduler using the automaton based pipeline description, the cost of anti-dependence is zero and the cost of output-dependence is maximum of one and the difference of latency times of the first and the second insns. If these values are not acceptable, you could use the hook to modify them too. See also see Processor pipeline description.

— Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx insn, int priority)

This hook adjusts the integer scheduling priority priority of insn. It should return the new priority. Increase the priority to execute insn earlier, reduce the priority to execute insn later. Do not define this hook if you do not need to adjust the scheduling priorities of insns.

— Target Hook: int TARGET_SCHED_REORDER (FILE *file, int verbose, rtx *ready, int *n_readyp, int clock)

This hook is executed by the scheduler after it has scheduled the ready list, to allow the machine description to reorder it (for example to combine two small instructions together on ‘VLIW’ machines). file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n. ready is a pointer to the ready list of instructions that are ready to be scheduled. n_readyp is a pointer to the number of elements in the ready list. The scheduler reads the ready list in reverse order, starting with ready[*n_readyp-1] and going to ready[0]. clock is the timer tick of the scheduler. You may modify the ready list and the number of ready insns. The return value is the number of insns that can issue this cycle; normally this is just issue_rate. See also ‘TARGET_SCHED_REORDER2’.

— Target Hook: int TARGET_SCHED_REORDER2 (FILE *file, int verbose, rtx *ready, int *n_ready, clock)

Like ‘TARGET_SCHED_REORDER’, but called at a different time. That function is called whenever the scheduler starts a new cycle. This one is called once per iteration over a cycle, immediately after ‘TARGET_SCHED_VARIABLE_ISSUE’; it can reorder the ready list and return the number of insns to be scheduled in the same cycle. Defining this hook can be useful if there are frequent situations where scheduling one insn causes other insns to become ready in the same cycle. These other insns can then be taken into account properly.

— Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx head, rtx tail)

This hook is called after evaluation forward dependencies of insns in chain given by two parameter values (head and tail correspondingly) but before insns scheduling of the insn chain. For example, it can be used for better insn classification if it requires analysis of dependencies. This hook can use backward and forward dependencies of the insn scheduler because they are already calculated.

— Target Hook: void TARGET_SCHED_INIT (FILE *file, int verbose, int max_ready)

This hook is executed by the scheduler at the beginning of each block of instructions that are to be scheduled. file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n. max_ready is the maximum number of insns in the current scheduling region that can be live at the same time. This can be used to allocate scratch space if it is needed, e.g. by ‘TARGET_SCHED_REORDER’.

— Target Hook: void TARGET_SCHED_FINISH (FILE *file, int verbose)

This hook is executed by the scheduler at the end of each block of instructions that are to be scheduled. It can be used to perform cleanup of any actions done by the other scheduling hooks. file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n.

— Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *file, int verbose, int old_max_uid)

This hook is executed by the scheduler after function level initializations. file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n. old_max_uid is the maximum insn uid when scheduling begins.

— Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *file, int verbose)

This is the cleanup hook corresponding to TARGET_SCHED_INIT_GLOBAL. file is either a null pointer, or a stdio stream to write any debug output to. verbose is the verbose level provided by -fsched-verbose-n.

— Target Hook: int TARGET_SCHED_DFA_PRE_CYCLE_INSN (void)

The hook returns an RTL insn. The automaton state used in the pipeline hazard recognizer is changed as if the insn were scheduled when the new simulated processor cycle starts. Usage of the hook may simplify the automaton pipeline description for some VLIW processors. If the hook is defined, it is used only for the automaton based pipeline description. The default is not to change the state when the new simulated processor cycle starts.

— Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void)

The hook can be used to initialize data used by the previous hook.

— Target Hook: int TARGET_SCHED_DFA_POST_CYCLE_INSN (void)

The hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to changed the state as if the insn were scheduled when the new simulated processor cycle finishes.

— Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void)

The hook is analogous to ‘TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN’ but used to initialize data used by the previous hook.

— Target Hook: void TARGET_SCHED_DFA_PRE_CYCLE_ADVANCE (void)

The hook to notify target that the current simulated cycle is about to finish. The hook is analogous to ‘TARGET_SCHED_DFA_PRE_CYCLE_INSN’ but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough.

— Target Hook: void TARGET_SCHED_DFA_POST_CYCLE_ADVANCE (void)

The hook to notify target that new simulated cycle has just started. The hook is analogous to ‘TARGET_SCHED_DFA_POST_CYCLE_INSN’ but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough.

— Target Hook: int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD (void)

This hook controls better choosing an insn from the ready insn queue for the DFA-based insn scheduler. Usually the scheduler chooses the first insn from the queue. If the hook returns a positive value, an additional scheduler code tries all permutations of ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()’ subsequent ready insns to choose an insn whose issue will result in maximal number of issued insns on the same cycle. For the VLIW processor, the code could actually solve the problem of packing simple insns into the VLIW insn. Of course, if the rules of VLIW packing are described in the automaton.

This code also could be used for superscalar RISC processors. Let us consider a superscalar RISC processor with 3 pipelines. Some insns can be executed in pipelines A or B, some insns can be executed only in pipelines B or C, and one insn can be executed in pipeline B. The processor may issue the 1st insn into A and the 2nd one into B. In this case, the 3rd insn will wait for freeing B until the next cycle. If the scheduler issues the 3rd insn the first, the processor could issue all 3 insns per cycle.

Actually this code demonstrates advantages of the automaton based pipeline hazard recognizer. We try quickly and easy many insn schedules to choose the best one.

The default is no multipass scheduling.

— Target Hook: int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx)

This hook controls what insns from the ready insn queue will be considered for the multipass insn scheduling. If the hook returns zero for insn passed as the parameter, the insn will be not chosen to be issued.

The default is that any ready insns can be chosen to be issued.

— Target Hook: int TARGET_SCHED_DFA_NEW_CYCLE (FILE *, int, rtx, int, int, int *)

This hook is called by the insn scheduler before issuing insn passed as the third parameter on given cycle. If the hook returns nonzero, the insn is not issued on given processors cycle. Instead of that, the processor cycle is advanced. If the value passed through the last parameter is zero, the insn ready queue is not sorted on the new cycle start as usually. The first parameter passes file for debugging output. The second one passes the scheduler verbose level of the debugging output. The forth and the fifth parameter values are correspondingly processor cycle on which the previous insn has been issued and the current processor cycle.

— Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct dep_def *_dep, int cost, int distance)

This hook is used to define which dependences are considered costly by the target, so costly that it is not advisable to schedule the insns that are involved in the dependence too close to one another. The parameters to this hook are as follows: The first parameter _dep is the dependence being evaluated. The second parameter cost is the cost of the dependence, and the third parameter distance is the distance in cycles between the two insns. The hook returns true if considering the distance between the two insns the dependence between them is considered costly by the target, and false otherwise.

Defining this hook can be useful in multiple-issue out-of-order machines, where (a) it's practically hopeless to predict the actual data/resource delays, however: (b) there's a better chance to predict the actual grouping that will be formed, and (c) correctly emulating the grouping can be very important. In such targets one may want to allow issuing dependent insns closer to one another—i.e., closer than the dependence distance; however, not in cases of "costly dependences", which this hooks allows to define.

— Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void)

This hook is called by the insn scheduler after emitting a new instruction to the instruction stream. The hook notifies a target backend to extend its per instruction data structures.

— Target Hook: void * TARGET_SCHED_ALLOC_SCHED_CONTEXT (void)

Return a pointer to a store large enough to hold target scheduling context.

— Target Hook: void TARGET_SCHED_INIT_SCHED_CONTEXT (void *tc, bool clean_p)

Initialize store pointed to by tc to hold target scheduling context. It clean_p is true then initialize tc as if scheduler is at the beginning of the block. Otherwise, make a copy of the current context in tc.

— Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *tc)

Copy target scheduling context pointer to by tc to the current context.

— Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *tc)

Deallocate internal data in target scheduling context pointed to by tc.

— Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *tc)

Deallocate a store for target scheduling context pointed to by tc.

— Target Hook: void * TARGET_SCHED_ALLOC_SCHED_CONTEXT (void)

Return a pointer to a store large enough to hold target scheduling context.

— Target Hook: void TARGET_SCHED_INIT_SCHED_CONTEXT (void *tc, bool clean_p)

Initialize store pointed to by tc to hold target scheduling context. It clean_p is true then initialize tc as if scheduler is at the beginning of the block. Otherwise, make a copy of the current context in tc.

— Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *tc)

Copy target scheduling context pointer to by tc to the current context.

— Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *tc)

Deallocate internal data in target scheduling context pointed to by tc.

— Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *tc)

Deallocate a store for target scheduling context pointed to by tc.

— Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx insn, int request, rtx *new_pat)

This hook is called by the insn scheduler when insn has only speculative dependencies and therefore can be scheduled speculatively. The hook is used to check if the pattern of insn has a speculative version and, in case of successful check, to generate that speculative pattern. The hook should return 1, if the instruction has a speculative form, or -1, if it doesn't. request describes the type of requested speculation. If the return value equals 1 then new_pat is assigned the generated speculative pattern.

— Target Hook: int TARGET_SCHED_NEEDS_BLOCK_P (rtx insn)

This hook is called by the insn scheduler during generation of recovery code for insn. It should return nonzero, if the corresponding check instruction should branch to recovery code, or zero otherwise.

— Target Hook: rtx TARGET_SCHED_GEN_CHECK (rtx insn, rtx label, int mutate_p)

This hook is called by the insn scheduler to generate a pattern for recovery check instruction. If mutate_p is zero, then insn is a speculative instruction for which the check should be generated. label is either a label of a basic block, where recovery code should be emitted, or a null pointer, when requested check doesn't branch to recovery code (a simple check). If mutate_p is nonzero, then a pattern for a branchy check corresponding to a simple check denoted by insn should be generated. In this case label can't be null.

— Target Hook: int TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC (rtx insn)

This hook is used as a workaround for ‘TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD’ not being called on the first instruction of the ready list. The hook is used to discard speculative instruction that stand first in the ready list from being scheduled on the current cycle. For non-speculative instructions, the hook should always return nonzero. For example, in the ia64 backend the hook is used to cancel data speculative insns when the ALAT table is nearly full.

— Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (unsigned int *flags, spec_info_t spec_info)

This hook is used by the insn scheduler to find out what features should be enabled/used. flags initially may have either the SCHED_RGN or SCHED_EBB bit set. This denotes the scheduler pass for which the data should be provided. The target backend should modify flags by modifying the bits corresponding to the following features: USE_DEPS_LIST, USE_GLAT, DETACH_LIFE_INFO, and DO_SPECULATION. For the DO_SPECULATION feature an additional structure spec_info should be filled by the target. The structure describes speculation types that can be used in the scheduler.

— Target Hook: int TARGET_SCHED_SMS_RES_MII (struct ddg *g)

This hook is called by the swing modulo scheduler to calculate a resource-based lower bound which is based on the resources available in the machine and the resources required by each instruction. The target backend can use g to calculate such bound. A very simple lower bound will be used in case this hook is not implemented: the total number of instructions divided by the issue rate.


Next: , Previous: Scheduling, Up: Target Macros

17.19 Dividing the Output into Sections (Texts, Data, ...)

An object file is divided into sections containing different types of data. In the most common case, there are three sections: the text section, which holds instructions and read-only data; the data section, which holds initialized writable data; and the bss section, which holds uninitialized data. Some systems have other kinds of sections.

varasm.c provides several well-known sections, such as text_section, data_section and bss_section. The normal way of controlling a foo_section variable is to define the associated FOO_SECTION_ASM_OP macro, as described below. The macros are only read once, when varasm.c initializes itself, so their values must be run-time constants. They may however depend on command-line flags.

Note: Some run-time files, such crtstuff.c, also make use of the FOO_SECTION_ASM_OP macros, and expect them to be string literals.

Some assemblers require a different string to be written every time a section is selected. If your assembler falls into this category, you should define the TARGET_ASM_INIT_SECTIONS hook and use get_unnamed_section to set up the sections.

You must always create a text_section, either by defining TEXT_SECTION_ASM_OP or by initializing text_section in TARGET_ASM_INIT_SECTIONS. The same is true of data_section and DATA_SECTION_ASM_OP. If you do not create a distinct readonly_data_section, the default is to reuse text_section.

All the other varasm.c sections are optional, and are null if the target does not provide them.

— Macro: TEXT_SECTION_ASM_OP

A C expression whose value is a string, including spacing, containing the assembler operation that should precede instructions and read-only data. Normally "\t.text" is right.

— Macro: HOT_TEXT_SECTION_NAME

If defined, a C string constant for the name of the section containing most frequently executed functions of the program. If not defined, GCC will provide a default definition if the target supports named sections.

— Macro: UNLIKELY_EXECUTED_TEXT_SECTION_NAME

If defined, a C string constant for the name of the section containing unlikely executed functions in the program.

— Macro: DATA_SECTION_ASM_OP

A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as writable initialized data. Normally "\t.data" is right.

— Macro: SDATA_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialized, writable small data.

— Macro: READONLY_DATA_SECTION_ASM_OP

A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as read-only initialized data.

— Macro: BSS_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized global data. If not defined, and neither ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined, uninitialized global data will be output in the data section if -fno-common is passed, otherwise ASM_OUTPUT_COMMON will be used.

— Macro: SBSS_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized, writable small data.

— Macro: INIT_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. This section has no corresponding init_section variable; it is used entirely in runtime code.

— Macro: FINI_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as finalization code. If not defined, GCC will assume such a section does not exist. This section has no corresponding fini_section variable; it is used entirely in runtime code.

— Macro: INIT_ARRAY_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as part of the .init_array (or equivalent) section. If not defined, GCC will assume such a section does not exist. Do not define both this macro and INIT_SECTION_ASM_OP.

— Macro: FINI_ARRAY_SECTION_ASM_OP

If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as part of the .fini_array (or equivalent) section. If not defined, GCC will assume such a section does not exist. Do not define both this macro and FINI_SECTION_ASM_OP.

— Macro: CRT_CALL_STATIC_FUNCTION (section_op, function)

If defined, an ASM statement that switches to a different section via section_op, calls function, and switches back to the text section. This is used in crtstuff.c if INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls to initialization and finalization functions from the init and fini sections. By default, this macro uses a simple function call. Some ports need hand-crafted assembly code to avoid dependencies on registers initialized in the function prologue or to ensure that constant pools don't end up too far way in the text section.

— Macro: TARGET_LIBGCC_SDATA_SECTION

If defined, a string which names the section into which small variables defined in crtstuff and libgcc should go. This is useful when the target has options for optimizing access to small data, and you want the crtstuff and libgcc routines to be conservative in what they expect of your application yet liberal in what your application expects. For example, for targets with a .sdata section (like MIPS), you could compile crtstuff with -G 0 so that it doesn't require small data support from your application, but use this macro to put small data into .sdata so that your application can access these variables whether it uses small data or not.

— Macro: FORCE_CODE_SECTION_ALIGN

If defined, an ASM statement that aligns a code section to some arbitrary boundary. This is used to force all fragments of the .init and .fini sections to have to same alignment and thus prevent the linker from having to add any padding.

— Macro: JUMP_TABLES_IN_TEXT_SECTION

Define this macro to be an expression with a nonzero value if jump tables (for tablejump insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used.

This macro is irrelevant if there is no separate readonly data section.

— Target Hook: void TARGET_ASM_INIT_SECTIONS (void)

Define this hook if you need to do something special to set up the varasm.c sections, or if your target has some special sections of its own that you need to create.

GCC calls this hook after processing the command line, but before writing any assembly code, and before calling any of the section-returning hooks described below.

— Target Hook: TARGET_ASM_RELOC_RW_MASK (void)

Return a mask describing how relocations should be treated when selecting sections. Bit 1 should be set if global relocations should be placed in a read-write section; bit 0 should be set if local relocations should be placed in a read-write section.

The default version of this function returns 3 when -fpic is in effect, and 0 otherwise. The hook is typically redefined when the target cannot support (some kinds of) dynamic relocations in read-only sections even in executables.

— Target Hook: section * TARGET_ASM_SELECT_SECTION (tree exp, int reloc, unsigned HOST_WIDE_INT align)

Return the section into which exp should be placed. You can assume that exp is either a VAR_DECL node or a constant of some sort. reloc indicates whether the initial value of exp requires link-time relocations. Bit 0 is set when variable contains local relocations only, while bit 1 is set for global relocations. align is the constant alignment in bits.

The default version of this function takes care of putting read-only variables in readonly_data_section.

See also USE_SELECT_SECTION_FOR_FUNCTIONS.

— Macro: USE_SELECT_SECTION_FOR_FUNCTIONS

Define this macro if you wish TARGET_ASM_SELECT_SECTION to be called for FUNCTION_DECLs as well as for variables and constants.

In the case of a FUNCTION_DECL, reloc will be zero if the function has been determined to be likely to be called, and nonzero if it is unlikely to be called.

— Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree decl, int reloc)

Build up a unique section name, expressed as a STRING_CST node, and assign it to ‘DECL_SECTION_NAME (decl)’. As with TARGET_ASM_SELECT_SECTION, reloc indicates whether the initial value of exp requires link-time relocations.

The default version of this function appends the symbol name to the ELF section name that would normally be used for the symbol. For example, the function foo would be placed in .text.foo. Whatever the actual target object format, this is often good enough.

— Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree decl)

Return the readonly data section associated with ‘DECL_SECTION_NAME (decl)’. The default version of this function selects .gnu.linkonce.r.name if the function's section is .gnu.linkonce.t.name, .rodata.name if function is in .text.name, and the normal readonly-data section otherwise.

— Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode mode, rtx x, unsigned HOST_WIDE_INT align)

Return the section into which a constant x, of mode mode, should be placed. You can assume that x is some kind of constant in RTL. The argument mode is redundant except in the case of a const_int rtx. align is the constant alignment in bits.

The default version of this function takes care of putting symbolic constants in flag_pic mode in data_section and everything else in readonly_data_section.

— Target Hook: void TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree decl, tree id)

Define this hook if you need to postprocess the assembler name generated by target-independent code. The id provided to this hook will be the computed name (e.g., the macro DECL_NAME of the decl in C, or the mangled name of the decl in C++). The return value of the hook is an IDENTIFIER_NODE for the appropriate mangled name on your target system. The default implementation of this hook just returns the id provided.

— Target Hook: void TARGET_ENCODE_SECTION_INFO (tree decl, rtx rtl, int new_decl_p)

Define this hook if references to a symbol or a constant must be treated differently depending on something about the variable or function named by the symbol (such as what section it is in).

The hook is executed immediately after rtl has been created for decl, which may be a variable or function declaration or an entry in the constant pool. In either case, rtl is the rtl in question. Do not use DECL_RTL (decl) in this hook; that field may not have been initialized yet.

In the case of a constant, it is safe to assume that the rtl is a mem whose address is a symbol_ref. Most decls will also have this form, but that is not guaranteed. Global register variables, for instance, will have a reg for their rtl. (Normally the right thing to do with such unusual rtl is leave it alone.)

The new_decl_p argument will be true if this is the first time that TARGET_ENCODE_SECTION_INFO has been invoked on this decl. It will be false for subsequent invocations, which will happen for duplicate declarations. Whether or not anything must be done for the duplicate declaration depends on whether the hook examines DECL_ATTRIBUTES. new_decl_p is always true when the hook is called for a constant.

The usual thing for this hook to do is to record flags in the symbol_ref, using SYMBOL_REF_FLAG or SYMBOL_REF_FLAGS. Historically, the name string was modified if it was necessary to encode more than one bit of information, but this practice is now discouraged; use SYMBOL_REF_FLAGS.

The default definition of this hook, default_encode_section_info in varasm.c, sets a number of commonly-useful bits in SYMBOL_REF_FLAGS. Check whether the default does what you need before overriding it.

— Target Hook: const char *TARGET_STRIP_NAME_ENCODING (const char *name)

Decode name and return the real name part, sans the characters that TARGET_ENCODE_SECTION_INFO may have added.

— Target Hook: bool TARGET_IN_SMALL_DATA_P (tree exp)

Returns true if exp should be placed into a “small data” section. The default version of this hook always returns false.

— Variable: Target Hook bool TARGET_HAVE_SRODATA_SECTION

Contains the value true if the target places read-only “small data” into a separate section. The default value is false.

— Target Hook: bool TARGET_BINDS_LOCAL_P (tree exp)

Returns true if exp names an object for which name resolution rules must resolve to the current “module” (dynamic shared library or executable image).

The default version of this hook implements the name resolution rules for ELF, which has a looser model of global name binding than other currently supported object file formats.

— Variable: Target Hook bool TARGET_HAVE_TLS

Contains the value true if the target supports thread-local storage. The default value is false.


Next: , Previous: Sections, Up: Target Macros

17.20 Position Independent Code

This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as LEGITIMIZE_ADDRESS. You must modify the definition of ‘movsi’ to do something appropriate when the source operand contains a symbolic address. You may also need to alter the handling of switch statements so that they use relative addresses.

— Macro: PIC_OFFSET_TABLE_REGNUM

The register number of the register used to address a table of static data addresses in memory. In some cases this register is defined by a processor's “application binary interface” (ABI). When this macro is defined, RTL is generated for this register once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this register must be fixed when in use (e.g. when flag_pic is true).

— Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED

Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM is not defined.

— Macro: LEGITIMATE_PIC_OPERAND_P (x)

A C expression that is nonzero if x is a legitimate immediate operand on the target machine when generating position independent code. You can assume that x satisfies CONSTANT_P, so you need not check this. You can also assume flag_pic is true, so you need not check it either. You need not define this macro if all constants (including SYMBOL_REF) can be immediate operands when generating position independent code.


Next: , Previous: PIC, Up: Target Macros

17.21 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instructions in assembler language—rather than what the instructions do.


Next: , Up: Assembler Format

17.21.1 The Overall Framework of an Assembler File

This describes the overall framework of an assembly file.

— Target Hook: void TARGET_ASM_FILE_START ()

Output to asm_out_file any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's assembler is quite unusual, if you override the default, you should call default_file_start at some point in your target hook. This lets other target files rely on these variables.

— Target Hook: bool TARGET_ASM_FILE_START_APP_OFF

If this flag is true, the text of the macro ASM_APP_OFF will be printed as the very first line in the assembly file, unless -fverbose-asm is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal definition of ASM_APP_OFF, the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster.

The default is false. You should not set it to true unless you have verified that your port does not generate any extra whitespace or comments that will cause GAS to issue errors in NO_APP mode.

— Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE

If this flag is true, output_file_directive will be called for the primary source file, immediately after printing ASM_APP_OFF (if that is enabled). Most ELF assemblers expect this to be done. The default is false.

— Target Hook: void TARGET_ASM_FILE_END ()

Output to asm_out_file any text which the assembler expects to find at the end of a file. The default is to output nothing.

— Function: void file_end_indicate_exec_stack ()

Some systems use a common convention, the ‘.note.GNU-stack’ special section, to indicate whether or not an object file relies on the stack being executable. If your system uses this convention, you should define TARGET_ASM_FILE_END to this function. If you need to do other things in that hook, have your hook function call this function.

— Macro: ASM_COMMENT_START

A C string constant describing how to begin a comment in the target assembler language. The compiler assumes that the comment will end at the end of the line.

— Macro: ASM_APP_ON

A C string constant for text to be output before each asm statement or group of consecutive ones. Normally this is "#APP", which is a comment that has no effect on most assemblers but tells the GNU assembler that it must check the lines that follow for all valid assembler constructs.

— Macro: ASM_APP_OFF

A C string constant for text to be output after each asm statement or group of consecutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output.

— Macro: ASM_OUTPUT_SOURCE_FILENAME (stream, name)

A C statement to output COFF information or DWARF debugging information which indicates that filename name is the current source file to the stdio stream stream.

This macro need not be defined if the standard form of output for the file format in use is appropriate.

— Macro: OUTPUT_QUOTED_STRING (stream, string)

A C statement to output the string string to the stdio stream stream. If you do not call the function output_quoted_string in your config files, GCC will only call it to output filenames to the assembler source. So you can use it to canonicalize the format of the filename using this macro.

— Macro: ASM_OUTPUT_IDENT (stream, string)

A C statement to output something to the assembler file to handle a ‘#ident’ directive containing the text string. If this macro is not defined, nothing is output for a ‘#ident’ directive.

— Target Hook: void TARGET_ASM_NAMED_SECTION (const char *name, unsigned int flags, unsigned int align)

Output assembly directives to switch to section name. The section should have attributes as specified by flags, which is a bit mask of the SECTION_* flags defined in output.h. If align is nonzero, it contains an alignment in bytes to be used for the section, otherwise some target default should be used. Only targets that must specify an alignment within the section directive need pay attention to align – we will still use ASM_OUTPUT_ALIGN.

— Target Hook: bool TARGET_HAVE_NAMED_SECTIONS

This flag is true if the target supports TARGET_ASM_NAMED_SECTION.

— Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS

This flag is true if we can create zeroed data by switching to a BSS section and then using ASM_OUTPUT_SKIP to allocate the space. This is true on most ELF targets.

— Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree decl, const char *name, int reloc)

Choose a set of section attributes for use by TARGET_ASM_NAMED_SECTION based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. decl may be null, in which case read-write data should be assumed.

The default version of this function handles choosing code vs data, read-only vs read-write data, and flag_pic. You should only need to override this if your target has special flags that might be set via __attribute__.

— Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type type, const char * text)

Provides the target with the ability to record the gcc command line switches that have been passed to the compiler, and options that are enabled. The type argument specifies what is being recorded. It can take the following values:

SWITCH_TYPE_PASSED
text is a command line switch that has been set by the user.
SWITCH_TYPE_ENABLED
text is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the -O2 switch enables various different individual optimization passes.
SWITCH_TYPE_DESCRIPTIVE
text is either NULL or some descriptive text which should be ignored. If text is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time type is SWITCH_TYPE_DESCRIPTIVE and text is NULL, the warning is for start up and the second time the warning is for wind down. This feature is to allow the target hook to make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches.
SWITCH_TYPE_LINE_START
This option can be ignored by this target hook.
SWITCH_TYPE_LINE_END
This option can be ignored by this target hook.

The hook's return value must be zero. Other return values may be supported in the future.

By default this hook is set to NULL, but an example implementation is provided for ELF based targets. Called elf_record_gcc_switches, it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the TARGET_ASM_RECORD_GCC_SWITCHES_SECTION target hook.

— Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION

This is the name of the section that will be created by the example ELF implementation of the TARGET_ASM_RECORD_GCC_SWITCHES target hook.


Next: , Previous: File Framework, Up: Assembler Format

17.21.2 Output of Data

— Target Hook: const char * TARGET_ASM_BYTE_OP
— Target Hook: const char * TARGET_ASM_ALIGNED_HI_OP
— Target Hook: const char * TARGET_ASM_ALIGNED_SI_OP
— Target Hook: const char * TARGET_ASM_ALIGNED_DI_OP
— Target Hook: const char * TARGET_ASM_ALIGNED_TI_OP
— Target Hook: const char * TARGET_ASM_UNALIGNED_HI_OP
— Target Hook: const char * TARGET_ASM_UNALIGNED_SI_OP
— Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP
— Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP

These hooks specify assembly directives for creating certain kinds of integer object. The TARGET_ASM_BYTE_OP directive creates a byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an aligned two-byte object, and so on. Any of the hooks may be NULL, indicating that no suitable directive is available.

The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, the string should contain a tab, a pseudo-op, and then another tab.

— Target Hook: bool TARGET_ASM_INTEGER (rtx x, unsigned int size, int aligned_p)

The assemble_integer function uses this hook to output an integer object. x is the object's value, size is its size in bytes and aligned_p indicates whether it is aligned. The function should return true if it was able to output the object. If it returns false, assemble_integer will try to split the object into smaller parts.

The default implementation of this hook will use the TARGET_ASM_BYTE_OP family of strings, returning false when the relevant string is NULL.

— Macro: OUTPUT_ADDR_CONST_EXTRA (stream, x, fail)

A C statement to recognize rtx patterns that output_addr_const can't deal with, and output assembly code to stream corresponding to the pattern x. This may be used to allow machine-dependent UNSPECs to appear within constants.

If OUTPUT_ADDR_CONST_EXTRA fails to recognize a pattern, it must goto fail, so that a standard error message is printed. If it prints an error message itself, by calling, for example, output_operand_lossage, it may just complete normally.

— Macro: ASM_OUTPUT_ASCII (stream, ptr, len)

A C statement to output to the stdio stream stream an assembler instruction to assemble a string constant containing the len bytes at ptr. ptr will be a C expression of type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do not define the macro ASM_OUTPUT_ASCII.

— Macro: ASM_OUTPUT_FDESC (stream, decl, n)

A C statement to output word n of a function descriptor for decl. This must be defined if TARGET_VTABLE_USES_DESCRIPTORS is defined, and is otherwise unused.

— Macro: CONSTANT_POOL_BEFORE_FUNCTION

You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the constant pool for a function before the code for the function, or a zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function.

— Macro: ASM_OUTPUT_POOL_PROLOGUE (file, funname, fundecl, size)

A C statement to output assembler commands to define the start of the constant pool for a function. funname is a string giving the name of the function. Should the return type of the function be required, it can be obtained via fundecl. size is the size, in bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

— Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool, if it needs special treatment. (This macro need not do anything for RTL expressions that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on. x is the RTL expression for the constant to output, and mode is the machine mode (in case x is a ‘const_int’). align is the required alignment for the value x; you should output an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of this pool entry. The definition of this macro is responsible for outputting the label definition at the proper place. Here is how to do this:

          (*targetm.asm_out.internal_label) (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label jumpto. This will prevent the same pool entry from being output a second time in the usual manner.

You need not define this macro if it would do nothing.

— Macro: ASM_OUTPUT_POOL_EPILOGUE (file funname fundecl size)

A C statement to output assembler commands to at the end of the constant pool for a function. funname is a string giving the name of the function. Should the return type of the function be required, you can obtain it via fundecl. size is the size, in bytes, of the constant pool that GCC wrote immediately before this call.

If no constant-pool epilogue is required, the usual case, you need not define this macro.

— Macro: IS_ASM_LOGICAL_LINE_SEPARATOR (C, STR)

Define this macro as a C expression which is nonzero if C is used as a logical line separator by the assembler. STR points to the position in the string where C was found; this can be used if a line separator uses multiple characters.

If you do not define this macro, the default is that only the character ‘;’ is treated as a logical line separator.

— Target Hook: const char * TARGET_ASM_OPEN_PAREN
— Target Hook: const char * TARGET_ASM_CLOSE_PAREN

These target hooks are C string constants, describing the syntax in the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers.

These macros are provided by real.h for writing the definitions of ASM_OUTPUT_DOUBLE and the like:

— Macro: REAL_VALUE_TO_TARGET_SINGLE (x, l)
— Macro: REAL_VALUE_TO_TARGET_DOUBLE (x, l)
— Macro: REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)
— Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (x, l)
— Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (x, l)
— Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target's floating point representation, and store its bit pattern in the variable l. For REAL_VALUE_TO_TARGET_SINGLE and REAL_VALUE_TO_TARGET_DECIMAL32, this variable should be a simple long int. For the others, it should be an array of long int. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in each long int array element. Each array element holds 32 bits of the result, even if long int is wider than 32 bits on the host machine.

The array element values are designed so that you can print them out using fprintf in the order they should appear in the target machine's memory.


Next: , Previous: Data Output, Up: Assembler Format

17.21.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single uninitialized variable.

— Macro: ASM_OUTPUT_COMMON (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler definition of a common-label named name whose size is size bytes. The variable rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized common global variables are output.

— Macro: ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)

Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits.

— Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (stream, decl, name, size, alignment)

Like ASM_OUTPUT_ALIGNED_COMMON except that decl of the variable to be output, if there is one, or NULL_TREE if there is no corresponding variable. If you define this macro, GCC will use it in place of both ASM_OUTPUT_COMMON and ASM_OUTPUT_ALIGNED_COMMON. Define this macro when you need to see the variable's decl in order to chose what to output.

— Macro: ASM_OUTPUT_BSS (stream, decl, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler definition of uninitialized global decl named name whose size is size bytes. The variable rounded is the size rounded up to whatever alignment the caller wants.

Try to use function asm_output_bss defined in varasm.c when defining this macro. If unable, use the expression assemble_name (stream, name) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

There are two ways of handling global BSS. One is to define either this macro or its aligned counterpart, ASM_OUTPUT_ALIGNED_BSS. The other is to have TARGET_ASM_SELECT_SECTION return a switchable BSS section (see TARGET_HAVE_SWITCHABLE_BSS_SECTIONS). You do not need to do both.

Some languages do not have common data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file.

— Macro: ASM_OUTPUT_ALIGNED_BSS (stream, decl, name, size, alignment)

Like ASM_OUTPUT_BSS except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_BSS, and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits.

Try to use function asm_output_aligned_bss defined in file varasm.c when defining this macro.

— Macro: ASM_OUTPUT_LOCAL (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler definition of a local-common-label named name whose size is size bytes. The variable rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline.

This macro controls how the assembler definitions of uninitialized static variables are output.

— Macro: ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)

Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits.

— Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (stream, decl, name, size, alignment)

Like ASM_OUTPUT_ALIGNED_DECL except that decl of the variable to be output, if there is one, or NULL_TREE if there is no corresponding variable. If you define this macro, GCC will use it in place of both ASM_OUTPUT_DECL and ASM_OUTPUT_ALIGNED_DECL. Define this macro when you need to see the variable's decl in order to chose what to output.


Next: , Previous: Uninitialized Data, Up: Assembler Format

17.21.4 Output and Generation of Labels

This is about outputting labels.

— Macro: ASM_OUTPUT_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream the assembler definition of a label named name. Use the expression assemble_name (stream, name) to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems.

— Macro: ASM_OUTPUT_INTERNAL_LABEL (stream, name)

Identical to ASM_OUTPUT_LABEL, except that name is known to refer to a compiler-generated label. The default definition uses assemble_name_raw, which is like assemble_name except that it is more efficient.

— Macro: SIZE_ASM_OP

A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems that use ELF, the default (in config/elfos.h) is ‘"\t.size\t"’; on other systems, the default is not to define this macro.

Define this macro only if it is correct to use the default definitions of ASM_OUTPUT_SIZE_DIRECTIVE and ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro.

— Macro: ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size)

A C statement (sans semicolon) to output to the stdio stream stream a directive telling the assembler that the size of the symbol name is size. size is a HOST_WIDE_INT. If you define SIZE_ASM_OP, a default definition of this macro is provided.

— Macro: ASM_OUTPUT_MEASURED_SIZE (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream a directive telling the assembler to calculate the size of the symbol name by subtracting its address from the current address.

If you define SIZE_ASM_OP, a default definition of this macro is provided. The default assumes that the assembler recognizes a special ‘.’ symbol as referring to the current address, and can calculate the difference between this and another symbol. If your assembler does not recognize ‘.’ or cannot do calculations with it, you will need to redefine ASM_OUTPUT_MEASURED_SIZE to use some other technique.

— Macro: TYPE_ASM_OP

A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems that use ELF, the default (in config/elfos.h) is ‘"\t.type\t"’; on other systems, the default is not to define this macro.

Define this macro only if it is correct to use the default definition of ASM_OUTPUT_TYPE_DIRECTIVE for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro.

— Macro: TYPE_OPERAND_FMT

A C string which specifies (using printf syntax) the format of the second operand to TYPE_ASM_OP. On systems that use ELF, the default (in config/elfos.h) is ‘"@%s"’; on other systems, the default is not to define this macro.

Define this macro only if it is correct to use the default definition of ASM_OUTPUT_TYPE_DIRECTIVE for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro.

— Macro: ASM_OUTPUT_TYPE_DIRECTIVE (stream, type)

A C statement (sans semicolon) to output to the stdio stream stream a directive telling the assembler that the type of the symbol name is type. type is a C string; currently, that string is always either ‘"function"’ or ‘"object"’, but you should not count on this.

If you define TYPE_ASM_OP and TYPE_OPERAND_FMT, a default definition of this macro is provided.

— Macro: ASM_DECLARE_FUNCTION_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for declaring the name name of a function which is being defined. This macro is responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL). The argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

— Macro: ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for declaring the size of a function which is being defined. The argument name is the name of the function. The argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function size is not defined.

You may wish to use ASM_OUTPUT_MEASURED_SIZE in the definition of this macro.

— Macro: ASM_DECLARE_OBJECT_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for declaring the name name of an initialized variable which is being defined. This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The argument decl is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in the usual manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE and/or ASM_OUTPUT_SIZE_DIRECTIVE in the definition of this macro.

— Macro: ASM_DECLARE_CONSTANT_NAME (stream, name, exp, size)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for declaring the name name of a constant which is being defined. This macro is responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL). The argument exp is the value of the constant, and size is the size of the constant in bytes. name will be an internal label.

If this macro is not defined, then the name is defined in the usual manner as a label (by means of ASM_OUTPUT_LABEL).

You may wish to use ASM_OUTPUT_TYPE_DIRECTIVE in the definition of this macro.

— Macro: ASM_DECLARE_REGISTER_GLOBAL (stream, decl, regno, name)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for claiming a register regno for a global variable decl with name name.

If you don't define this macro, that is equivalent to defining it to do nothing.

— Macro: ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)

A C statement (sans semicolon) to finish up declaring a variable name once the compiler has processed its initializer fully and thus has had a chance to determine the size of an array when controlled by an initializer. This is used on systems where it's necessary to declare something about the size of the object.

If you don't define this macro, that is equivalent to defining it to do nothing.

You may wish to use ASM_OUTPUT_SIZE_DIRECTIVE and/or ASM_OUTPUT_MEASURED_SIZE in the definition of this macro.

— Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *stream, const char *name)

This target hook is a function to output to the stdio stream stream some commands that will make the label name global; that is, available for reference from other files.

The default implementation relies on a proper definition of GLOBAL_ASM_OP.

— Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *stream, tree decl)

This target hook is a function to output to the stdio stream stream some commands that will make the name associated with decl global; that is, available for reference from other files.

The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook.

— Macro: ASM_WEAKEN_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream some commands that will make the label name weak; that is, available for reference from other files but only used if no other definition is available. Use the expression assemble_name (stream, name) to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline.

If you don't define this macro or ASM_WEAKEN_DECL, GCC will not support weak symbols and you should not define the SUPPORTS_WEAK macro.

— Macro: ASM_WEAKEN_DECL (stream, decl, name, value)

Combines (and replaces) the function of ASM_WEAKEN_LABEL and ASM_OUTPUT_WEAK_ALIAS, allowing access to the associated function or variable decl. If value is not NULL, this C statement should output to the stdio stream stream assembler code which defines (equates) the weak symbol name to have the value value. If value is NULL, it should output commands to make name weak.

— Macro: ASM_OUTPUT_WEAKREF (stream, decl, name, value)

Outputs a directive that enables name to be used to refer to symbol value with weak-symbol semantics. decl is the declaration of name.

— Macro: SUPPORTS_WEAK

A C expression which evaluates to true if the target supports weak symbols.

If you don't define this macro, defaults.h provides a default definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define this macro if you want to control weak symbol support with a compiler flag such as -melf.

— Macro: MAKE_DECL_ONE_ONLY (decl)

A C statement (sans semicolon) to mark decl to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object file format provides support for this concept, such as the ‘COMDAT’ section flags in the Microsoft Windows PE/COFF format, and this support requires changes to decl, such as putting it in a separate section.

— Macro: SUPPORTS_ONE_ONLY

A C expression which evaluates to true if the target supports one-only semantics.

If you don't define this macro, varasm.c provides a default definition. If MAKE_DECL_ONE_ONLY is defined, the default definition is ‘1’; otherwise, it is ‘0’. Define this macro if you want to control one-only symbol support with a compiler flag, or if setting the DECL_ONE_ONLY flag is enough to mark a declaration to be emitted as one-only.

— Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree decl, const char *visibility)

This target hook is a function to output to asm_out_file some commands that will make the symbol(s) associated with decl have hidden, protected or internal visibility as specified by visibility.

— Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC

A C expression that evaluates to true if the target's linker expects that weak symbols do not appear in a static archive's table of contents. The default is 0.

Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would normally be weak (explicit template instantiations, and vtables for polymorphic classes with noninline key methods) will instead be nonweak.

The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where linker restrictions require weak symbols to be left out of a static archive's table of contents.

— Macro: ASM_OUTPUT_EXTERNAL (stream, decl, name)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary for declaring the name of an external symbol named name which is referenced in this compilation but not defined. The value of decl is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU assembler and most Unix assemblers don't require anything.

— Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx symref)

This target hook is a function to output to asm_out_file an assembler pseudo-op to declare a library function name external. The name of the library function is given by symref, which is a symbol_ref.

— Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (tree decl)

This target hook is a function to output to asm_out_file an assembler directive to annotate used symbol. Darwin target use .no_dead_code_strip directive.

— Macro: ASM_OUTPUT_LABELREF (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream a reference in assembler syntax to a label named name. This should add ‘_’ to the front of the name, if that is customary on your operating system, as it is in most Berkeley Unix systems. This macro is used in assemble_name.

— Macro: ASM_OUTPUT_SYMBOL_REF (stream, sym)

A C statement (sans semicolon) to output a reference to SYMBOL_REF sym. If not defined, assemble_name will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by TARGET_ENCODE_SECTION_INFO.

— Macro: ASM_OUTPUT_LABEL_REF (stream, buf)

A C statement (sans semicolon) to output a reference to buf, the result of ASM_GENERATE_INTERNAL_LABEL. If not defined, assemble_name will be used to output the name of the symbol. This macro is not used by output_asm_label, or the %l specifier that calls it; the intention is that this macro should be set when it is necessary to output a label differently when its address is being taken.

— Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *stream, const char *prefix, unsigned long labelno)

A function to output to the stdio stream stream a label whose name is made from the string prefix and the number labelno.

It is absolutely essential that these labels be distinct from the labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels.

It is desirable to exclude internal labels from the symbol table of the object file. Most assemblers have a naming convention for labels that should be excluded; on many systems, the letter ‘L’ at the beginning of a label has this effect. You should find out what convention your system uses, and follow it.

The default version of this function utilizes ASM_GENERATE_INTERNAL_LABEL.

— Macro: ASM_OUTPUT_DEBUG_LABEL (stream, prefix, num)

A C statement to output to the stdio stream stream a debug info label whose name is made from the string prefix and the number num. This is useful for VLIW targets, where debug info labels may need to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles.

If this macro is not defined, then (*targetm.asm_out.internal_label) will be used.

— Macro: ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)

A C statement to store into the string string a label whose name is made from the string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the output that (*targetm.asm_out.internal_label) would produce with the same prefix and num.

If the string begins with ‘*’, then assemble_name will output the rest of the string unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use ‘*’ in this way. If the string doesn't start with ‘*’, then ASM_OUTPUT_LABELREF gets to output the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part of your machine description, so you should know what it does on your machine.)

— Macro: ASM_FORMAT_PRIVATE_NAME (outvar, name, number)

A C expression to assign to outvar (which is a variable of type char *) a newly allocated string made from the string name and the number number, with some suitable punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an assembler label for an internal static variable whose name is name. Therefore, the string must be such as to result in valid assembler code. The argument number is different each time this macro is executed; it prevents conflicts between similarly-named internal static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow periods or percent signs in assembler symbols; putting at least one of these between the name and the number will suffice.

If this macro is not defined, a default definition will be provided which is correct for most systems.

— Macro: ASM_OUTPUT_DEF (stream, name, value)

A C statement to output to the stdio stream stream assembler code which defines (equates) the symbol name to have the value value.

If SET_ASM_OP is defined, a default definition is provided which is correct for most systems.

— Macro: ASM_OUTPUT_DEF_FROM_DECLS (stream, decl_of_name, decl_of_value)

A C statement to output to the stdio stream stream assembler code which defines (equates) the symbol whose tree node is decl_of_name to have the value of the tree node decl_of_value. This macro will be used in preference to ‘ASM_OUTPUT_DEF’ if it is defined and if the tree nodes are available.

If SET_ASM_OP is defined, a default definition is provided which is correct for most systems.

— Macro: TARGET_DEFERRED_OUTPUT_DEFS (decl_of_name, decl_of_value)

A C statement that evaluates to true if the assembler code which defines (equates) the symbol whose tree node is decl_of_name to have the value of the tree node decl_of_value should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by ‘ASM_OUTPUT_DEF’ and ‘ASM_OUTPUT_DEF_FROM_DECLS’.

— Macro: ASM_OUTPUT_WEAK_ALIAS (stream, name, value)

A C statement to output to the stdio stream stream assembler code which defines (equates) the weak symbol name to have the value value. If value is NULL, it defines name as an undefined weak symbol.

Define this macro if the target only supports weak aliases; define ASM_OUTPUT_DEF instead if possible.

— Macro: OBJC_GEN_METHOD_LABEL (buf, is_inst, class_name, cat_name, sel_name)

Define this macro to override the default assembler names used for Objective-C methods.

The default name is a unique method number followed by the name of the class (e.g. ‘_1_Foo’). For methods in categories, the name of the category is also included in the assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the method's selector is not present in the name. Therefore, particular systems define other ways of computing names.

buf is an expression of type char * which gives you a buffer in which to store the name; its length is as long as class_name, cat_name and sel_name put together, plus 50 characters extra.

The argument is_inst specifies whether the method is an instance method or a class method; class_name is the name of the class; cat_name is the name of the category (or NULL if the method is not in a category); and sel_name is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro to provide more human-readable names.

— Macro: ASM_DECLARE_CLASS_REFERENCE (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream commands to declare that the label name is an Objective-C class reference. This is only needed for targets whose linkers have special support for NeXT-style runtimes.

— Macro: ASM_DECLARE_UNRESOLVED_REFERENCE (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream commands to declare that the label name is an unresolved Objective-C class reference. This is only needed for targets whose linkers have special support for NeXT-style runtimes.


Next: , Previous: Label Output, Up: Assembler Format

17.21.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization routines)—functions to initialize data in the program when the program is started. These functions need to be called before the program is “started”—that is to say, before main is called.

Compiling some languages generates destructors (also called termination routines) that should be called when the program terminates.

To make the initialization and termination functions work, the compiler must output something in the assembler code to cause those functions to be called at the appropriate time. When you port the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization and termination functions. Each way has two variants. Much of the structure is common to all four variations.

The linker must build two lists of these functions—a list of initialization functions, called __CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a count of the function pointers after it, depending on the environment). This is followed by a series of zero or more function pointers to constructors (or destructors), followed by a function pointer containing zero.

Depending on the operating system and its executable file format, either crtstuff.c or libgcc2.c traverses these lists at startup time and exit time. Constructors are called in reverse order of the list; destructors in forward order.

The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates all these words into one contiguous ‘.ctors’ section. Termination functions are handled similarly.

This method will be chosen as the default by target-def.h if TARGET_ASM_NAMED_SECTION is defined. A target that does not support arbitrary sections, but does support special designated constructor and destructor sections may define CTORS_SECTION_ASM_OP and DTORS_SECTION_ASM_OP to achieve the same effect.

When arbitrary sections are available, there are two variants, depending upon how the code in crtstuff.c is called. On systems that support a .init section which is executed at program startup, parts of crtstuff.c are compiled into that section. The program is linked by the gcc driver like this:

     ld -o output_file crti.o crtbegin.o ... -lgcc crtend.o crtn.o

The prologue of a function (__init) appears in the .init section of crti.o; the epilogue appears in crtn.o. Likewise for the function __fini in the .fini section. Normally these files are provided by the operating system or by the GNU C library, but are provided by GCC for a few targets.

The objects crtbegin.o and crtend.o are (for most targets) compiled from crtstuff.c. They contain, among other things, code fragments within the .init and .fini sections that branch to routines in the .text section. The linker will pull all parts of a section together, which results in a complete __init function that invokes the routines we need at startup.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

If no init section is available, when GCC compiles any function called main (or more accurately, any function designated as a program entry point by the language front end calling expand_main_function), it inserts a procedure call to __main as the first executable code after the function prologue. The __main function is defined in libgcc2.c and runs the global constructors.

In file formats that don't support arbitrary sections, there are again two variants. In the simplest variant, the GNU linker (GNU ld) and an `a.out' format must be used. In this case, TARGET_ASM_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’, referencing the name __CTOR_LIST__, and with the address of the void function containing the initialization code as its value. The GNU linker recognizes this as a request to add the value to a set; the values are accumulated, and are eventually placed in the executable as a vector in the format described above, with a leading (ignored) count and a trailing zero element. TARGET_ASM_DESTRUCTOR is handled similarly. Since no init section is available, the absence of INIT_SECTION_ASM_OP causes the compilation of main to call __main as above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using file formats which the GNU linker does not support, such as `ECOFF'. In this case, TARGET_HAVE_CTORS_DTORS is false, initialization and termination functions are recognized simply by their names. This requires an extra program in the linkage step, called collect2. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called via __main as described above. In order to use this method, use_collect2 must be defined in the target in config.gcc.


Next: , Previous: Initialization, Up: Assembler Format

17.21.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination functions:

— Macro: INIT_SECTION_ASM_OP

If defined, a C string constant, including spacing, for the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls how crtstuff.c and libgcc2.c arrange to run the initialization functions.

— Macro: HAS_INIT_SECTION

If defined, main will not call __main as described above. This macro should be defined for systems that control start-up code on a symbol-by-symbol basis, such as OSF/1, and should not be defined explicitly for systems that support INIT_SECTION_ASM_OP.

— Macro: LD_INIT_SWITCH

If defined, a C string constant for a switch that tells the linker that the following symbol is an initialization routine.

— Macro: LD_FINI_SWITCH

If defined, a C string constant for a switch that tells the linker that the following symbol is a finalization routine.

— Macro: COLLECT_SHARED_INIT_FUNC (stream, func)

If defined, a C statement that will write a function that can be automatically called when a shared library is loaded. The function should call func, which takes no arguments. If not defined, and the object format requires an explicit initialization function, then a function called _GLOBAL__DI will be generated.

This function and the following one are used by collect2 when linking a shared library that needs constructors or destructors, or has DWARF2 exception tables embedded in the code.

— Macro: COLLECT_SHARED_FINI_FUNC (stream, func)

If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call func, which takes no arguments. If not defined, and the object format requires an explicit finalization function, then a function called _GLOBAL__DD will be generated.

— Macro: INVOKE__main

If defined, main will call __main despite the presence of INIT_SECTION_ASM_OP. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors.

— Macro: SUPPORTS_INIT_PRIORITY

If nonzero, the C++ init_priority attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an error message upon encountering an init_priority attribute.

— Target Hook: bool TARGET_HAVE_CTORS_DTORS

This value is true if the target supports some “native” method of collecting constructors and destructors to be run at startup and exit. It is false if we must use collect2.

— Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx symbol, int priority)

If defined, a function that outputs assembler code to arrange to call the function referenced by symbol at initialization time.

Assume that symbol is a SYMBOL_REF for a function taking no arguments and with no return value. If the target supports initialization priorities, priority is a value between 0 and MAX_INIT_PRIORITY; otherwise it must be DEFAULT_INIT_PRIORITY.

If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) the target defines CTORS_SECTION_ASM_OP, or (3) USE_COLLECT2 is not defined.

— Target Hook: void TARGET_ASM_DESTRUCTOR (rtx symbol, int priority)

This is like TARGET_ASM_CONSTRUCTOR but used for termination functions rather than initialization functions.

If TARGET_HAVE_CTORS_DTORS is true, the initialization routine generated for the generated object file will have static linkage.

If your system uses collect2 as the means of processing constructors, then that program normally uses nm to scan an object file for constructor functions to be called.

On certain kinds of systems, you can define this macro to make collect2 work faster (and, in some cases, make it work at all):

— Macro: OBJECT_FORMAT_COFF

Define this macro if the system uses COFF (Common Object File Format) object files, so that collect2 can assume this format and scan object files directly for dynamic constructor/destructor functions.

This macro is effective only in a native compiler; collect2 as part of a cross compiler always uses nm for the target machine.

— Macro: REAL_NM_FILE_NAME

Define this macro as a C string constant containing the file name to use to execute nm. The default is to search the path normally for nm.

If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define these macros to enable support for running initialization and termination functions in shared libraries:

— Macro: LDD_SUFFIX

Define this macro to a C string constant containing the name of the program which lists dynamic dependencies, like "ldd" under SunOS 4.

— Macro: PARSE_LDD_OUTPUT (ptr)

Define this macro to be C code that extracts filenames from the output of the program denoted by LDD_SUFFIX. ptr is a variable of type char * that points to the beginning of a line of output from LDD_SUFFIX. If the line lists a dynamic dependency, the code must advance ptr to the beginning of the filename on that line. Otherwise, it must set ptr to NULL.

— Macro: SHLIB_SUFFIX

Define this macro to a C string constant containing the default shared library extension of the target (e.g., ‘".so"’). collect2 strips version information after this suffix when generating global constructor and destructor names. This define is only needed on targets that use collect2 to process constructors and destructors.


Next: , Previous: Macros for Initialization, Up: Assembler Format

17.21.7 Output of Assembler Instructions

This describes assembler instruction output.

— Macro: REGISTER_NAMES

A C initializer containing the assembler's names for the machine registers, each one as a C string constant. This is what translates register numbers in the compiler into assembler language.

— Macro: ADDITIONAL_REGISTER_NAMES

If defined, a C initializer for an array of structures containing a name and a register number. This macro defines additional names for hard registers, thus allowing the asm option in declarations to refer to registers using alternate names.

— Macro: ASM_OUTPUT_OPCODE (stream, ptr)

Define this macro if you are using an unusual assembler that requires different names for the machine instructions.

The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream stream. The macro-operand ptr is a variable of type char * which points to the opcode name in its “internal” form—the form that is written in the machine description. The definition should output the opcode name to stream, performing any translation you desire, and increment the variable ptr to point at the end of the opcode so that it will not be output twice.

In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to process text that includes ‘%’-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment ptr over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the elements of recog_data.operand.

If the macro definition does nothing, the instruction is output in the usual way.

— Macro: FINAL_PRESCAN_INSN (insn, opvec, noperands)

If defined, a C statement to be executed just prior to the output of assembler code for insn, to modify the extracted operands so they will be output differently.

Here the argument opvec is the vector containing the operands extracted from insn, and noperands is the number of elements of the vector which contain meaningful data for this insn. The contents of this vector are what will be used to convert the insn template into assembler code, so you can change the assembler output by changing the contents of the vector.

This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ought to be handled by writing conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

— Macro: PRINT_OPERAND (stream, x, code)

A C compound statement to output to stdio stream stream the assembler syntax for an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. code comes from the ‘%’ specification that was used to request printing of the operand. If the specification was just ‘%digit’ then code is 0; if the specification was ‘%ltr digit’ then code is the ASCII code for ltr.

If x is a register, this macro should print the register's name. The names can be found in an array reg_names whose type is char *[]. reg_names is initialized from REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a punctuation character), this macro is called with a null pointer for x and the punctuation character for code.

— Macro: PRINT_OPERAND_PUNCT_VALID_P (code)

A C expression which evaluates to true if code is a valid punctuation character for use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no punctuation characters (except for the standard one, ‘%’) are used in this way.

— Macro: PRINT_OPERAND_ADDRESS (stream, x)

A C compound statement to output to stdio stream stream the assembler syntax for an instruction operand that is a memory reference whose address is x. x is an RTL expression.

On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the hook TARGET_ENCODE_SECTION_INFO to store the information into the symbol_ref, and then check for it here. See Assembler Format.

— Macro: DBR_OUTPUT_SEQEND (file)

A C statement, to be executed after all slot-filler instructions have been output. If necessary, call dbr_sequence_length to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever.

Don't define this macro if it has nothing to do, but it is helpful in reading assembly output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when the scheduling pass is not run, or when no slot fillers could be found.) The variable final_sequence is null when not processing a sequence, otherwise it contains the sequence rtx being output.

— Macro: REGISTER_PREFIX
— Macro: LOCAL_LABEL_PREFIX
— Macro: USER_LABEL_PREFIX
— Macro: IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options of asm_fprintf (see final.c). These are useful when a single md file must support multiple assembler formats. In that case, the various tm.h files can define these macros differently.

— Macro: ASM_FPRINTF_EXTENSIONS (file, argptr, format)

If defined this macro should expand to a series of case statements which will be parsed inside the switch statement of the asm_fprintf function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to target specific code. The output file is given by the parameter file. The varargs input pointer is argptr and the rest of the format string, starting the character after the one that is being switched upon, is pointed to by format.

— Macro: ASSEMBLER_DIALECT

If your target supports multiple dialects of assembler language (such as different opcodes), define this macro as a C expression that gives the numeric index of the assembler language dialect to use, with zero as the first variant.

If this macro is defined, you may use constructs of the form

{option0|option1|option2...}

in the output templates of patterns (see Output Template) or in the first argument of asm_fprintf. This construct outputs ‘option0’, ‘option1’, ‘option2’, etc., if the value of ASSEMBLER_DIALECT is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of ASSEMBLER_DIALECT, the construct outputs nothing.

If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any special meaning when used in templates or operands to asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX and IMMEDIATE_PREFIX if you can express the variations in assembler language syntax with that mechanism. Define ASSEMBLER_DIALECT and use the ‘{option0|option1}’ syntax if the syntax variant are larger and involve such things as different opcodes or operand order.

— Macro: ASM_OUTPUT_REG_PUSH (stream, regno)

A C expression to output to stream some assembler code which will push hard register number regno onto the stack. The code need not be optimal, since this macro is used only when profiling.

— Macro: ASM_OUTPUT_REG_POP (stream, regno)

A C expression to output to stream some assembler code which will pop hard register number regno off of the stack. The code need not be optimal, since this macro is used only when profiling.


Next: , Previous: Instruction Output, Up: Assembler Format

17.21.8 Output of Dispatch Tables

This concerns dispatch tables.

— Macro: ASM_OUTPUT_ADDR_DIFF_ELT (stream, body, value, rel)

A C statement to output to the stdio stream stream an assembler pseudo-instruction to generate a difference between two labels. value and rel are the numbers of two internal labels. The definitions of these labels are output using (*targetm.asm_out.internal_label), and they must be printed in the same way here. For example,

          fprintf (stream, "\t.word L%d-L%d\n",
                   value, rel)

You must provide this macro on machines where the addresses in a dispatch table are relative to the table's own address. If defined, GCC will also use this macro on all machines when producing PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that the mode and flags can be read.

— Macro: ASM_OUTPUT_ADDR_VEC_ELT (stream, value)

This macro should be provided on machines where the addresses in a dispatch table are absolute.

The definition should be a C statement to output to the stdio stream stream an assembler pseudo-instruction to generate a reference to a label. value is the number of an internal label whose definition is output using (*targetm.asm_out.internal_label). For example,

          fprintf (stream, "\t.word L%d\n", value)
— Macro: ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)

Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for (*targetm.asm_out.internal_label); the fourth argument is the jump-table which follows (a jump_insn containing an addr_vec or addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with (*targetm.asm_out.internal_label).

— Macro: ASM_OUTPUT_CASE_END (stream, num, table)

Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write the appropriate code to stdio stream stream. The argument table is the jump-table insn, and num is the label-number of the preceding label.

If this macro is not defined, nothing special is output at the end of the jump-table.

— Target Hook: void TARGET_ASM_EMIT_UNWIND_LABEL (stream, decl, for_eh, empty)

This target hook emits a label at the beginning of each FDE. It should be defined on targets where FDEs need special labels, and it should write the appropriate label, for the FDE associated with the function declaration decl, to the stdio stream stream. The third argument, for_eh, is a boolean: true if this is for an exception table. The fourth argument, empty, is a boolean: true if this is a placeholder label for an omitted FDE.

The default is that FDEs are not given nonlocal labels.

— Target Hook: void TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL (stream)

This target hook emits a label at the beginning of the exception table. It should be defined on targets where it is desirable for the table to be broken up according to function.

The default is that no label is emitted.

— Target Hook: void TARGET_UNWIND_EMIT (FILE * stream, rtx insn)

This target hook emits and assembly directives required to unwind the given instruction. This is only used when TARGET_UNWIND_INFO is set.


Next: , Previous: Dispatch Tables, Up: Assembler Format

17.21.9 Assembler Commands for Exception Regions

This describes commands marking the start and the end of an exception region.

— Macro: EH_FRAME_SECTION_NAME

If defined, a C string constant for the name of the section containing exception handling frame unwind information. If not defined, GCC will provide a default definition if the target supports named sections. crtstuff.c uses this macro to switch to the appropriate section.

You should define this symbol if your target supports DWARF 2 frame unwind information and the default definition does not work.

— Macro: EH_FRAME_IN_DATA_SECTION

If defined, DWARF 2 frame unwind information will be placed in the data section even though the target supports named sections. This might be necessary, for instance, if the system linker does garbage collection and sections cannot be marked as not to be collected.

Do not define this macro unless TARGET_ASM_NAMED_SECTION is also defined.

— Macro: EH_TABLES_CAN_BE_READ_ONLY

Define this macro to 1 if your target is such that no frame unwind information encoding used with non-PIC code will ever require a runtime relocation, but the linker may not support merging read-only and read-write sections into a single read-write section.

— Macro: MASK_RETURN_ADDR

An rtx used to mask the return address found via RETURN_ADDR_RTX, so that it does not contain any extraneous set bits in it.

— Macro: DWARF2_UNWIND_INFO

Define this macro to 0 if your target supports DWARF 2 frame unwind information, but it does not yet work with exception handling. Otherwise, if your target supports this information (if it defines ‘INCOMING_RETURN_ADDR_RTX’ and either ‘UNALIGNED_INT_ASM_OP’ or ‘OBJECT_FORMAT_ELF’), GCC will provide a default definition of 1.

If TARGET_UNWIND_INFO is defined, the target specific unwinder will be used in all cases. Defining this macro will enable the generation of DWARF 2 frame debugging information.

If TARGET_UNWIND_INFO is not defined, and this macro is defined to 1, the DWARF 2 unwinder will be the default exception handling mechanism; otherwise, the setjmp/longjmp-based scheme will be used by default.

— Macro: TARGET_UNWIND_INFO

Define this macro if your target has ABI specified unwind tables. Usually these will be output by TARGET_UNWIND_EMIT.

— Variable: Target Hook bool TARGET_UNWIND_TABLES_DEFAULT

This variable should be set to true if the target ABI requires unwinding tables even when exceptions are not used.

— Macro: MUST_USE_SJLJ_EXCEPTIONS

This macro need only be defined if DWARF2_UNWIND_INFO is runtime-variable. In that case, except.h cannot correctly determine the corresponding definition of MUST_USE_SJLJ_EXCEPTIONS, so the target must provide it directly.

— Macro: DONT_USE_BUILTIN_SETJMP

Define this macro to 1 if the setjmp/longjmp-based scheme should use the setjmp/longjmp functions from the C library instead of the __builtin_setjmp/__builtin_longjmp machinery.

— Macro: DWARF_CIE_DATA_ALIGNMENT

This macro need only be defined if the target might save registers in the function prologue at an offset to the stack pointer that is not aligned to UNITS_PER_WORD. The definition should be the negative minimum alignment if STACK_GROWS_DOWNWARD is defined, and the positive minimum alignment otherwise. See SDB and DWARF. Only applicable if the target supports DWARF 2 frame unwind information.

— Variable: Target Hook bool TARGET_TERMINATE_DW2_EH_FRAME_INFO

Contains the value true if the target should add a zero word onto the end of a Dwarf-2 frame info section when used for exception handling. Default value is false if EH_FRAME_SECTION_NAME is defined, and true otherwise.

— Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx reg)

Given a register, this hook should return a parallel of registers to represent where to find the register pieces. Define this hook if the register and its mode are represented in Dwarf in non-contiguous locations, or if the register should be represented in more than one register in Dwarf. Otherwise, this hook should return NULL_RTX. If not defined, the default is to return NULL_RTX.

— Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree address)

If some registers are represented in Dwarf-2 unwind information in multiple pieces, define this hook to fill in information about the sizes of those pieces in the table used by the unwinder at runtime. It will be called by expand_builtin_init_dwarf_reg_sizes after filling in a single size corresponding to each hard register; address is the address of the table.

— Target Hook: bool TARGET_ASM_TTYPE (rtx sym)

This hook is used to output a reference from a frame unwinding table to the type_info object identified by sym. It should return true if the reference was output. Returning false will cause the reference to be output using the normal Dwarf2 routines.

— Target Hook: bool TARGET_ARM_EABI_UNWINDER

This hook should be set to true on targets that use an ARM EABI based unwinding library, and false on other targets. This effects the format of unwinding tables, and how the unwinder in entered after running a cleanup. The default is false.


Previous: Exception Region Output, Up: Assembler Format

17.21.10 Assembler Commands for Alignment

This describes commands for alignment.

— Macro: JUMP_ALIGN (label)

The alignment (log base 2) to put in front of label, which is a common destination of jumps and has no fallthru incoming edge.

This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro.

Unless it's necessary to inspect the label parameter, it is better to set the variable align_jumps in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor the user's selection in align_jumps in a JUMP_ALIGN implementation.

— Macro: LABEL_ALIGN_AFTER_BARRIER (label)

The alignment (log base 2) to put in front of label, which follows a BARRIER.

This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro.

— Macro: LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP

The maximum number of bytes to skip when applying LABEL_ALIGN_AFTER_BARRIER. This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

— Macro: LOOP_ALIGN (label)

The alignment (log base 2) to put in front of label, which follows a NOTE_INSN_LOOP_BEG note.

This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do not currently define the macro.

Unless it's necessary to inspect the label parameter, it is better to set the variable align_loops in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor the user's selection in align_loops in a LOOP_ALIGN implementation.

— Macro: LOOP_ALIGN_MAX_SKIP

The maximum number of bytes to skip when applying LOOP_ALIGN. This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

— Macro: LABEL_ALIGN (label)

The alignment (log base 2) to put in front of label. If LABEL_ALIGN_AFTER_BARRIER / LOOP_ALIGN specify a different alignment, the maximum of the specified values is used.

Unless it's necessary to inspect the label parameter, it is better to set the variable align_labels in the target's OVERRIDE_OPTIONS. Otherwise, you should try to honor the user's selection in align_labels in a LABEL_ALIGN implementation.

— Macro: LABEL_ALIGN_MAX_SKIP

The maximum number of bytes to skip when applying LABEL_ALIGN. This works only if ASM_OUTPUT_MAX_SKIP_ALIGN is defined.

— Macro: ASM_OUTPUT_SKIP (stream, nbytes)

A C statement to output to the stdio stream stream an assembler instruction to advance the location counter by nbytes bytes. Those bytes should be zero when loaded. nbytes will be a C expression of type unsigned HOST_WIDE_INT.

— Macro: ASM_NO_SKIP_IN_TEXT

Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because it fails to put zeros in the bytes that are skipped. This is true on many Unix systems, where the pseudo–op to skip bytes produces no-op instructions rather than zeros when used in the text section.

— Macro: ASM_OUTPUT_ALIGN (stream, power)

A C statement to output to the stdio stream stream an assembler command to advance the location counter to a multiple of 2 to the power bytes. power will be a C expression of type int.

— Macro: ASM_OUTPUT_ALIGN_WITH_NOP (stream, power)

Like ASM_OUTPUT_ALIGN, except that the “nop” instruction is used for padding, if necessary.

— Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (stream, power, max_skip)

A C statement to output to the stdio stream stream an assembler command to advance the location counter to a multiple of 2 to the power bytes, but only if max_skip or fewer bytes are needed to satisfy the alignment request. power and max_skip will be a C expression of type int.


Next: , Previous: Assembler Format, Up: Target Macros

17.22 Controlling Debugging Information Format

This describes how to specify debugging information.


Next: , Up: Debugging Info

17.22.1 Macros Affecting All Debugging Formats

These macros affect all debugging formats.

— Macro: DBX_REGISTER_NUMBER (regno)

A C expression that returns the DBX register number for the compiler register number regno. In the default macro provided, the value of this expression will be regno itself. But sometimes there are some registers that the compiler knows about and DBX does not, or vice versa. In such cases, some register may need to have one number in the compiler and another for DBX.

If two registers have consecutive numbers inside GCC, and they can be used as a pair to hold a multiword value, then they must have consecutive numbers after renumbering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access such a pair, because they expect register pairs to be consecutive in their own numbering scheme.

If you find yourself defining DBX_REGISTER_NUMBER in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme.

— Macro: DEBUGGER_AUTO_OFFSET (x)

A C expression that returns the integer offset value for an automatic variable having address x (an RTL expression). The default computation assumes that x is based on the frame-pointer and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be eliminated when the -g options is used.

— Macro: DEBUGGER_ARG_OFFSET (offset, x)

A C expression that returns the integer offset value for an argument having address x (an RTL expression). The nominal offset is offset.

— Macro: PREFERRED_DEBUGGING_TYPE

A C expression that returns the type of debugging output GCC should produce when the user specifies just -g. Define this if you have arranged for GCC to support more than one format of debugging output. Currently, the allowable values are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, DWARF2_DEBUG, XCOFF_DEBUG, VMS_DEBUG, and VMS_AND_DWARF2_DEBUG.

When the user specifies -ggdb, GCC normally also uses the value of this macro to select the debugging output format, but with two exceptions. If DWARF2_DEBUGGING_INFO is defined, GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DEBUGGING_INFO is defined, GCC uses DBX_DEBUG.

The value of this macro only affects the default debugging output; the user can always get a specific type of output by using -gstabs, -gcoff, -gdwarf-2, -gxcoff, or -gvms.


Next: , Previous: All Debuggers, Up: Debugging Info

17.22.2 Specific Options for DBX Output

These are specific options for DBX output.

— Macro: DBX_DEBUGGING_INFO

Define this macro if GCC should produce debugging output for DBX in response to the -g option.

— Macro: XCOFF_DEBUGGING_INFO

Define this macro if GCC should produce XCOFF format debugging output in response to the -g option. This is a variant of DBX format.

— Macro: DEFAULT_GDB_EXTENSIONS

Define this macro to control whether GCC should by default generate GDB's extended version of DBX debugging information (assuming DBX-format debugging information is enabled at all). If you don't define the macro, the default is 1: always generate the extended information if there is any occasion to.

— Macro: DEBUG_SYMS_TEXT

Define this macro if all .stabs commands should be output while in the text section.

— Macro: ASM_STABS_OP

A C string constant, including spacing, naming the assembler pseudo op to use instead of "\t.stabs\t" to define an ordinary debugging symbol. If you don't define this macro, "\t.stabs\t" is used. This macro applies only to DBX debugging information format.

— Macro: ASM_STABD_OP

A C string constant, including spacing, naming the assembler pseudo op to use instead of "\t.stabd\t" to define a debugging symbol whose value is the current location. If you don't define this macro, "\t.stabd\t" is used. This macro applies only to DBX debugging information format.

— Macro: ASM_STABN_OP

A C string constant, including spacing, naming the assembler pseudo op to use instead of "\t.stabn\t" to define a debugging symbol with no name. If you don't define this macro, "\t.stabn\t" is used. This macro applies only to DBX debugging information format.

— Macro: DBX_NO_XREFS

Define this macro if DBX on your system does not support the construct ‘xstagname’. On some systems, this construct is used to describe a forward reference to a structure named tagname. On other systems, this construct is not supported at all.

— Macro: DBX_CONTIN_LENGTH

A symbol name in DBX-format debugging information is normally continued (split into two separate .stabs directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining this macro with the value zero. You can override the default splitting-length by defining this macro as an expression for the length you desire.

— Macro: DBX_CONTIN_CHAR

Normally continuation is indicated by adding a ‘\’ character to the end of a .stabs string when a continuation follows. To use a different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system.

— Macro: DBX_STATIC_STAB_DATA_SECTION

Define this macro if it is necessary to go to the data section before outputting the ‘.stabs’ pseudo-op for a non-global static variable.

— Macro: DBX_TYPE_DECL_STABS_CODE

The value to use in the “code” field of the .stabs directive for a typedef. The default is N_LSYM.

— Macro: DBX_STATIC_CONST_VAR_CODE

The value to use in the “code” field of the .stabs directive for a static variable located in the text section. DBX format does not provide any “right” way to do this. The default is N_FUN.

— Macro: DBX_REGPARM_STABS_CODE

The value to use in the “code” field of the .stabs directive for a parameter passed in registers. DBX format does not provide any “right” way to do this. The default is N_RSYM.

— Macro: DBX_REGPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily provide any way to do this. The default is 'P'.

— Macro: DBX_FUNCTION_FIRST

Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. Normally, in DBX format, the debugging information entirely follows the assembler code.

— Macro: DBX_BLOCKS_FUNCTION_RELATIVE

Define this macro, with value 1, if the value of a symbol describing the scope of a block (N_LBRAC or N_RBRAC) should be relative to the start of the enclosing function. Normally, GCC uses an absolute address.

— Macro: DBX_LINES_FUNCTION_RELATIVE

Define this macro, with value 1, if the value of a symbol indicating the current line number (N_SLINE) should be relative to the start of the enclosing function. Normally, GCC uses an absolute address.

— Macro: DBX_USE_BINCL

Define this macro if GCC should generate N_BINCL and N_EINCL stabs for included header files, as on Sun systems. This macro also directs GCC to output a type number as a pair of a file number and a type number within the file. Normally, GCC does not generate N_BINCL or N_EINCL stabs, and it outputs a single number for a type number.


Next: , Previous: DBX Options, Up: Debugging Info

17.22.3 Open-Ended Hooks for DBX Format

These are hooks for DBX format.

— Macro: DBX_OUTPUT_LBRAC (stream, name)

Define this macro to say how to output to stream the debugging information for the start of a scope level for variable names. The argument name is the name of an assembler symbol (for use with assemble_name) whose value is the address where the scope begins.

— Macro: DBX_OUTPUT_RBRAC (stream, name)

Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

— Macro: DBX_OUTPUT_NFUN (stream, lscope_label, decl)

Define this macro if the target machine requires special handling to output an N_FUN entry for the function decl.

— Macro: DBX_OUTPUT_SOURCE_LINE (stream, line, counter)

A C statement to output DBX debugging information before code for line number line of the current source file to the stdio stream stream. counter is the number of time the macro was invoked, including the current invocation; it is intended to generate unique labels in the assembly output.

This macro should not be defined if the default output is correct, or if it can be made correct by defining DBX_LINES_FUNCTION_RELATIVE.

— Macro: NO_DBX_FUNCTION_END

Some stabs encapsulation formats (in particular ECOFF), cannot handle the .stabs "",N_FUN,,0,0,Lscope-function-1 gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions.

— Macro: NO_DBX_BNSYM_ENSYM

Some assemblers cannot handle the .stabd BNSYM/ENSYM,0,0 gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions.


Next: , Previous: DBX Hooks, Up: Debugging Info

17.22.4 File Names in DBX Format

This describes file names in DBX format.

— Macro: DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)

A C statement to output DBX debugging information to the stdio stream stream, which indicates that file name is the main source file—the file specified as the input file for compilation. This macro is called only once, at the beginning of compilation.

This macro need not be defined if the standard form of output for DBX debugging information is appropriate.

It may be necessary to refer to a label equal to the beginning of the text section. You can use ‘assemble_name (stream, ltext_label_name)’ to do so. If you do this, you must also set the variable used_ltext_label_name to true.

— Macro: NO_DBX_MAIN_SOURCE_DIRECTORY

Define this macro, with value 1, if GCC should not emit an indication of the current directory for compilation and current source language at the beginning of the file.

— Macro: NO_DBX_GCC_MARKER

Define this macro, with value 1, if GCC should not emit an indication that this object file was compiled by GCC. The default is to emit an N_OPT stab at the beginning of every source file, with ‘gcc2_compiled.’ for the string and value 0.

— Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)

A C statement to output DBX debugging information at the end of compilation of the main source file name. Output should be written to the stdio stream stream.

If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines.

— Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END

Define this macro instead of defining DBX_OUTPUT_MAIN_SOURCE_FILE_END, if what needs to be output at the end of compilation is a N_SO stab with an empty string, whose value is the highest absolute text address in the file.


Next: , Previous: File Names and DBX, Up: Debugging Info

17.22.5 Macros for SDB and DWARF Output

Here are macros for SDB and DWARF output.

— Macro: SDB_DEBUGGING_INFO

Define this macro if GCC should produce COFF-style debugging output for SDB in response to the -g option.

— Macro: DWARF2_DEBUGGING_INFO

Define this macro if GCC should produce dwarf version 2 format debugging output in response to the -g option.

— Target Hook: int TARGET_DWARF_CALLING_CONVENTION (tree function)

Define this to enable the dwarf attribute DW_AT_calling_convention to be emitted for each function. Instead of an integer return the enum value for the DW_CC_ tag.

To support optional call frame debugging information, you must also define INCOMING_RETURN_ADDR_RTX and either set RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't.

— Macro: DWARF2_FRAME_INFO

Define this macro to a nonzero value if GCC should always output Dwarf 2 frame information. If DWARF2_UNWIND_INFO (see Exception Region Output is nonzero, GCC will output this information not matter how you define DWARF2_FRAME_INFO.

— Macro: DWARF2_ASM_LINE_DEBUG_INFO

Define this macro to be a nonzero value if the assembler can generate Dwarf 2 line debug info sections. This will result in much more compact line number tables, and hence is desirable if it works.

— Macro: ASM_OUTPUT_DWARF_DELTA (stream, size, label1, label2)

A C statement to issue assembly directives that create a difference lab1 minus lab2, using an integer of the given size.

— Macro: ASM_OUTPUT_DWARF_OFFSET (stream, size, label, section)

A C statement to issue assembly directives that create a section-relative reference to the given label, using an integer of the given size. The label is known to be defined in the given section.

— Macro: ASM_OUTPUT_DWARF_PCREL (stream, size, label)

A C statement to issue assembly directives that create a self-relative reference to the given label, using an integer of the given size.

— Target Hook: void TARGET_ASM_OUTPUT_DWARF_DTPREL (FILE *FILE, int size, rtx x)

If defined, this target hook is a function which outputs a DTP-relative reference to the given TLS symbol of the specified size.

— Macro: PUT_SDB_...

Define these macros to override the assembler syntax for the special SDB assembler directives. See sdbout.c for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself.

— Macro: SDB_DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro to be the delimiter to use (usually ‘\n’). It is not necessary to define a new set of PUT_SDB_op macros if this is the only change required.

— Macro: SDB_ALLOW_UNKNOWN_REFERENCES

Define this macro to allow references to unknown structure, union, or enumeration tags to be emitted. Standard COFF does not allow handling of unknown references, MIPS ECOFF has support for it.

— Macro: SDB_ALLOW_FORWARD_REFERENCES

Define this macro to allow references to structure, union, or enumeration tags that have not yet been seen to be handled. Some assemblers choke if forward tags are used, while some require it.

— Macro: SDB_OUTPUT_SOURCE_LINE (stream, line)

A C statement to output SDB debugging information before code for line number line of the current source file to the stdio stream stream. The default is to emit an .ln directive.


Previous: SDB and DWARF, Up: Debugging Info

17.22.6 Macros for VMS Debug Format

Here are macros for VMS debug format.

— Macro: VMS_DEBUGGING_INFO

Define this macro if GCC should produce debugging output for VMS in response to the -g option. The default behavior for VMS is to generate minimal debug info for a traceback in the absence of -g unless explicitly overridden with -g0. This behavior is controlled by OPTIMIZATION_OPTIONS and OVERRIDE_OPTIONS.


Next: , Previous: Debugging Info, Up: Target Macros

17.23 Cross Compilation and Floating Point

While all modern machines use twos-complement representation for integers, there are a variety of representations for floating point numbers. This means that in a cross-compiler the representation of floating point numbers in the compiled program may be different from that used in the machine doing the compilation.

Because different representation systems may offer different amounts of range and precision, all floating point constants must be represented in the target machine's format. Therefore, the cross compiler cannot safely use the host machine's floating point arithmetic; it must emulate the target's arithmetic. To ensure consistency, GCC always uses emulation to work with floating point values, even when the host and target floating point formats are identical.

The following macros are provided by real.h for the compiler to use. All parts of the compiler which generate or optimize floating-point calculations must use these macros. They may evaluate their operands more than once, so operands must not have side effects.

— Macro: REAL_VALUE_TYPE

The C data type to be used to hold a floating point value in the target machine's format. Typically this is a struct containing an array of HOST_WIDE_INT, but all code should treat it as an opaque quantity.

— Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE x, REAL_VALUE_TYPE y)

Compares for equality the two values, x and y. If the target floating point format supports negative zeroes and/or NaNs, ‘REAL_VALUES_EQUAL (-0.0, 0.0)’ is true, and ‘REAL_VALUES_EQUAL (NaN, NaN)’ is false.

— Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE x, REAL_VALUE_TYPE y)

Tests whether x is less than y.

— Macro: HOST_WIDE_INT REAL_VALUE_FIX (REAL_VALUE_TYPE x)

Truncates x to a signed integer, rounding toward zero.

— Macro: unsigned HOST_WIDE_INT REAL_VALUE_UNSIGNED_FIX (REAL_VALUE_TYPE x)

Truncates x to an unsigned integer, rounding toward zero. If x is negative, returns zero.

— Macro: REAL_VALUE_TYPE REAL_VALUE_ATOF (const char *string, enum machine_mode mode)

Converts string into a floating point number in the target machine's representation for mode mode. This routine can handle both decimal and hexadecimal floating point constants, using the syntax defined by the C language for both.

— Macro: int REAL_VALUE_NEGATIVE (REAL_VALUE_TYPE x)

Returns 1 if x is negative (including negative zero), 0 otherwise.

— Macro: int REAL_VALUE_ISINF (REAL_VALUE_TYPE x)

Determines whether x represents infinity (positive or negative).

— Macro: int REAL_VALUE_ISNAN (REAL_VALUE_TYPE x)

Determines whether x represents a “NaN” (not-a-number).

— Macro: void REAL_ARITHMETIC (REAL_VALUE_TYPE output, enum tree_code code, REAL_VALUE_TYPE x, REAL_VALUE_TYPE y)

Calculates an arithmetic operation on the two floating point values x and y, storing the result in output (which must be a variable).

The operation to be performed is specified by code. Only the following codes are supported: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR, MIN_EXPR.

If REAL_ARITHMETIC is asked to evaluate division by zero and the target's floating point format cannot represent infinity, it will call abort. Callers should check for this situation first, using MODE_HAS_INFINITIES. See Storage Layout.

— Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE x)

Returns the negative of the floating point value x.

— Macro: REAL_VALUE_TYPE REAL_VALUE_ABS (REAL_VALUE_TYPE x)

Returns the absolute value of x.

— Macro: REAL_VALUE_TYPE REAL_VALUE_TRUNCATE (REAL_VALUE_TYPE mode, enum machine_mode x)

Truncates the floating point value x to fit in mode. The return value is still a full-size REAL_VALUE_TYPE, but it has an appropriate bit pattern to be output as a floating constant whose precision accords with mode mode.

— Macro: void REAL_VALUE_TO_INT (HOST_WIDE_INT low, HOST_WIDE_INT high, REAL_VALUE_TYPE x)

Converts a floating point value x into a double-precision integer which is then stored into low and high. If the value is not integral, it is truncated.

— Macro: void REAL_VALUE_FROM_INT (REAL_VALUE_TYPE x, HOST_WIDE_INT low, HOST_WIDE_INT high, enum machine_mode mode)

Converts a double-precision integer found in low and high, into a floating point value which is then stored into x. The value is truncated to fit in mode mode.


Next: , Previous: Floating Point, Up: Target Macros

17.24 Mode Switching Instructions

The following macros control mode switching optimizations:

— Macro: OPTIMIZE_MODE_SWITCHING (entity)

Define this macro if the port needs extra instructions inserted for mode switching in an optimizing compilation.

For an example, the SH4 can perform both single and double precision floating point operations, but to perform a single precision operation, the FPSCR PR bit has to be cleared, while for a double precision operation, this bit has to be set. Changing the PR bit requires a general purpose register as a scratch register, hence these FPSCR sets have to be inserted before reload, i.e. you can't put this into instruction emitting or TARGET_MACHINE_DEPENDENT_REORG.

You can have multiple entities that are mode-switched, and select at run time which entities actually need it. OPTIMIZE_MODE_SWITCHING should return nonzero for any entity that needs mode-switching. If you define this macro, you also have to define NUM_MODES_FOR_MODE_SWITCHING, MODE_NEEDED, MODE_PRIORITY_TO_MODE and EMIT_MODE_SET. MODE_AFTER, MODE_ENTRY, and MODE_EXIT are optional.

— Macro: NUM_MODES_FOR_MODE_SWITCHING

If you define OPTIMIZE_MODE_SWITCHING, you have to define this as initializer for an array of integers. Each initializer element N refers to an entity that needs mode switching, and specifies the number of different modes that might need to be set for this entity. The position of the initializer in the initializer—starting counting at zero—determines the integer that is used to refer to the mode-switched entity in question. In macros that take mode arguments / yield a mode result, modes are represented as numbers 0 ... N − 1. N is used to specify that no mode switch is needed / supplied.

— Macro: MODE_NEEDED (entity, insn)

entity is an integer specifying a mode-switched entity. If OPTIMIZE_MODE_SWITCHING is defined, you must define this macro to return an integer value not larger than the corresponding element in NUM_MODES_FOR_MODE_SWITCHING, to denote the mode that entity must be switched into prior to the execution of insn.

— Macro: MODE_AFTER (mode, insn)

If this macro is defined, it is evaluated for every insn during mode switching. It determines the mode that an insn results in (if different from the incoming mode).

— Macro: MODE_ENTRY (entity)

If this macro is defined, it is evaluated for every entity that needs mode switching. It should evaluate to an integer, which is a mode that entity is assumed to be switched to at function entry. If MODE_ENTRY is defined then MODE_EXIT must be defined.

— Macro: MODE_EXIT (entity)

If this macro is defined, it is evaluated for every entity that needs mode switching. It should evaluate to an integer, which is a mode that entity is assumed to be switched to at function exit. If MODE_EXIT is defined then MODE_ENTRY must be defined.

— Macro: MODE_PRIORITY_TO_MODE (entity, n)

This macro specifies the order in which modes for entity are processed. 0 is the highest priority, NUM_MODES_FOR_MODE_SWITCHING[entity] - 1 the lowest. The value of the macro should be an integer designating a mode for entity. For any fixed entity, mode_priority_to_mode (entity, n) shall be a bijection in 0 ... num_modes_for_mode_switching[entity] - 1.

— Macro: EMIT_MODE_SET (entity, mode, hard_regs_live)

Generate one or more insns to set entity to mode. hard_reg_live is the set of hard registers live at the point where the insn(s) are to be inserted.


Next: , Previous: Mode Switching, Up: Target Macros

17.25 Defining target-specific uses of __attribute__

Target-specific attributes may be defined for functions, data and types. These are described using the following target hooks; they also need to be documented in extend.texi.

— Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE

If defined, this target hook points to an array of ‘struct attribute_spec’ (defined in tree.h) specifying the machine specific attributes for this target and some of the restrictions on the entities to which these attributes are applied and the arguments they take.

— Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (tree type1, tree type2)

If defined, this target hook is a function which returns zero if the attributes on type1 and type2 are incompatible, one if they are compatible, and two if they are nearly compatible (which causes a warning to be generated). If this is not defined, machine-specific attributes are supposed always to be compatible.

— Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree type)

If defined, this target hook is a function which assigns default attributes to newly defined type.

— Target Hook: tree TARGET_MERGE_TYPE_ATTRIBUTES (tree type1, tree type2)

Define this target hook if the merging of type attributes needs special handling. If defined, the result is a list of the combined TYPE_ATTRIBUTES of type1 and type2. It is assumed that comptypes has already been called and returned 1. This function may call merge_attributes to handle machine-independent merging.

— Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree olddecl, tree newdecl)

Define this target hook if the merging of decl attributes needs special handling. If defined, the result is a list of the combined DECL_ATTRIBUTES of olddecl and newdecl. newdecl is a duplicate declaration of olddecl. Examples of when this is needed are when one attribute overrides another, or when an attribute is nullified by a subsequent definition. This function may call merge_attributes to handle machine-independent merging.

If the only target-specific handling you require is ‘dllimport’ for Microsoft Windows targets, you should define the macro TARGET_DLLIMPORT_DECL_ATTRIBUTES to 1. The compiler will then define a function called merge_dllimport_decl_attributes which can then be defined as the expansion of TARGET_MERGE_DECL_ATTRIBUTES. You can also add handle_dll_attribute in the attribute table for your port to perform initial processing of the ‘dllimport’ and ‘dllexport’ attributes. This is done in i386/cygwin.h and i386/i386.c, for example.

— Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (tree decl)

decl is a variable or function with __attribute__((dllimport)) specified. Use this hook if the target needs to add extra validation checks to handle_dll_attribute.

— Macro: TARGET_DECLSPEC

Define this macro to a nonzero value if you want to treat __declspec(X) as equivalent to __attribute((X)). By default, this behavior is enabled only for targets that define TARGET_DLLIMPORT_DECL_ATTRIBUTES. The current implementation of __declspec is via a built-in macro, but you should not rely on this implementation detail.

— Target Hook: void TARGET_INSERT_ATTRIBUTES (tree node, tree *attr_ptr)

Define this target hook if you want to be able to add attributes to a decl when it is being created. This is normally useful for back ends which wish to implement a pragma by using the attributes which correspond to the pragma's effect. The node argument is the decl which is being created. The attr_ptr argument is a pointer to the attribute list for this decl. The list itself should not be modified, since it may be shared with other decls, but attributes may be chained on the head of the list and *attr_ptr modified to point to the new attributes, or a copy of the list may be made if further changes are needed.

— Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (tree fndecl)

This target hook returns true if it is ok to inline fndecl into the current function, despite its having target-specific attributes, false otherwise. By default, if a function has a target specific attribute attached to it, it will not be inlined.

— Target Hook: bool TARGET_VALID_OPTION_ATTRIBUTE_P (tree fndecl, tree name, tree args, int flags)

This hook is called to parse the attribute(option("...")), and it allows the function to set different target machine compile time options for the current function that might be different than the options specified on the command line. The hook should return true if the options are valid.

The hook should set the DECL_FUNCTION_SPECIFIC_TARGET field in the function declaration to hold a pointer to a target specific struct cl_target_option structure.

— Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *ptr)

This hook is called to save any additional target specific information in the struct cl_target_option structure for function specific options. See Option file format.

— Target Hook: void TARGET_OPTION_RESTORE (struct cl_target_option *ptr)

This hook is called to restore any additional target specific information in the struct cl_target_option structure for function specific options.

— Target Hook: void TARGET_OPTION_PRINT (struct cl_target_option *ptr)

This hook is called to print any additional target specific information in the struct cl_target_option structure for function specific options.

— Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (target args)

This target hook parses the options for #pragma GCC option to set the machine specific options for functions that occur later in the input stream. The options should be the same as handled by the TARGET_VALID_OPTION_ATTRIBUTE_P hook.

— Target Hook: bool TARGET_CAN_INLINE_P (tree caller, tree callee)

This target hook returns false if the caller function cannot inline callee, based on target specific information. By default, inlining is not allowed if the callee function has function specific target options and the caller does not use the same options.


Next: , Previous: Target Attributes, Up: Target Macros

17.26 Emulating TLS

For targets whose psABI does not provide Thread Local Storage via specific relocations and instruction sequences, an emulation layer is used. A set of target hooks allows this emulation layer to be configured for the requirements of a particular target. For instance the psABI may in fact specify TLS support in terms of an emulation layer.

The emulation layer works by creating a control object for every TLS object. To access the TLS object, a lookup function is provided which, when given the address of the control object, will return the address of the current thread's instance of the TLS object.

— Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS

Contains the name of the helper function that uses a TLS control object to locate a TLS instance. The default causes libgcc's emulated TLS helper function to be used.

— Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON

Contains the name of the helper function that should be used at program startup to register TLS objects that are implicitly initialized to zero. If this is NULL, all TLS objects will have explicit initializers. The default causes libgcc's emulated TLS registration function to be used.

— Target Hook: const char * TARGET_EMUTLS_VAR_SECTION

Contains the name of the section in which TLS control variables should be placed. The default of NULL allows these to be placed in any section.

— Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION

Contains the name of the section in which TLS initializers should be placed. The default of NULL allows these to be placed in any section.

— Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX

Contains the prefix to be prepended to TLS control variable names. The default of NULL uses a target-specific prefix.

— Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX

Contains the prefix to be prepended to TLS initializer objects. The default of NULL uses a target-specific prefix.

— Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree type, tree *name)

Specifies a function that generates the FIELD_DECLs for a TLS control object type. type is the RECORD_TYPE the fields are for and name should be filled with the structure tag, if the default of __emutls_object is unsuitable. The default creates a type suitable for libgcc's emulated TLS function.

— Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree var, tree decl, tree tmpl_addr)

Specifies a function that generates the CONSTRUCTOR to initialize a TLS control object. var is the TLS control object, decl is the TLS object and tmpl_addr is the address of the initializer. The default initializes libgcc's emulated TLS control object.

— Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED

Specifies whether the alignment of TLS control variable objects is fixed and should not be increased as some backends may do to optimize single objects. The default is false.

— Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS

Specifies whether a DWARF DW_OP_form_tls_address location descriptor may be used to describe emulated TLS control objects.


Next: , Previous: Emulated TLS, Up: Target Macros

17.27 Defining coprocessor specifics for MIPS targets.

The MIPS specification allows MIPS implementations to have as many as 4 coprocessors, each with as many as 32 private registers. GCC supports accessing these registers and transferring values between the registers and memory using asm-ized variables. For example:

       register unsigned int cp0count asm ("c0r1");
       unsigned int d;
     
       d = cp0count + 3;

(“c0r1” is the default name of register 1 in coprocessor 0; alternate names may be added as described below, or the default names may be overridden entirely in SUBTARGET_CONDITIONAL_REGISTER_USAGE.)

Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved even if it does not appear that the register is used again later in the function.

Another note: according to the MIPS spec, coprocessor 1 (if present) is the FPU. One accesses COP1 registers through standard mips floating-point support; they are not included in this mechanism.

There is one macro used in defining the MIPS coprocessor interface which you may want to override in subtargets; it is described below.

— Macro: ALL_COP_ADDITIONAL_REGISTER_NAMES

A comma-separated list (with leading comma) of pairs describing the alternate names of coprocessor registers. The format of each entry should be

          { alternatename, register_number}

Default: empty.


Next: , Previous: MIPS Coprocessors, Up: Target Macros

17.28 Parameters for Precompiled Header Validity Checking

— Target Hook: void *TARGET_GET_PCH_VALIDITY (size_t *sz)

This hook returns the data needed by TARGET_PCH_VALID_P and sets ‘*sz’ to the size of the data in bytes.

— Target Hook: const char *TARGET_PCH_VALID_P (const void *data, size_t sz)

This hook checks whether the options used to create a PCH file are compatible with the current settings. It returns NULL if so and a suitable error message if not. Error messages will be presented to the user and must be localized using ‘_(msg)’.

data is the data that was returned by TARGET_GET_PCH_VALIDITY when the PCH file was created and sz is the size of that data in bytes. It's safe to assume that the data was created by the same version of the compiler, so no format checking is needed.

The default definition of default_pch_valid_p should be suitable for most targets.

— Target Hook: const char *TARGET_CHECK_PCH_TARGET_FLAGS (int pch_flags)

If this hook is nonnull, the default implementation of TARGET_PCH_VALID_P will use it to check for compatible values of target_flags. pch_flags specifies the value that target_flags had when the PCH file was created. The return value is the same as for TARGET_PCH_VALID_P.


Next: , Previous: PCH Target, Up: Target Macros

17.29 C++ ABI parameters

— Target Hook: tree TARGET_CXX_GUARD_TYPE (void)

Define this hook to override the integer type used for guard variables. These are used to implement one-time construction of static objects. The default is long_long_integer_type_node.

— Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void)

This hook determines how guard variables are used. It should return false (the default) if first byte should be used. A return value of true indicates the least significant bit should be used.

— Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree type)

This hook returns the size of the cookie to use when allocating an array whose elements have the indicated type. Assumes that it is already known that a cookie is needed. The default is max(sizeof (size_t), alignof(type)), as defined in section 2.7 of the IA64/Generic C++ ABI.

— Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void)

This hook should return true if the element size should be stored in array cookies. The default is to return false.

— Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree type, int import_export)

If defined by a backend this hook allows the decision made to export class type to be overruled. Upon entry import_export will contain 1 if the class is going to be exported, −1 if it is going to be imported and 0 otherwise. This function should return the modified value and perform any other actions necessary to support the backend's targeted operating system.

— Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void)

This hook should return true if constructors and destructors return the address of the object created/destroyed. The default is to return false.

— Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void)

This hook returns true if the key method for a class (i.e., the method which, if defined in the current translation unit, causes the virtual table to be emitted) may be an inline function. Under the standard Itanium C++ ABI the key method may be an inline function so long as the function is not declared inline in the class definition. Under some variants of the ABI, an inline function can never be the key method. The default is to return true.

— Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree decl)

decl is a virtual table, virtual table table, typeinfo object, or other similar implicit class data object that will be emitted with external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook to set DECL_VISIBILITY and DECL_VISIBILITY_SPECIFIED.

— Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void)

This hook returns true (the default) if virtual tables and other similar implicit class data objects are always COMDAT if they have external linkage. If this hook returns false, then class data for classes whose virtual table will be emitted in only one translation unit will not be COMDAT.

— Target Hook: bool TARGET_CXX_LIBRARY_RTTI_COMDAT (void)

This hook returns true (the default) if the RTTI information for the basic types which is defined in the C++ runtime should always be COMDAT, false if it should not be COMDAT.

— Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void)

This hook returns true if __aeabi_atexit (as defined by the ARM EABI) should be used to register static destructors when -fuse-cxa-atexit is in effect. The default is to return false to use __cxa_atexit.

— Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void)

This hook returns true if the target atexit function can be used in the same manner as __cxa_atexit to register C++ static destructors. This requires that atexit-registered functions in shared libraries are run in the correct order when the libraries are unloaded. The default is to return false.

— Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree type)

type is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just been defined. Use this hook to make adjustments to the class (eg, tweak visibility or perform any other required target modifications).


Previous: C++ ABI, Up: Target Macros

17.30 Miscellaneous Parameters

Here are several miscellaneous parameters.

— Macro: HAS_LONG_COND_BRANCH

Define this boolean macro to indicate whether or not your architecture has conditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot and cold basic blocks into separate sections of the executable. If this macro is set to false, gcc will convert any conditional branches that attempt to cross between sections into unconditional branches or indirect jumps.

— Macro: HAS_LONG_UNCOND_BRANCH

Define this boolean macro to indicate whether or not your architecture has unconditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot and cold basic blocks into separate sections of the executable. If this macro is set to false, gcc will convert any unconditional branches that attempt to cross between sections into indirect jumps.

— Macro: CASE_VECTOR_MODE

An alias for a machine mode name. This is the machine mode that elements of a jump-table should have.

— Macro: CASE_VECTOR_SHORTEN_MODE (min_offset, max_offset, body)

Optional: return the preferred mode for an addr_diff_vec when the minimum and maximum offset are known. If you define this, it enables extra code in branch shortening to deal with addr_diff_vec. To make this work, you also have to define INSN_ALIGN and make the alignment for addr_diff_vec explicit. The body argument is provided so that the offset_unsigned and scale flags can be updated.

— Macro: CASE_VECTOR_PC_RELATIVE

Define this macro to be a C expression to indicate when jump-tables should contain relative addresses. You need not define this macro if jump-tables never contain relative addresses, or jump-tables should contain relative addresses only when -fPIC or -fPIC is in effect.

— Macro: CASE_VALUES_THRESHOLD

Define this to be the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a casesi instruction and five otherwise. This is best for most machines.

— Macro: CASE_USE_BIT_TESTS

Define this macro to be a C expression to indicate whether C switch statements may be implemented by a sequence of bit tests. This is advantageous on processors that can efficiently implement left shift of 1 by the number of bits held in a register, but inappropriate on targets that would require a loop. By default, this macro returns true if the target defines an ashlsi3 pattern, and false otherwise.

— Macro: WORD_REGISTER_OPERATIONS

Define this macro if operations between registers with integral mode smaller than a word are always performed on the entire register. Most RISC machines have this property and most CISC machines do not.

— Macro: LOAD_EXTEND_OP (mem_mode)

Define this macro to be a C expression indicating when insns that read memory in mem_mode, an integral mode narrower than a word, set the bits outside of mem_mode to be either the sign-extension or the zero-extension of the data read. Return SIGN_EXTEND for values of mem_mode for which the insn sign-extends, ZERO_EXTEND for which it zero-extends, and UNKNOWN for other modes.

This macro is not called with mem_mode non-integral or with a width greater than or equal to BITS_PER_WORD, so you may return any value in this case. Do not define this macro if it would always return UNKNOWN. On machines where this macro is defined, you will normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.

You may return a non-UNKNOWN value even if for some hard registers the sign extension is not performed, if for the REGNO_REG_CLASS of these hard registers CANNOT_CHANGE_MODE_CLASS returns nonzero when the from mode is mem_mode and the to mode is any integral mode larger than this but not larger than word_mode.

You must return UNKNOWN if for some hard registers that allow this mode, CANNOT_CHANGE_MODE_CLASS says that they cannot change to word_mode, but that they can change to another integral mode that is larger then mem_mode but still smaller than word_mode.

— Macro: SHORT_IMMEDIATES_SIGN_EXTEND

Define this macro if loading short immediate values into registers sign extends.

— Macro: FIXUNS_TRUNC_LIKE_FIX_TRUNC

Define this macro if the same instructions that convert a floating point number to a signed fixed point number also convert validly to an unsigned one.

— Target Hook: int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine_mode mode)

When -ffast-math is in effect, GCC tries to optimize divisions by the same divisor, by turning them into multiplications by the reciprocal. This target hook specifies the minimum number of divisions that should be there for GCC to perform the optimization for a variable of mode mode. The default implementation returns 3 if the machine has an instruction for the division, and 2 if it does not.

— Macro: MOVE_MAX

The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory locations.

— Macro: MAX_MOVE_MAX

The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory locations. If this is undefined, the default is MOVE_MAX. Otherwise, it is the constant value that is the largest value that MOVE_MAX can have at run-time.

— Macro: SHIFT_COUNT_TRUNCATED

A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to the number of bits needed to represent the size of the object being shifted. When this macro is nonzero, the compiler will assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise `and' instructions that truncates the count of a shift operation. On machines that have instructions that act on bit-fields at variable positions, which may include `bit test' instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations of the values that serve as arguments to bit-field instructions.

If both types of instructions truncate the count (for shifts) and position (for bit-field operations), or if no variable-position bit-field instructions exist, you should define this macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the md file that include the implied truncation of the shift instructions.

You need not define this macro if it would always have the value of zero.

— Target Hook: int TARGET_SHIFT_TRUNCATION_MASK (enum machine_mode mode)

This function describes how the standard shift patterns for mode deal with shifts by negative amounts or by more than the width of the mode. See shift patterns.

On many machines, the shift patterns will apply a mask m to the shift count, meaning that a fixed-width shift of x by y is equivalent to an arbitrary-width shift of x by y & m. If this is true for mode mode, the function should return m, otherwise it should return 0. A return value of 0 indicates that no particular behavior is guaranteed.

Note that, unlike SHIFT_COUNT_TRUNCATED, this function does not apply to general shift rtxes; it applies only to instructions that are generated by the named shift patterns.

The default implementation of this function returns GET_MODE_BITSIZE (mode) - 1 if SHIFT_COUNT_TRUNCATED and 0 otherwise. This definition is always safe, but if SHIFT_COUNT_TRUNCATED is false, and some shift patterns nevertheless truncate the shift count, you may get better code by overriding it.

— Macro: TRULY_NOOP_TRUNCATION (outprec, inprec)

A C expression which is nonzero if on this machine it is safe to “convert” an integer of inprec bits to one of outprec bits (where outprec is smaller than inprec) by merely operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which MODES_TIEABLE_P is 0, suboptimal code can result. If this is the case, making TRULY_NOOP_TRUNCATION return 0 in such cases may improve things.

— Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode mode, enum machine_mode rep_mode)

The representation of an integral mode can be such that the values are always extended to a wider integral mode. Return SIGN_EXTEND if values of mode are represented in sign-extended form to rep_mode. Return UNKNOWN otherwise. (Currently, none of the targets use zero-extended representation this way so unlike LOAD_EXTEND_OP, TARGET_MODE_REP_EXTENDED is expected to return either SIGN_EXTEND or UNKNOWN. Also no target extends mode to mode_rep so that mode_rep is not the next widest integral mode and currently we take advantage of this fact.)

Similarly to LOAD_EXTEND_OP you may return a non-UNKNOWN value even if the extension is not performed on certain hard registers as long as for the REGNO_REG_CLASS of these hard registers CANNOT_CHANGE_MODE_CLASS returns nonzero.

Note that TARGET_MODE_REP_EXTENDED and LOAD_EXTEND_OP describe two related properties. If you define TARGET_MODE_REP_EXTENDED (mode, word_mode) you probably also want to define LOAD_EXTEND_OP (mode) to return the same type of extension.

In order to enforce the representation of mode, TRULY_NOOP_TRUNCATION should return false when truncating to mode.

— Macro: STORE_FLAG_VALUE

A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag instruction (‘scond’) when the condition is true. This description must apply to all the ‘scond’ patterns and all the comparison operators whose results have a MODE_INT mode.

A value of 1 or −1 means that the instruction implementing the comparison operator returns exactly 1 or −1 when the comparison is true and 0 when the comparison is false. Otherwise, the value indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first operand in the ‘scond’ pattern. Either the low bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those bits are used by the compiler.

If STORE_FLAG_VALUE is neither 1 or −1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators return an SImode value and where STORE_FLAG_VALUE is defined as ‘0x80000000’, saying that just the sign bit is relevant, the expression

          (ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to

          (ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true value, but does not guarantee the value of any other bits, but we do not know of any machine that has such an instruction. If you are trying to port GCC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know at gcc@gcc.gnu.org.

Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_VALUE, and hence the instructions to be used:

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching

          (set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code values with less instructions than the corresponding ‘scond’ insn followed by and or plus. On those machines, define the appropriate patterns. Use the names incscc and decscc, respectively, for the patterns which perform plus or minus operations on condition code values. See rs6000.md for some examples. The GNU Superoptizer can be used to find such instruction sequences on other machines.

If this macro is not defined, the default value, 1, is used. You need not define STORE_FLAG_VALUE if the machine has no store-flag instructions, or if the value generated by these instructions is 1.

— Macro: FLOAT_STORE_FLAG_VALUE (mode)

A C expression that gives a nonzero REAL_VALUE_TYPE value that is returned when comparison operators with floating-point results are true. Define this macro on machines that have comparison operations that return floating-point values. If there are no such operations, do not define this macro.

— Macro: VECTOR_STORE_FLAG_VALUE (mode)

A C expression that gives a rtx representing the nonzero true element for vector comparisons. The returned rtx should be valid for the inner mode of mode which is guaranteed to be a vector mode. Define this macro on machines that have vector comparison operations that return a vector result. If there are no such operations, do not define this macro. Typically, this macro is defined as const1_rtx or constm1_rtx. This macro may return NULL_RTX to prevent the compiler optimizing such vector comparison operations for the given mode.

— Macro: CLZ_DEFINED_VALUE_AT_ZERO (mode, value)
— Macro: CTZ_DEFINED_VALUE_AT_ZERO (mode, value)

A C expression that indicates whether the architecture defines a value for clz or ctz with a zero operand. A result of 0 indicates the value is undefined. If the value is defined for only the RTL expression, the macro should evaluate to 1; if the value applies also to the corresponding optab entry (which is normally the case if it expands directly into the corresponding RTL), then the macro should evaluate to 2. In the cases where the value is defined, value should be set to this value.

If this macro is not defined, the value of clz or ctz at zero is assumed to be undefined.

This macro must be defined if the target's expansion for ffs relies on a particular value to get correct results. Otherwise it is not necessary, though it may be used to optimize some corner cases, and to provide a default expansion for the ffs optab.

Note that regardless of this macro the “definedness” of clz and ctz at zero do not extend to the builtin functions visible to the user. Thus one may be free to adjust the value at will to match the target expansion of these operations without fear of breaking the API.

— Macro: Pmode

An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a hardware pointer; SImode on 32-bit machine or DImode on 64-bit machines. On some machines you must define this to be one of the partial integer modes, such as PSImode.

The width of Pmode must be at least as large as the value of POINTER_SIZE. If it is not equal, you must define the macro POINTERS_EXTEND_UNSIGNED to specify how pointers are extended to Pmode.

— Macro: FUNCTION_MODE

An alias for the machine mode used for memory references to functions being called, in call RTL expressions. On most CISC machines, where an instruction can begin at any byte address, this should be QImode. On most RISC machines, where all instructions have fixed size and alignment, this should be a mode with the same size and alignment as the machine instruction words - typically SImode or HImode.

— Macro: STDC_0_IN_SYSTEM_HEADERS

In normal operation, the preprocessor expands __STDC__ to the constant 1, to signify that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system compiler uses a different convention, where __STDC__ is normally 0, but is 1 if the user specifies strict conformance to the C Standard.

Defining STDC_0_IN_SYSTEM_HEADERS makes GNU CPP follows the host convention when processing system header files, but when processing user files __STDC__ will always expand to 1.

— Macro: NO_IMPLICIT_EXTERN_C

Define this macro if the system header files support C++ as well as C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are enclosed in ‘extern "C" {...}’.

— Macro: REGISTER_TARGET_PRAGMAS ()

Define this macro if you want to implement any target-specific pragmas. If defined, it is a C expression which makes a series of calls to c_register_pragma or c_register_pragma_with_expansion for each pragma. The macro may also do any setup required for the pragmas.

The primary reason to define this macro is to provide compatibility with other compilers for the same target. In general, we discourage definition of target-specific pragmas for GCC.

If the pragma can be implemented by attributes then you should consider defining the target hook ‘TARGET_INSERT_ATTRIBUTES’ as well.

Preprocessor macros that appear on pragma lines are not expanded. All ‘#pragma’ directives that do not match any registered pragma are silently ignored, unless the user specifies -Wunknown-pragmas.

— Function: void c_register_pragma (const char *space, const char *name, void (*callback) (struct cpp_reader *))
— Function: void c_register_pragma_with_expansion (const char *space, const char *name, void (*callback) (struct cpp_reader *))

Each call to c_register_pragma or c_register_pragma_with_expansion establishes one pragma. The callback routine will be called when the preprocessor encounters a pragma of the form

          #pragma [space] name ...

space is the case-sensitive namespace of the pragma, or NULL to put the pragma in the global namespace. The callback routine receives pfile as its first argument, which can be passed on to cpplib's functions if necessary. You can lex tokens after the name by calling pragma_lex. Tokens that are not read by the callback will be silently ignored. The end of the line is indicated by a token of type CPP_EOF. Macro expansion occurs on the arguments of pragmas registered with c_register_pragma_with_expansion but not on the arguments of pragmas registered with c_register_pragma.

Note that the use of pragma_lex is specific to the C and C++ compilers. It will not work in the Java or Fortran compilers, or any other language compilers for that matter. Thus if pragma_lex is going to be called from target-specific code, it must only be done so when building the C and C++ compilers. This can be done by defining the variables c_target_objs and cxx_target_objs in the target entry in the config.gcc file. These variables should name the target-specific, language-specific object file which contains the code that uses pragma_lex. Note it will also be necessary to add a rule to the makefile fragment pointed to by tmake_file that shows how to build this object file.

— Macro: HANDLE_SYSV_PRAGMA

Define this macro (to a value of 1) if you want the System V style pragmas ‘#pragma pack(<n>)’ and ‘#pragma weak <name> [=<value>]’ to be supported by gcc.

The pack pragma specifies the maximum alignment (in bytes) of fields within a structure, in much the same way as the ‘__aligned__’ and ‘__packed____attribute__s do. A pack value of zero resets the behavior to the default.

A subtlety for Microsoft Visual C/C++ style bit-field packing (e.g. -mms-bitfields) for targets that support it: When a bit-field is inserted into a packed record, the whole size of the underlying type is used by one or more same-size adjacent bit-fields (that is, if its long:3, 32 bits is used in the record, and any additional adjacent long bit-fields are packed into the same chunk of 32 bits. However, if the size changes, a new field of that size is allocated).

If both MS bit-fields and ‘__attribute__((packed))’ are used, the latter will take precedence. If ‘__attribute__((packed))’ is used on a single field when MS bit-fields are in use, it will take precedence for that field, but the alignment of the rest of the structure may affect its placement.

The weak pragma only works if SUPPORTS_WEAK and ASM_WEAKEN_LABEL are defined. If enabled it allows the creation of specifically named weak labels, optionally with a value.

— Macro: HANDLE_PRAGMA_PACK_PUSH_POP

Define this macro (to a value of 1) if you want to support the Win32 style pragmas ‘#pragma pack(push[,n])’ and ‘#pragma pack(pop)’. The ‘pack(push,[n])’ pragma specifies the maximum alignment (in bytes) of fields within a structure, in much the same way as the ‘__aligned__’ and ‘__packed____attribute__s do. A pack value of zero resets the behavior to the default. Successive invocations of this pragma cause the previous values to be stacked, so that invocations of ‘#pragma pack(pop)’ will return to the previous value.

— Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION

Define this macro, as well as HANDLE_SYSV_PRAGMA, if macros should be expanded in the arguments of ‘#pragma pack’.

— Macro: TARGET_DEFAULT_PACK_STRUCT

If your target requires a structure packing default other than 0 (meaning the machine default), define this macro to the necessary value (in bytes). This must be a value that would also be valid to use with ‘#pragma pack()’ (that is, a small power of two).

— Macro: DOLLARS_IN_IDENTIFIERS

Define this macro to control use of the character ‘$’ in identifier names for the C family of languages. 0 means ‘$’ is not allowed by default; 1 means it is allowed. 1 is the default; there is no need to define this macro in that case.

— Macro: NO_DOLLAR_IN_LABEL

Define this macro if the assembler does not accept the character ‘$’ in label names. By default constructors and destructors in G++ have ‘$’ in the identifiers. If this macro is defined, ‘.’ is used instead.

— Macro: NO_DOT_IN_LABEL

Define this macro if the assembler does not accept the character ‘.’ in label names. By default constructors and destructors in G++ have names that use ‘.’. If this macro is defined, these names are rewritten to avoid ‘.’.

— Macro: INSN_SETS_ARE_DELAYED (insn)

Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of insn, even if they appear to use a resource set or clobbered in insn. insn is always a jump_insn or an insn; GCC knows that every call_insn has this behavior. On machines where some insn or jump_insn is really a function call and hence has this behavior, you should define this macro.

You need not define this macro if it would always return zero.

— Macro: INSN_REFERENCES_ARE_DELAYED (insn)

Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of insn, even if they appear to set or clobber a resource referenced in insn. insn is always a jump_insn or an insn. On machines where some insn or jump_insn is really a function call and its operands are registers whose use is actually in the subroutine it calls, you should define this macro. Doing so allows the delay slot scheduler to move instructions which copy arguments into the argument registers into the delay slot of insn.

You need not define this macro if it would always return zero.

— Macro: MULTIPLE_SYMBOL_SPACES

Define this macro as a C expression that is nonzero if, in some cases, global symbols from one translation unit may not be bound to undefined symbols in another translation unit without user intervention. For instance, under Microsoft Windows symbols must be explicitly imported from shared libraries (DLLs).

You need not define this macro if it would always evaluate to zero.

— Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree outputs, tree inputs, tree clobbers)

This target hook should add to clobbers STRING_CST trees for any hard regs the port wishes to automatically clobber for an asm. It should return the result of the last tree_cons used to add a clobber. The outputs, inputs and clobber lists are the corresponding parameters to the asm and may be inspected to avoid clobbering a register that is an input or output of the asm. You can use tree_overlaps_hard_reg_set, declared in tree.h, to test for overlap with regards to asm-declared registers.

— Macro: MATH_LIBRARY

Define this macro as a C string constant for the linker argument to link in the system math library, or ‘""’ if the target does not have a separate math library.

You need only define this macro if the default of ‘"-lm"’ is wrong.

— Macro: LIBRARY_PATH_ENV

Define this macro as a C string constant for the environment variable that specifies where the linker should look for libraries.

You need only define this macro if the default of ‘"LIBRARY_PATH"’ is wrong.

— Macro: TARGET_POSIX_IO

Define this macro if the target supports the following POSIX file functions, access, mkdir and file locking with fcntl / F_SETLKW. Defining TARGET_POSIX_IO will enable the test coverage code to use file locking when exiting a program, which avoids race conditions if the program has forked. It will also create directories at run-time for cross-profiling.

— Macro: MAX_CONDITIONAL_EXECUTE

A C expression for the maximum number of instructions to execute via conditional execution instructions instead of a branch. A value of BRANCH_COST+1 is the default if the machine does not use cc0, and 1 if it does use cc0.

— Macro: IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr)

Used if the target needs to perform machine-dependent modifications on the conditionals used for turning basic blocks into conditionally executed code. ce_info points to a data structure, struct ce_if_block, which contains information about the currently processed blocks. true_expr and false_expr are the tests that are used for converting the then-block and the else-block, respectively. Set either true_expr or false_expr to a null pointer if the tests cannot be converted.

— Macro: IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, true_expr, false_expr)

Like IFCVT_MODIFY_TESTS, but used when converting more complicated if-statements into conditions combined by and and or operations. bb contains the basic block that contains the test that is currently being processed and about to be turned into a condition.

— Macro: IFCVT_MODIFY_INSN (ce_info, pattern, insn)

A C expression to modify the PATTERN of an INSN that is to be converted to conditional execution format. ce_info points to a data structure, struct ce_if_block, which contains information about the currently processed blocks.

— Macro: IFCVT_MODIFY_FINAL (ce_info)

A C expression to perform any final machine dependent modifications in converting code to conditional execution. The involved basic blocks can be found in the struct ce_if_block structure that is pointed to by ce_info.

— Macro: IFCVT_MODIFY_CANCEL (ce_info)

A C expression to cancel any machine dependent modifications in converting code to conditional execution. The involved basic blocks can be found in the struct ce_if_block structure that is pointed to by ce_info.

— Macro: IFCVT_INIT_EXTRA_FIELDS (ce_info)

A C expression to initialize any extra fields in a struct ce_if_block structure, which are defined by the IFCVT_EXTRA_FIELDS macro.

— Macro: IFCVT_EXTRA_FIELDS

If defined, it should expand to a set of field declarations that will be added to the struct ce_if_block structure. These should be initialized by the IFCVT_INIT_EXTRA_FIELDS macro.

— Target Hook: void TARGET_MACHINE_DEPENDENT_REORG ()

If non-null, this hook performs a target-specific pass over the instruction stream. The compiler will run it at all optimization levels, just before the point at which it normally does delayed-branch scheduling.

The exact purpose of the hook varies from target to target. Some use it to do transformations that are necessary for correctness, such as laying out in-function constant pools or avoiding hardware hazards. Others use it as an opportunity to do some machine-dependent optimizations.

You need not implement the hook if it has nothing to do. The default definition is null.

— Target Hook: void TARGET_INIT_BUILTINS ()

Define this hook if you have any machine-specific built-in functions that need to be defined. It should be a function that performs the necessary setup.

Machine specific built-in functions can be useful to expand special machine instructions that would otherwise not normally be generated because they have no equivalent in the source language (for example, SIMD vector instructions or prefetch instructions).

To create a built-in function, call the function lang_hooks.builtin_function which is defined by the language front end. You can use any type nodes set up by build_common_tree_nodes and build_common_tree_nodes_2; only language front ends that use those two functions will call ‘TARGET_INIT_BUILTINS’.

— Target Hook: rtx TARGET_EXPAND_BUILTIN (tree exp, rtx target, rtx subtarget, enum machine_mode mode, int ignore)

Expand a call to a machine specific built-in function that was set up by ‘TARGET_INIT_BUILTINS’. exp is the expression for the function call; the result should go to target if that is convenient, and have mode mode if that is convenient. subtarget may be used as the target for computing one of exp's operands. ignore is nonzero if the value is to be ignored. This function should return the result of the call to the built-in function.

— Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (tree fndecl, tree arglist)

Select a replacement for a machine specific built-in function that was set up by ‘TARGET_INIT_BUILTINS’. This is done before regular type checking, and so allows the target to implement a crude form of function overloading. fndecl is the declaration of the built-in function. arglist is the list of arguments passed to the built-in function. The result is a complete expression that implements the operation, usually another CALL_EXPR.

— Target Hook: tree TARGET_FOLD_BUILTIN (tree fndecl, tree arglist, bool ignore)

Fold a call to a machine specific built-in function that was set up by ‘TARGET_INIT_BUILTINS’. fndecl is the declaration of the built-in function. arglist is the list of arguments passed to the built-in function. The result is another tree containing a simplified expression for the call's result. If ignore is true the value will be ignored.

— Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (rtx insn)

Take an instruction in insn and return NULL if it is valid within a low-overhead loop, otherwise return a string why doloop could not be applied.

Many targets use special registers for low-overhead looping. For any instruction that clobbers these this function should return a string indicating the reason why the doloop could not be applied. By default, the RTL loop optimizer does not use a present doloop pattern for loops containing function calls or branch on table instructions.

— Macro: MD_CAN_REDIRECT_BRANCH (branch1, branch2)

Take a branch insn in branch1 and another in branch2. Return true if redirecting branch1 to the destination of branch2 is possible.

On some targets, branches may have a limited range. Optimizing the filling of delay slots can result in branches being redirected, and this may in turn cause a branch offset to overflow.

— Target Hook: bool TARGET_COMMUTATIVE_P (rtx x, outer_code)

This target hook returns true if x is considered to be commutative. Usually, this is just COMMUTATIVE_P (x), but the HP PA doesn't consider PLUS to be commutative inside a MEM. outer_code is the rtx code of the enclosing rtl, if known, otherwise it is UNKNOWN.

— Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx hard_reg)

When the initial value of a hard register has been copied in a pseudo register, it is often not necessary to actually allocate another register to this pseudo register, because the original hard register or a stack slot it has been saved into can be used. TARGET_ALLOCATE_INITIAL_VALUE is called at the start of register allocation once for each hard register that had its initial value copied by using get_func_hard_reg_initial_val or get_hard_reg_initial_val. Possible values are NULL_RTX, if you don't want to do any special allocation, a REG rtx—that would typically be the hard register itself, if it is known not to be clobbered—or a MEM. If you are returning a MEM, this is only a hint for the allocator; it might decide to use another register anyways. You may use current_function_leaf_function in the hook, functions that use REG_N_SETS, to determine if the hard register in question will not be clobbered. The default value of this hook is NULL, which disables any special allocation.

— Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx x, unsigned flags)

This target hook returns nonzero if x, an unspec or unspec_volatile operation, might cause a trap. Targets can use this hook to enhance precision of analysis for unspec and unspec_volatile operations. You may call may_trap_p_1 to analyze inner elements of x in which case flags should be passed along.

— Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree decl)

The compiler invokes this hook whenever it changes its current function context (cfun). You can define this function if the back end needs to perform any initialization or reset actions on a per-function basis. For example, it may be used to implement function attributes that affect register usage or code generation patterns. The argument decl is the declaration for the new function context, and may be null to indicate that the compiler has left a function context and is returning to processing at the top level. The default hook function does nothing.

GCC sets cfun to a dummy function context during initialization of some parts of the back end. The hook function is not invoked in this situation; you need not worry about the hook being invoked recursively, or when the back end is in a partially-initialized state.

— Macro: TARGET_OBJECT_SUFFIX

Define this macro to be a C string representing the suffix for object files on your target machine. If you do not define this macro, GCC will use ‘.o’ as the suffix for object files.

— Macro: TARGET_EXECUTABLE_SUFFIX

Define this macro to be a C string representing the suffix to be automatically added to executable files on your target machine. If you do not define this macro, GCC will use the null string as the suffix for executable files.

— Macro: COLLECT_EXPORT_LIST

If defined, collect2 will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker discards object files that are not referenced from main and uses export lists.

— Macro: MODIFY_JNI_METHOD_CALL (mdecl)

Define this macro to a C expression representing a variant of the method call mdecl, if Java Native Interface (JNI) methods must be invoked differently from other methods on your target. For example, on 32-bit Microsoft Windows, JNI methods must be invoked using the stdcall calling convention and this macro is then defined as this expression:

          build_type_attribute_variant (mdecl,
                                        build_tree_list
                                        (get_identifier ("stdcall"),
                                         NULL))
— Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void)

This target hook returns true past the point in which new jump instructions could be created. On machines that require a register for every jump such as the SHmedia ISA of SH5, this point would typically be reload, so this target hook should be defined to a function such as:

          static bool
          cannot_modify_jumps_past_reload_p ()
          {
            return (reload_completed || reload_in_progress);
          }
— Target Hook: int TARGET_BRANCH_TARGET_REGISTER_CLASS (void)

This target hook returns a register class for which branch target register optimizations should be applied. All registers in this class should be usable interchangeably. After reload, registers in this class will be re-allocated and loads will be hoisted out of loops and be subjected to inter-block scheduling.

— Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool after_prologue_epilogue_gen)

Branch target register optimization will by default exclude callee-saved registers that are not already live during the current function; if this target hook returns true, they will be included. The target code must than make sure that all target registers in the class returned by ‘TARGET_BRANCH_TARGET_REGISTER_CLASS’ that might need saving are saved. after_prologue_epilogue_gen indicates if prologues and epilogues have already been generated. Note, even if you only return true when after_prologue_epilogue_gen is false, you still are likely to have to make special provisions in INITIAL_ELIMINATION_OFFSET to reserve space for caller-saved target registers.

— Macro: POWI_MAX_MULTS

If defined, this macro is interpreted as a signed integer C expression that specifies the maximum number of floating point multiplications that should be emitted when expanding exponentiation by an integer constant inline. When this value is defined, exponentiation requiring more than this number of multiplications is implemented by calling the system library's pow, powf or powl routines. The default value places no upper bound on the multiplication count.

— Macro: void TARGET_EXTRA_INCLUDES (const char *sysroot, const char *iprefix, int stdinc)

This target hook should register any extra include files for the target. The parameter stdinc indicates if normal include files are present. The parameter sysroot is the system root directory. The parameter iprefix is the prefix for the gcc directory.

— Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *sysroot, const char *iprefix, int stdinc)

This target hook should register any extra include files for the target before any standard headers. The parameter stdinc indicates if normal include files are present. The parameter sysroot is the system root directory. The parameter iprefix is the prefix for the gcc directory.

— Macro: void TARGET_OPTF (char *path)

This target hook should register special include paths for the target. The parameter path is the include to register. On Darwin systems, this is used for Framework includes, which have semantics that are different from -I.

— Target Hook: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree fndecl)

This target hook returns true if it is safe to use a local alias for a virtual function fndecl when constructing thunks, false otherwise. By default, the hook returns true for all functions, if a target supports aliases (i.e. defines ASM_OUTPUT_DEF), false otherwise,

— Macro: TARGET_FORMAT_TYPES

If defined, this macro is the name of a global variable containing target-specific format checking information for the -Wformat option. The default is to have no target-specific format checks.

— Macro: TARGET_N_FORMAT_TYPES

If defined, this macro is the number of entries in TARGET_FORMAT_TYPES.

— Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES

If defined, this macro is the name of a global variable containing target-specific format overrides for the -Wformat option. The default is to have no target-specific format overrides. If defined, TARGET_FORMAT_TYPES must be defined, too.

— Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT

If defined, this macro specifies the number of entries in TARGET_OVERRIDES_FORMAT_ATTRIBUTES.

— Macro: TARGET_OVERRIDES_FORMAT_INIT

If defined, this macro specifies the optional initialization routine for target specific customizations of the system printf and scanf formatter settings.

— Target Hook: bool TARGET_RELAXED_ORDERING

If set to true, means that the target's memory model does not guarantee that loads which do not depend on one another will access main memory in the order of the instruction stream; if ordering is important, an explicit memory barrier must be used. This is true of many recent processors which implement a policy of “relaxed,” “weak,” or “release” memory consistency, such as Alpha, PowerPC, and ia64. The default is false.

— Target Hook: const char *TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN (tree typelist, tree funcdecl, tree val)

If defined, this macro returns the diagnostic message when it is illegal to pass argument val to function funcdecl with prototype typelist.

— Target Hook: const char * TARGET_INVALID_CONVERSION (tree fromtype, tree totype)

If defined, this macro returns the diagnostic message when it is invalid to convert from fromtype to totype, or NULL if validity should be determined by the front end.

— Target Hook: const char * TARGET_INVALID_UNARY_OP (int op, tree type)

If defined, this macro returns the diagnostic message when it is invalid to apply operation op (where unary plus is denoted by CONVERT_EXPR) to an operand of type type, or NULL if validity should be determined by the front end.

— Target Hook: const char * TARGET_INVALID_BINARY_OP (int op, tree type1, tree type2)

If defined, this macro returns the diagnostic message when it is invalid to apply operation op to operands of types type1 and type2, or NULL if validity should be determined by the front end.

— Macro: TARGET_USE_JCR_SECTION

This macro determines whether to use the JCR section to register Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1 if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else 0.

— Macro: OBJC_JBLEN

This macro determines the size of the objective C jump buffer for the NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value.

— Macro: LIBGCC2_UNWIND_ATTRIBUTE

Define this macro if any target-specific attributes need to be attached to the functions in libgcc that provide low-level support for call stack unwinding. It is used in declarations in unwind-generic.h and the associated definitions of those functions.

— Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void)

Define this macro to update the current function stack boundary if necessary.

— Target Hook: rtx TARGET_GET_DRAP_RTX (void)

Define this macro to an rtx for Dynamic Realign Argument Pointer if a different argument pointer register is needed to access the function's argument list when stack is aligned.

— Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void)

When optimization is disabled, this hook indicates whether or not arguments should be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when not optimizing in order to make debugging easier. However, when a function is declared with __attribute__((naked)), there is no stack frame, and the compiler cannot safely move arguments from the registers in which they are passed to the stack. Therefore, this hook should return true in general, but false for naked functions. The default implementation always returns true.


Next: , Previous: Target Macros, Up: Top

18 Host Configuration

Most details about the machine and system on which the compiler is actually running are detected by the configure script. Some things are impossible for configure to detect; these are described in two ways, either by macros defined in a file named xm-machine.h or by hook functions in the file specified by the out_host_hook_obj variable in config.gcc. (The intention is that very few hosts will need a header file but nearly every fully supported host will need to override some hooks.)

If you need to define only a few macros, and they have simple definitions, consider using the xm_defines variable in your config.gcc entry instead of creating a host configuration header. See System Config.


Next: , Up: Host Config

18.1 Host Common

Some things are just not portable, even between similar operating systems, and are too difficult for autoconf to detect. They get implemented using hook functions in the file specified by the host_hook_obj variable in config.gcc.

— Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void)

This host hook is used to set up handling for extra signals. The most common thing to do in this hook is to detect stack overflow.

— Host Hook: void * HOST_HOOKS_GT_PCH_GET_ADDRESS (size_t size, int fd)

This host hook returns the address of some space that is likely to be free in some subsequent invocation of the compiler. We intend to load the PCH data at this address such that the data need not be relocated. The area should be able to hold size bytes. If the host uses mmap, fd is an open file descriptor that can be used for probing.

— Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * address, size_t size, int fd, size_t offset)

This host hook is called when a PCH file is about to be loaded. We want to load size bytes from fd at offset into memory at address. The given address will be the result of a previous invocation of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return −1 if we couldn't allocate size bytes at address. Return 0 if the memory is allocated but the data is not loaded. Return 1 if the hook has performed everything.

If the implementation uses reserved address space, free any reserved space beyond size, regardless of the return value. If no PCH will be loaded, this hook may be called with size zero, in which case all reserved address space should be freed.

Do not try to handle values of address that could not have been returned by this executable; just return −1. Such values usually indicate an out-of-date PCH file (built by some other GCC executable), and such a PCH file won't work.

— Host Hook: size_t HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY (void);

This host hook returns the alignment required for allocating virtual memory. Usually this is the same as getpagesize, but on some hosts the alignment for reserving memory differs from the pagesize for committing memory.


Next: , Previous: Host Common, Up: Host Config

18.2 Host Filesystem

GCC needs to know a number of things about the semantics of the host machine's filesystem. Filesystems with Unix and MS-DOS semantics are automatically detected. For other systems, you can define the following macros in xm-machine.h.

HAVE_DOS_BASED_FILE_SYSTEM
This macro is automatically defined by system.h if the host file system obeys the semantics defined by MS-DOS instead of Unix. DOS file systems are case insensitive, file specifications may begin with a drive letter, and both forward slash and backslash (‘/’ and ‘\’) are directory separators.
DIR_SEPARATOR
DIR_SEPARATOR_2
If defined, these macros expand to character constants specifying separators for directory names within a file specification. system.h will automatically give them appropriate values on Unix and MS-DOS file systems. If your file system is neither of these, define one or both appropriately in xm-machine.h.

However, operating systems like VMS, where constructing a pathname is more complicated than just stringing together directory names separated by a special character, should not define either of these macros.

PATH_SEPARATOR
If defined, this macro should expand to a character constant specifying the separator for elements of search paths. The default value is a colon (‘:’). DOS-based systems usually, but not always, use semicolon (‘;’).
VMS
Define this macro if the host system is VMS.
HOST_OBJECT_SUFFIX
Define this macro to be a C string representing the suffix for object files on your host machine. If you do not define this macro, GCC will use ‘.o’ as the suffix for object files.
HOST_EXECUTABLE_SUFFIX
Define this macro to be a C string representing the suffix for executable files on your host machine. If you do not define this macro, GCC will use the null string as the suffix for executable files.
HOST_BIT_BUCKET
A pathname defined by the host operating system, which can be opened as a file and written to, but all the information written is discarded. This is commonly known as a bit bucket or null device. If you do not define this macro, GCC will use ‘/dev/null’ as the bit bucket. If the host does not support a bit bucket, define this macro to an invalid filename.
UPDATE_PATH_HOST_CANONICALIZE (path)
If defined, a C statement (sans semicolon) that performs host-dependent canonicalization when a path used in a compilation driver or preprocessor is canonicalized. path is a malloc-ed path to be canonicalized. If the C statement does canonicalize path into a different buffer, the old path should be freed and the new buffer should have been allocated with malloc.
DUMPFILE_FORMAT
Define this macro to be a C string representing the format to use for constructing the index part of debugging dump file names. The resultant string must fit in fifteen bytes. The full filename will be the concatenation of: the prefix of the assembler file name, the string resulting from applying this format to an index number, and a string unique to each dump file kind, e.g. ‘rtl’.

If you do not define this macro, GCC will use ‘.%02d.’. You should define this macro if using the default will create an invalid file name.

DELETE_IF_ORDINARY
Define this macro to be a C statement (sans semicolon) that performs host-dependent removal of ordinary temp files in the compilation driver.

If you do not define this macro, GCC will use the default version. You should define this macro if the default version does not reliably remove the temp file as, for example, on VMS which allows multiple versions of a file.

HOST_LACKS_INODE_NUMBERS
Define this macro if the host filesystem does not report meaningful inode numbers in struct stat.


Previous: Filesystem, Up: Host Config

18.3 Host Misc

FATAL_EXIT_CODE
A C expression for the status code to be returned when the compiler exits after serious errors. The default is the system-provided macro ‘EXIT_FAILURE’, or ‘1’ if the system doesn't define that macro. Define this macro only if these defaults are incorrect.
SUCCESS_EXIT_CODE
A C expression for the status code to be returned when the compiler exits without serious errors. (Warnings are not serious errors.) The default is the system-provided macro ‘EXIT_SUCCESS’, or ‘0’ if the system doesn't define that macro. Define this macro only if these defaults are incorrect.
USE_C_ALLOCA
Define this macro if GCC should use the C implementation of alloca provided by libiberty.a. This only affects how some parts of the compiler itself allocate memory. It does not change code generation.

When GCC is built with a compiler other than itself, the C alloca is always used. This is because most other implementations have serious bugs. You should define this macro only on a system where no stack-based alloca can possibly work. For instance, if a system has a small limit on the size of the stack, GCC's builtin alloca will not work reliably.

COLLECT2_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent initialization when collect2 is being initialized.
GCC_DRIVER_HOST_INITIALIZATION
If defined, a C statement (sans semicolon) that performs host-dependent initialization when a compilation driver is being initialized.
HOST_LONG_LONG_FORMAT
If defined, the string used to indicate an argument of type long long to functions like printf. The default value is "ll".

In addition, if configure generates an incorrect definition of any of the macros in auto-host.h, you can override that definition in a host configuration header. If you need to do this, first see if it is possible to fix configure.


Next: , Previous: Host Config, Up: Top

19 Makefile Fragments

When you configure GCC using the configure script, it will construct the file Makefile from the template file Makefile.in. When it does this, it can incorporate makefile fragments from the config directory. These are used to set Makefile parameters that are not amenable to being calculated by autoconf. The list of fragments to incorporate is set by config.gcc (and occasionally config.build and config.host); See System Config.

Fragments are named either t-target or x-host, depending on whether they are relevant to configuring GCC to produce code for a particular target, or to configuring GCC to run on a particular host. Here target and host are mnemonics which usually have some relationship to the canonical system name, but no formal connection.

If these files do not exist, it means nothing needs to be added for a given target or host. Most targets need a few t-target fragments, but needing x-host fragments is rare.


Next: , Up: Fragments

19.1 Target Makefile Fragments

Target makefile fragments can set these Makefile variables.

LIBGCC2_CFLAGS
Compiler flags to use when compiling libgcc2.c.


LIB2FUNCS_EXTRA
A list of source file names to be compiled or assembled and inserted into libgcc.a.


Floating Point Emulation
To have GCC include software floating point libraries in libgcc.a define FPBIT and DPBIT along with a few rules as follows:
          # We want fine grained libraries, so use the new code
          # to build the floating point emulation libraries.
          FPBIT = fp-bit.c
          DPBIT = dp-bit.c
          
          
          fp-bit.c: $(srcdir)/config/fp-bit.c
                  echo '#define FLOAT' > fp-bit.c
                  cat $(srcdir)/config/fp-bit.c >> fp-bit.c
          
          dp-bit.c: $(srcdir)/config/fp-bit.c
                  cat $(srcdir)/config/fp-bit.c > dp-bit.c

You may need to provide additional #defines at the beginning of fp-bit.c and dp-bit.c to control target endianness and other options.


CRTSTUFF_T_CFLAGS
Special flags used when compiling crtstuff.c. See Initialization.


CRTSTUFF_T_CFLAGS_S
Special flags used when compiling crtstuff.c for shared linking. Used if you use crtbeginS.o and crtendS.o in EXTRA-PARTS. See Initialization.


MULTILIB_OPTIONS
For some targets, invoking GCC in different ways produces objects that can not be linked together. For example, for some targets GCC produces both big and little endian code. For these targets, you must arrange for multiple versions of libgcc.a to be compiled, one for each set of incompatible options. When GCC invokes the linker, it arranges to link in the right version of libgcc.a, based on the command line options used.

The MULTILIB_OPTIONS macro lists the set of options for which special versions of libgcc.a must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options.

For example, if you set MULTILIB_OPTIONS to ‘m68000/m68020 msoft-float’, Makefile will build special versions of libgcc.a using the following sets of options: -m68000, -m68020, -msoft-float, ‘-m68000 -msoft-float’, and ‘-m68020 -msoft-float’.


MULTILIB_DIRNAMES
If MULTILIB_OPTIONS is used, this variable specifies the directory names that should be used to hold the various libraries. Write one element in MULTILIB_DIRNAMES for each element in MULTILIB_OPTIONS. If MULTILIB_DIRNAMES is not used, the default value will be MULTILIB_OPTIONS, with all slashes treated as spaces.

For example, if MULTILIB_OPTIONS is set to ‘m68000/m68020 msoft-float’, then the default value of MULTILIB_DIRNAMES is ‘m68000 m68020 msoft-float’. You may specify a different value if you desire a different set of directory names.


MULTILIB_MATCHES
Sometimes the same option may be written in two different ways. If an option is listed in MULTILIB_OPTIONS, GCC needs to know about any synonyms. In that case, set MULTILIB_MATCHES to a list of items of the form ‘option=option’ to describe all relevant synonyms. For example, ‘m68000=mc68000 m68020=mc68020’.


MULTILIB_EXCEPTIONS
Sometimes when there are multiple sets of MULTILIB_OPTIONS being specified, there are combinations that should not be built. In that case, set MULTILIB_EXCEPTIONS to be all of the switch exceptions in shell case syntax that should not be built.

For example the ARM processor cannot execute both hardware floating point instructions and the reduced size THUMB instructions at the same time, so there is no need to build libraries with both of these options enabled. Therefore MULTILIB_EXCEPTIONS is set to:

          *mthumb/*mhard-float*


MULTILIB_EXTRA_OPTS
Sometimes it is desirable that when building multiple versions of libgcc.a certain options should always be passed on to the compiler. In that case, set MULTILIB_EXTRA_OPTS to be the list of options to be used for all builds. If you set this, you should probably set CRTSTUFF_T_CFLAGS to a dash followed by it.


NATIVE_SYSTEM_HEADER_DIR
If the default location for system headers is not /usr/include, you must set this to the directory containing the headers. This value should match the value of the SYSTEM_INCLUDE_DIR macro.


SPECS
Unfortunately, setting MULTILIB_EXTRA_OPTS is not enough, since it does not affect the build of target libraries, at least not the build of the default multilib. One possible work-around is to use DRIVER_SELF_SPECS to bring options from the specs file as if they had been passed in the compiler driver command line. However, you don't want to be adding these options after the toolchain is installed, so you can instead tweak the specs file that will be used during the toolchain build, while you still install the original, built-in specs. The trick is to set SPECS to some other filename (say specs.install), that will then be created out of the built-in specs, and introduce a Makefile rule to generate the specs file that's going to be used at build time out of your specs.install.
T_CFLAGS
These are extra flags to pass to the C compiler. They are used both when building GCC, and when compiling things with the just-built GCC. This variable is deprecated and should not be used.


Previous: Target Fragment, Up: Fragments

19.2 Host Makefile Fragments

The use of x-host fragments is discouraged. You should only use it for makefile dependencies.


Next: , Previous: Fragments, Up: Top

20 collect2

GCC uses a utility called collect2 on nearly all systems to arrange to call various initialization functions at start time.

The program collect2 works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates a new temporary ‘.c’ file containing a table of them, compiles it, and links the program a second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which is called (automatically) at the beginning of the body of main (provided main was compiled with GNU CC). Calling __main is necessary, even when compiling C code, to allow linking C and C++ object code together. (If you use -nostdlib, you get an unresolved reference to __main, since it's defined in the standard GCC library. Include -lgcc at the end of your compiler command line to resolve this reference.)

The program collect2 is installed as ld in the directory where the passes of the compiler are installed. When collect2 needs to find the real ld, it tries the following file names:

“The compiler's search directories” means all the directories where gcc searches for passes of the compiler. This includes directories that you specify with -B.

Cross-compilers search a little differently:

collect2 explicitly avoids running ld using the file name under which collect2 itself was invoked. In fact, it remembers up a list of such names—in case one copy of collect2 finds another copy (or version) of collect2 installed as ld in a second place in the search path.

collect2 searches for the utilities nm and strip using the same algorithm as above for ld.


Next: , Previous: Collect2, Up: Top

21 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GCC stores its private include files, and also where GCC stores the fixed include files. A cross compiled GCC runs fixincludes on the header files in $(tooldir)/include. (If the cross compilation header files need to be fixed, they must be installed before GCC is built. If the cross compilation header files are already suitable for GCC, nothing special need be done).

GPLUSPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++ looks first for header files. The C++ library installs only target independent header files in that directory.

LOCAL_INCLUDE_DIR is used only by native compilers. GCC doesn't install anything there. It is normally /usr/local/include. This is where local additions to a packaged system should place header files.

CROSS_INCLUDE_DIR is used only by cross compilers. GCC doesn't install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other packages to install header files that GCC will use. For a cross-compiler, this is the equivalent of /usr/include. When you build a cross-compiler, fixincludes processes any header files in this directory.


Next: , Previous: Header Dirs, Up: Top

22 Memory Management and Type Information

GCC uses some fairly sophisticated memory management techniques, which involve determining information about GCC's data structures from GCC's source code and using this information to perform garbage collection and implement precompiled headers.

A full C parser would be too complicated for this task, so a limited subset of C is interpreted and special markers are used to determine what parts of the source to look at. All struct and union declarations that define data structures that are allocated under control of the garbage collector must be marked. All global variables that hold pointers to garbage-collected memory must also be marked. Finally, all global variables that need to be saved and restored by a precompiled header must be marked. (The precompiled header mechanism can only save static variables if they're scalar. Complex data structures must be allocated in garbage-collected memory to be saved in a precompiled header.)

The full format of a marker is

     GTY (([option] [(param)], [option] [(param)] ...))

but in most cases no options are needed. The outer double parentheses are still necessary, though: GTY(()). Markers can appear:

Here are some examples of marking simple data structures and globals.

     struct tag GTY(())
     {
       fields...
     };
     
     typedef struct tag GTY(())
     {
       fields...
     } *typename;
     
     static GTY(()) struct tag *list;   /* points to GC memory */
     static GTY(()) int counter;        /* save counter in a PCH */

The parser understands simple typedefs such as typedef struct tag *name; and typedef int name;. These don't need to be marked.


Next: , Up: Type Information

22.1 The Inside of a GTY(())

Sometimes the C code is not enough to fully describe the type structure. Extra information can be provided with GTY options and additional markers. Some options take a parameter, which may be either a string or a type name, depending on the parameter. If an option takes no parameter, it is acceptable either to omit the parameter entirely, or to provide an empty string as a parameter. For example, GTY ((skip)) and GTY ((skip (""))) are equivalent.

When the parameter is a string, often it is a fragment of C code. Four special escapes may be used in these strings, to refer to pieces of the data structure being marked:

%h
The current structure.
%1
The structure that immediately contains the current structure.
%0
The outermost structure that contains the current structure.
%a
A partial expression of the form [i1][i2]... that indexes the array item currently being marked.

For instance, suppose that you have a structure of the form

     struct A {
       ...
     };
     struct B {
       struct A foo[12];
     };

and b is a variable of type struct B. When marking ‘b.foo[11]’, %h would expand to ‘b.foo[11]’, %0 and %1 would both expand to ‘b’, and %a would expand to ‘[11]’.

As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a complicated expression.

     GTY ((chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE"
                       " ? TYPE_NEXT_VARIANT (&%h.generic)"
                       " : TREE_CHAIN (&%h.generic)")))

The available options are:

length ("expression")
There are two places the type machinery will need to be explicitly told the length of an array. The first case is when a structure ends in a variable-length array, like this:
          struct rtvec_def GTY(()) {
            int num_elem;         /* number of elements */
            rtx GTY ((length ("%h.num_elem"))) elem[1];
          };

In this case, the length option is used to override the specified array length (which should usually be 1). The parameter of the option is a fragment of C code that calculates the length.

The second case is when a structure or a global variable contains a pointer to an array, like this:

          tree *
            GTY ((length ("%h.regno_pointer_align_length"))) regno_decl;

In this case, regno_decl has been allocated by writing something like

            x->regno_decl =
              ggc_alloc (x->regno_pointer_align_length * sizeof (tree));

and the length provides the length of the field.

This second use of length also works on global variables, like:

       static GTY((length ("reg_base_value_size")))
         rtx *reg_base_value;


skip
If skip is applied to a field, the type machinery will ignore it. This is somewhat dangerous; the only safe use is in a union when one field really isn't ever used.


desc ("expression")
tag ("constant")
default
The type machinery needs to be told which field of a union is currently active. This is done by giving each field a constant tag value, and then specifying a discriminator using desc. The value of the expression given by desc is compared against each tag value, each of which should be different. If no tag is matched, the field marked with default is used if there is one, otherwise no field in the union will be marked.

In the desc option, the “current structure” is the union that it discriminates. Use %1 to mean the structure containing it. There are no escapes available to the tag option, since it is a constant.

For example,

          struct tree_binding GTY(())
          {
            struct tree_common common;
            union tree_binding_u {
              tree GTY ((tag ("0"))) scope;
              struct cp_binding_level * GTY ((tag ("1"))) level;
            } GTY ((desc ("BINDING_HAS_LEVEL_P ((tree)&%0)"))) xscope;
            tree value;
          };

In this example, the value of BINDING_HAS_LEVEL_P when applied to a struct tree_binding * is presumed to be 0 or 1. If 1, the type mechanism will treat the field level as being present and if 0, will treat the field scope as being present.


param_is (type)
use_param
Sometimes it's convenient to define some data structure to work on generic pointers (that is, PTR) and then use it with a specific type. param_is specifies the real type pointed to, and use_param says where in the generic data structure that type should be put.

For instance, to have a htab_t that points to trees, one would write the definition of htab_t like this:

          typedef struct GTY(()) {
            ...
            void ** GTY ((use_param, ...)) entries;
            ...
          } htab_t;

and then declare variables like this:

            static htab_t GTY ((param_is (union tree_node))) ict;


paramn_is (type)
use_paramn
In more complicated cases, the data structure might need to work on several different types, which might not necessarily all be pointers. For this, param1_is through param9_is may be used to specify the real type of a field identified by use_param1 through use_param9.


use_params
When a structure contains another structure that is parameterized, there's no need to do anything special, the inner structure inherits the parameters of the outer one. When a structure contains a pointer to a parameterized structure, the type machinery won't automatically detect this (it could, it just doesn't yet), so it's necessary to tell it that the pointed-to structure should use the same parameters as the outer structure. This is done by marking the pointer with the use_params option.


deletable
deletable, when applied to a global variable, indicates that when garbage collection runs, there's no need to mark anything pointed to by this variable, it can just be set to NULL instead. This is used to keep a list of free structures around for re-use.


if_marked ("expression")
Suppose you want some kinds of object to be unique, and so you put them in a hash table. If garbage collection marks the hash table, these objects will never be freed, even if the last other reference to them goes away. GGC has special handling to deal with this: if you use the if_marked option on a global hash table, GGC will call the routine whose name is the parameter to the option on each hash table entry. If the routine returns nonzero, the hash table entry will be marked as usual. If the routine returns zero, the hash table entry will be deleted.

The routine ggc_marked_p can be used to determine if an element has been marked already; in fact, the usual case is to use if_marked ("ggc_marked_p").


mark_hook ("hook-routine-name")
If provided for a structure or union type, the given hook-routine-name (between double-quotes) is the name of a routine called when the garbage collector has just marked the data as reachable. This routine should not change the data, or call any ggc routine. Its only argument is a pointer to the just marked (const) structure or union.


maybe_undef
When applied to a field, maybe_undef indicates that it's OK if the structure that this fields points to is never defined, so long as this field is always NULL. This is used to avoid requiring backends to define certain optional structures. It doesn't work with language frontends.


nested_ptr (type, "to expression", "from expression")
The type machinery expects all pointers to point to the start of an object. Sometimes for abstraction purposes it's convenient to have a pointer which points inside an object. So long as it's possible to convert the original object to and from the pointer, such pointers can still be used. type is the type of the original object, the to expression returns the pointer given the original object, and the from expression returns the original object given the pointer. The pointer will be available using the %h escape.


chain_next ("expression")
chain_prev ("expression")
chain_circular ("expression")
It's helpful for the type machinery to know if objects are often chained together in long lists; this lets it generate code that uses less stack space by iterating along the list instead of recursing down it. chain_next is an expression for the next item in the list, chain_prev is an expression for the previous item. For singly linked lists, use only chain_next; for doubly linked lists, use both. The machinery requires that taking the next item of the previous item gives the original item. chain_circular is similar to chain_next, but can be used for circular single linked lists.


reorder ("function name")
Some data structures depend on the relative ordering of pointers. If the precompiled header machinery needs to change that ordering, it will call the function referenced by the reorder option, before changing the pointers in the object that's pointed to by the field the option applies to. The function must take four arguments, with the signature ‘void *, void *, gt_pointer_operator, void *’. The first parameter is a pointer to the structure that contains the object being updated, or the object itself if there is no containing structure. The second parameter is a cookie that should be ignored. The third parameter is a routine that, given a pointer, will update it to its correct new value. The fourth parameter is a cookie that must be passed to the second parameter.

PCH cannot handle data structures that depend on the absolute values of pointers. reorder functions can be expensive. When possible, it is better to depend on properties of the data, like an ID number or the hash of a string instead.


special ("name")
The special option is used to mark types that have to be dealt with by special case machinery. The parameter is the name of the special case. See gengtype.c for further details. Avoid adding new special cases unless there is no other alternative.


Next: , Previous: GTY Options, Up: Type Information

22.2 Marking Roots for the Garbage Collector

In addition to keeping track of types, the type machinery also locates the global variables (roots) that the garbage collector starts at. Roots must be declared using one of the following syntaxes:

The syntax is not accepted. There should be an extern declaration of such a variable in a header somewhere—mark that, not the definition. Or, if the variable is only used in one file, make it static.


Next: , Previous: GGC Roots, Up: Type Information

22.3 Source Files Containing Type Information

Whenever you add GTY markers to a source file that previously had none, or create a new source file containing GTY markers, there are three things you need to do:

  1. You need to add the file to the list of source files the type machinery scans. There are four cases:
    1. For a back-end file, this is usually done automatically; if not, you should add it to target_gtfiles in the appropriate port's entries in config.gcc.
    2. For files shared by all front ends, add the filename to the GTFILES variable in Makefile.in.
    3. For files that are part of one front end, add the filename to the gtfiles variable defined in the appropriate config-lang.in. For C, the file is c-config-lang.in. Headers should appear before non-headers in this list.
    4. For files that are part of some but not all front ends, add the filename to the gtfiles variable of all the front ends that use it.
  2. If the file was a header file, you'll need to check that it's included in the right place to be visible to the generated files. For a back-end header file, this should be done automatically. For a front-end header file, it needs to be included by the same file that includes gtype-lang.h. For other header files, it needs to be included in gtype-desc.c, which is a generated file, so add it to ifiles in open_base_file in gengtype.c.

    For source files that aren't header files, the machinery will generate a header file that should be included in the source file you just changed. The file will be called gt-path.h where path is the pathname relative to the gcc directory with slashes replaced by -, so for example the header file to be included in cp/parser.c is called gt-cp-parser.c. The generated header file should be included after everything else in the source file. Don't forget to mention this file as a dependency in the Makefile!

For language frontends, there is another file that needs to be included somewhere. It will be called gtype-lang.h, where lang is the name of the subdirectory the language is contained in.


Previous: Files, Up: Type Information

22.4 How to invoke the garbage collector

The GCC garbage collector GGC is only invoked explicitly. In contrast with many other garbage collectors, it is not implicitly invoked by allocation routines when a lot of memory has been consumed. So the only way to have GGC reclaim storage it to call the ggc_collect function explicitly. This call is an expensive operation, as it may have to scan the entire heap. Beware that local variables (on the GCC call stack) are not followed by such an invocation (as many other garbage collectors do): you should reference all your data from static or external GTY-ed variables, and it is advised to call ggc_collect with a shallow call stack. The GGC is an exact mark and sweep garbage collector (so it does not scan the call stack for pointers). In practice GCC passes don't often call ggc_collect themselves, because it is called by the pass manager between passes.


Next: , Previous: Type Information, Up: Top

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help encourage people to contribute funds for its development. The most effective approach known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee distributors to donate part of their selling price to free software developers—the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by how much they give to free software development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as, “We will donate ten dollars to the Frobnitz project for each disk sold.” Don't be satisfied with a vague promise, such as “A portion of the profits are donated,” since it doesn't give a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative accounting and unrelated business decisions can greatly alter what fraction of the sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone honest, you need to inquire how much they do, and what kind. Some kinds of development make much more long-term difference than others. For example, maintaining a separate version of a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do” when distributing free software for a fee, we can assure a steady flow of resources into making more free software.

     
     Copyright © 1994 Free Software Foundation, Inc.
     Verbatim copying and redistribution of this section is permitted
     without royalty; alteration is not permitted.
     


Next: , Previous: Funding, Up: Top

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system which is free software: the GNU system. (GNU is a recursive acronym for “GNU's Not Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the kernel Linux, are now widely used; though these systems are often referred to as “Linux”, they are more accurately called GNU/Linux systems.

For more information, see:

     http://www.gnu.org/
     http://www.gnu.org/gnu/linux-and-gnu.html


Next: , Previous: GNU Project, Up: Top

GNU General Public License

Version 3, 29 June 2007
     Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/
     
     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

  1. Definitions.

    “This License” refers to version 3 of the GNU General Public License.

    “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

    “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

    To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

    A “covered work” means either the unmodified Program or a work based on the Program.

    To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

    To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

    An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

  2. Source Code.

    The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

    A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

    The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

    The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

    The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

    The Corresponding Source for a work in source code form is that same work.

  3. Basic Permissions.

    All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

    You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

    Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

  4. Protecting Users' Legal Rights From Anti-Circumvention Law.

    No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

    When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

  5. Conveying Verbatim Copies.

    You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

    You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

  6. Conveying Modified Source Versions.

    You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

    1. The work must carry prominent notices stating that you modified it, and giving a relevant date.
    2. The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.
    3. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
    4. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

    A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

  7. Conveying Non-Source Forms.

    You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

    1. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
    2. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
    3. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
    4. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
    5. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

    A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

    A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

    “Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

    If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

    The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

    Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

  8. Additional Terms.

    “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

    When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

    Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

    1. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
    2. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
    3. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
    4. Limiting the use for publicity purposes of names of licensors or authors of the material; or
    5. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
    6. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

    All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

    If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

    Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

  9. Termination.

    You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

    However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

    Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

    Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

  10. Acceptance Not Required for Having Copies.

    You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

  11. Automatic Licensing of Downstream Recipients.

    Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

    An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

    You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

  12. Patents.

    A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor version”.

    A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

    Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

    In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

    If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

    If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

    A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

    Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

  13. No Surrender of Others' Freedom.

    If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

  14. Use with the GNU Affero General Public License.

    Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

  15. Revised Versions of this License.

    The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

    If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

    Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

  16. Disclaimer of Warranty.

    THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  17. Limitation of Liability.

    IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

  18. Interpretation of Sections 15 and 16.

    If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

     one line to give the program's name and a brief idea of what it does.
     Copyright (C) year name of author
     
     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation, either version 3 of the License, or (at
     your option) any later version.
     
     This program is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     General Public License for more details.
     
     You should have received a copy of the GNU General Public License
     along with this program.  If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

     program Copyright (C) year name of author
     This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
     This is free software, and you are welcome to redistribute it
     under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.


Next: , Previous: Copying, Up: Top

GNU Free Documentation License

Version 1.2, November 2002
     Copyright © 2000,2001,2002 Free Software Foundation, Inc.
     51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.
  1. PREAMBLE

    The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

    This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

    We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

  2. APPLICABILITY AND DEFINITIONS

    This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

    A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

    A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

    The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

    The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

    A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

    Examples of suitable formats for Transparent copies include plain ascii without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

    The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

    A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

    The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

  3. VERBATIM COPYING

    You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

    You may also lend copies, under the same conditions stated above, and you may publicly display copies.

  4. COPYING IN QUANTITY

    If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

    If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

    If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

    It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

  5. MODIFICATIONS

    You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

    1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
    2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
    3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
    4. Preserve all the copyright notices of the Document.
    5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
    6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
    7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
    8. Include an unaltered copy of this License.
    9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
    10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
    11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
    12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
    13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
    14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
    15. Preserve any Warranty Disclaimers.

    If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

    You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

    You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

    The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

  6. COMBINING DOCUMENTS

    You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

    The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

    In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”

  7. COLLECTIONS OF DOCUMENTS

    You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

    You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

  8. AGGREGATION WITH INDEPENDENT WORKS

    A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

    If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

  9. TRANSLATION

    Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

    If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

  10. TERMINATION

    You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

  11. FUTURE REVISIONS OF THIS LICENSE

    The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

    Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

       Copyright (C)  year  your name.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.2
       or any later version published by the Free Software Foundation;
       with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
       Texts.  A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:

         with the Invariant Sections being list their titles, with
         the Front-Cover Texts being list, and with the Back-Cover Texts
         being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.


Next: , Previous: GNU Free Documentation License, Up: Top

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project would not have been nearly as successful as it has been. Any omissions in this list are accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order.

The following people are recognized for their contributions to GNAT, the Ada front end of GCC:

The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1:

In addition to the above, all of which also contributed time and energy in testing GCC, we would like to thank the following for their contributions to testing:

And finally we'd like to thank everyone who uses the compiler, provides feedback and generally reminds us why we're doing this work in the first place.


Next: , Previous: Contributors, Up: Top

Option Index

GCC's command line options are indexed here without any initial ‘-’ or ‘--’. Where an option has both positive and negative forms (such as -foption and -fno-option), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms.


Previous: Option Index, Up: Top

Concept Index


Footnotes

[1] Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case, it's best to use make restrap.

[2] Customarily, the system compiler is also termed the stage0 GCC.

[3] These restrictions are derived from those in Morgan 4.8.

[4] However, the size of the automaton depends on processor complexity. To limit this effect, machine descriptions can split orthogonal parts of the machine description among several automata: but then, since each of these must be stepped independently, this does cause a small decrease in the algorithm's performance.