
Installing GCC
For gcc version 10.2.0

Copyright c© 1988-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

./gfdl.html

i

Table of Contents

1 Installing GCC . 1

2 Prerequisites . 3

3 Downloading GCC . 9

4 Installing GCC: Configuration 11

5 Building . 43
5.1 Building a native compiler . 43
5.2 Building a cross compiler . 46
5.3 Building in parallel . 47
5.4 Building the Ada compiler . 47
5.5 Building with profile feedback . 47

6 Installing GCC: Testing . 49
6.1 How can you run the testsuite on selected tests? 49
6.2 Passing options and running multiple testsuites 50
6.3 How to interpret test results . 51
6.4 Submitting test results . 51

7 Installing GCC: Final installation 53

8 Installing GCC: Binaries . 55

9 Host/target specific installation notes for GCC . . 57

10 Old installation documentation 77
10.1 Configurations Supported by GCC . 77

GNU Free Documentation License 79
ADDENDUM: How to use this License for your documents 86

1

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/. It
refers to the current development sources, instructions for specific released versions are
included with the sources.

This document describes the generic installation procedure for GCC as well as detailing
some target specific installation instructions.

GCC includes several components that previously were separate distributions with their
own installation instructions. This document supersedes all package-specific installation
instructions.

Before starting the build/install procedure please check the Chapter 9 [Specific], page 57.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at http://gcc.
gnu.org/buildstat.html. These lists are updated as new information becomes available.

The installation procedure itself is broken into five steps.

Please note that GCC does not support ‘make uninstall’ and probably won’t do so in
the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

http://gcc.gnu.org/install/
http://gcc.gnu.org/buildstat.html
http://gcc.gnu.org/buildstat.html

3

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C++98 compiler
Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow
bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also
allow bootstrapping with a traditional (K&R) C compiler.

To build all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 3.4 or later) because source code for language frontends other than C
might use GCC extensions.

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you may
need to use --disable-stage1-checking, though bootstrapping the compiler
with such earlier compilers is strongly discouraged.

C standard library and headers
In order to build GCC, the C standard library and headers must be present
for all target variants for which target libraries will be built (and not only the
variant of the host C++ compiler).

This affects the popular ‘x86_64-pc-linux-gnu’ platform (among other
multilib targets), for which 64-bit (‘x86_64’) and 32-bit (‘i386’) libc headers
are usually packaged separately. If you do a build of a native compiler on
‘x86_64-pc-linux-gnu’, make sure you either have the 32-bit libc developer
package properly installed (the exact name of the package depends on your
distro) or you must build GCC as a 64-bit only compiler by configuring with
the option --disable-multilib. Otherwise, you may encounter an error such
as ‘fatal error: gnu/stubs-32.h: No such file’

GNAT

In order to build GNAT, the Ada compiler, you need a working GNAT compiler
(GCC version 4.7 or later).

This includes GNAT tools such as gnatmake and gnatlink, since the Ada front
end is written in Ada and uses some GNAT-specific extensions.

In order to build a cross compiler, it is strongly recommended to install the
new compiler as native first, and then use it to build the cross compiler. Other
native compiler versions may work but this is not guaranteed and will typically
fail with hard to understand compilation errors during the build.

Similarly, it is strongly recommended to use an older version of GNAT to build
GNAT. More recent versions of GNAT than the version built are not guaranteed
to work and will often fail during the build with compilation errors.

Note that configure does not test whether the GNAT installation works and
has a sufficiently recent version; if too old a GNAT version is installed and
--enable-languages=ada is used, the build will fail.

4 No Title

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be
set when building the Ada compiler, the Ada tools, or the Ada runtime libraries.
You can check that your build environment is clean by verifying that ‘gnatls
-v’ lists only one explicit path in each section.

A “working” POSIX compatible shell, or GNU bash
Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or ksh have disastrous corner-case performance problems. This can cause target
configure runs to literally take days to complete in some cases.

So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host/target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.

zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

A POSIX or SVR4 awk
Necessary for creating some of the generated source files for GCC. If in doubt,
use a recent GNU awk version, as some of the older ones are broken. GNU awk
version 3.1.5 is known to work.

GNU binutils
Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)

Necessary to uncompress GCC tar files when source code is obtained via
HTTPS mirror sites.

GNU make version 3.80 (or later)
You must have GNU make installed to build GCC.

GNU tar version 1.14 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

Perl version between 5.6.1 and 5.6.24
Necessary when targeting Darwin, building ‘libstdc++’, and not using
--disable-symvers. Necessary when targeting Solaris 2 with Solaris ld and
not using --disable-symvers.

Necessary when regenerating Makefile dependencies in libiberty. Necessary
when regenerating libiberty/functions.texi. Necessary when generating
manpages from Texinfo manuals. Used by various scripts to generate some files
included in the source repository (mainly Unicode-related and rarely changing)
from source tables.

Used by automake.

Several support libraries are necessary to build GCC, some are required, others optional.
While any sufficiently new version of required tools usually work, library requirements are

Chapter 2: Prerequisites 5

generally stricter. Newer versions may work in some cases, but it’s safer to use the exact
versions documented. We appreciate bug reports about problems with newer versions,
though. If your OS vendor provides packages for the support libraries then using those
packages may be the simplest way to install the libraries.

GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
Necessary to build GCC. If a GMP source distribution is found in a subdi-
rectory of your GCC sources named gmp, it will be built together with GCC.
Alternatively, if GMP is already installed but it is not in your library search
path, you will have to configure with the --with-gmp configure option. See
also --with-gmp-lib and --with-gmp-include. The in-tree build is only sup-
ported with the GMP version that download prerequisites installs.

MPFR Library version 3.1.0 (or later)
Necessary to build GCC. It can be downloaded from https://www.

mpfr.org. If an MPFR source distribution is found in a subdirectory of your
GCC sources named mpfr, it will be built together with GCC. Alternatively, if
MPFR is already installed but it is not in your default library search path, the
--with-mpfr configure option should be used. See also --with-mpfr-lib and
--with-mpfr-include. The in-tree build is only supported with the MPFR
version that download prerequisites installs.

MPC Library version 1.0.1 (or later)
Necessary to build GCC. It can be downloaded from http://www.

multiprecision.org/mpc/. If an MPC source distribution is found in a sub-
directory of your GCC sources named mpc, it will be built together with GCC.
Alternatively, if MPC is already installed but it is not in your default library
search path, the --with-mpc configure option should be used. See also --with-
mpc-lib and --with-mpc-include. The in-tree build is only supported with
the MPC version that download prerequisites installs.

isl Library version 0.15 or later.
Necessary to build GCC with the Graphite loop optimizations. It can be
downloaded from https://gcc.gnu.org/pub/gcc/infrastructure/

. If an isl source distribution is found in a subdirectory of your GCC sources
named isl, it will be built together with GCC. Alternatively, the --with-isl
configure option should be used if isl is not installed in your default library
search path.

zstd Library.
Necessary to build GCC with zstd compression used for LTO bytecode. The
library is searched in your default library patch search. Alternatively, the
--with-zstd configure option should be used.

Tools/packages necessary for modifying GCC

autoconf version 2.69
GNU m4 version 1.4.6 (or later)

Necessary when modifying configure.ac, aclocal.m4, etc. to regenerate
configure and config.in files.

https://www.mpfr.org
https://www.mpfr.org
http://www.multiprecision.org/mpc/
http://www.multiprecision.org/mpc/
https://gcc.gnu.org/pub/gcc/infrastructure/
https://gcc.gnu.org/pub/gcc/infrastructure/

6 No Title

automake version 1.15.1
Necessary when modifying a Makefile.am file to regenerate its associated
Makefile.in.

Much of GCC does not use automake, so directly edit the Makefile.in file.
Specifically this applies to the gcc, intl, libcpp, libiberty, libobjc direc-
tories as well as any of their subdirectories.

For directories that use automake, GCC requires the latest release in the 1.15
series, which is currently 1.15.1. When regenerating a directory to a newer
version, please update all the directories using an older 1.15 to the latest released
version.

gettext version 0.14.5 (or later)
Needed to regenerate gcc.pot.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. gcc/cp/cfns.gperf to regen-
erate its associated header file, e.g. gcc/cp/cfns.h.

DejaGnu 1.4.4
Expect
Tcl

Necessary to run the GCC testsuite; see the section on testing for details.

autogen version 5.5.4 (or later) and
guile version 1.4.1 (or later)

Necessary to regenerate fixinc/fixincl.x from fixinc/inclhack.def and
fixinc/*.tpl.

Necessary to run ‘make check’ for fixinc.

Necessary to regenerate the top level Makefile.in file from Makefile.tpl and
Makefile.def.

Flex version 2.5.4 (or later)
Necessary when modifying *.l files.

Necessary to build GCC during development because the generated output files
are not included in the version-controlled source repository. They are included
in releases.

Texinfo version 4.7 (or later)
Necessary for running makeinfo when modifying *.texi files to test your
changes.

Necessary for running make dvi or make pdf to create printable documentation
in DVI or PDF format. Texinfo version 4.8 or later is required for make pdf.

Necessary to build GCC documentation during development because the gen-
erated output files are not included in the repository. They are included in
releases.

TEX (any working version)
Necessary for running texi2dvi and texi2pdf, which are used when running
make dvi or make pdf to create DVI or PDF files, respectively.

7

Sphinx version 1.0 (or later)
Necessary to regenerate jit/docs/_build/texinfo from the .rst files in the
directories below jit/docs.

git (any version)
SSH (any version)

Necessary to access the source repository. Public releases and weekly snapshots
of the development sources are also available via HTTPS.

GNU diffutils version 2.7 (or later)
Useful when submitting patches for the GCC source code.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

9

3 Downloading GCC

GCC is distributed via git and via HTTPS as tarballs compressed with gzip or bzip2.

Please refer to the releases web page for information on how to obtain GCC.

The source distribution includes the C, C++, Objective-C, Fortran, and Ada (in the
case of GCC 3.1 and later) compilers, as well as runtime libraries for C++, Objective-
C, and Fortran. For previous versions these were downloadable as separate components
such as the core GCC distribution, which included the C language front end and shared
components, and language-specific distributions including the language front end and the
language runtime (where appropriate).

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (bfd, binutils, gas, gprof, ld,
opcodes, . . .) to the directory containing the GCC sources.

Likewise the GMP, MPFR and MPC libraries can be automatically built together with
GCC. You may simply run the contrib/download_prerequisites script in the GCC
source directory to set up everything. Otherwise unpack the GMP, MPFR and/or MPC
source distributions in the directory containing the GCC sources and rename their directo-
ries to gmp, mpfr and mpc, respectively (or use symbolic links with the same name).

http://gcc.gnu.org/git.html
http://gcc.gnu.org/releases.html

11

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources by cloning the repository, srcdir must refer to the top gcc

directory, the one where the MAINTAINERS file can be found, and not its gcc subdirectory,
otherwise the build will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory from the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes is
Makefile; if ‘make distclean’ complains that Makefile does not exist or issues a message
like “don’t know how to make distclean” it probably means that the directory is already
suitably clean. However, with the recommended method of building in a separate objdir,
you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

To configure GCC:

% mkdir objdir

% cd objdir

% srcdir/configure [options] [target]

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code,
you should use the options described in this section to make clear that your version contains
modifications.

--with-pkgversion=version

Specify a string that identifies your package. You may wish to include a build
number or build date. This version string will be included in the output of gcc
--version. This suffix does not replace the default version string, only the
‘GCC’ part.

The default value is ‘GCC’.

12 No Title

--with-bugurl=url

Specify the URL that users should visit if they wish to report a bug. You are of
course welcome to forward bugs reported to you to the FSF, if you determine
that they are not bugs in your modifications.

The default value refers to the FSF’s GCC bug tracker.

--with-documentation-root-url=url

Specify the URL root that contains GCC option documentation. The url should
end with a / character.

The default value is https://gcc.gnu.org/onlinedocs/.

--with-changes-root-url=url

Specify the URL root that contains information about changes in GCC releases
like gcc-version/changes.html. The url should end with a / character.

The default value is https://gcc.gnu.org/.

Target specification

• GCC has code to correctly determine the correct value for target for nearly all native
systems. Therefore, we highly recommend you do not provide a configure target when
configuring a native compiler.

• target must be specified as --target=target when configuring a cross compiler; ex-
amples of valid targets would be m68k-elf, sh-elf, etc.

• Specifying just target instead of --target=target implies that the host defaults to
target.

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure --help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each --enable option has a corresponding --disable option and that each
--with option has a corresponding --without option.

--prefix=dirname

Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to /usr/local.

We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the ‘~’
metacharacter; use $HOME instead.

The following standard autoconf options are supported. Normally you should
not need to use these options.

--exec-prefix=dirname

Specify the toplevel installation directory for architecture-
dependent files. The default is prefix.

https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/

Chapter 4: Installing GCC: Configuration 13

--bindir=dirname

Specify the installation directory for the executables called by users
(such as gcc and g++). The default is exec-prefix/bin.

--libdir=dirname

Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is exec-prefix/lib.

--libexecdir=dirname

Specify the installation directory for internal executables of GCC.
The default is exec-prefix/libexec.

--with-slibdir=dirname

Specify the installation directory for the shared libgcc library. The
default is libdir.

--datarootdir=dirname

Specify the root of the directory tree for read-only architecture-
independent data files referenced by GCC. The default is
prefix/share.

--infodir=dirname

Specify the installation directory for documentation in info format.
The default is datarootdir/info.

--datadir=dirname

Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is datarootdir.

--docdir=dirname

Specify the installation directory for documentation files (other
than Info) for GCC. The default is datarootdir/doc.

--htmldir=dirname

Specify the installation directory for HTML documentation files.
The default is docdir.

--pdfdir=dirname

Specify the installation directory for PDF documentation files. The
default is docdir.

--mandir=dirname

Specify the installation directory for manual pages. The default is
datarootdir/man. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

--with-gxx-include-dir=dirname

Specify the installation directory for G++ header files. The default
depends on other configuration options, and differs between cross
and native configurations.

14 No Title

--with-specs=specs

Specify additional command line driver SPECS. This can be useful
if you need to turn on a non-standard feature by default with-
out modifying the compiler’s source code, for instance --with-

specs=%{!fcommon:%{!fno-common:-fno-common}}. See Section
“Specifying subprocesses and the switches to pass to them” in Using
the GNU Compiler Collection (GCC),

--program-prefix=prefix

GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install
in bindir (see above). For example, specifying --program-prefix=foo- would
result in ‘gcc’ being installed as /usr/local/bin/foo-gcc.

--program-suffix=suffix

Appends suffix to the names of programs to install in bindir (see above). For ex-
ample, specifying --program-suffix=-3.1 would result in ‘gcc’ being installed
as /usr/local/bin/gcc-3.1.

--program-transform-name=pattern

Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
/usr/local/bin/myowngcc and the ‘g++’ program name to be transformed to
/usr/local/bin/gspecial++ without changing other program names, you
could use the pattern --program-transform-name=’s/^gcc$/myowngcc/;

s/^g++$/gspecial++/’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

For native builds, some of the installed programs are also installed with the
target alias in front of their name, as in ‘i686-pc-linux-gnu-gcc’. All of
the above transformations happen before the target alias is prepended to the
name—so, specifying --program-prefix=foo- and program-suffix=-3.1, the
resulting binary would be installed as /usr/local/bin/i686-pc-linux-gnu-
foo-gcc-3.1.

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname

Specify the installation directory for local include files. The default is
/usr/local. Specify this option if you want the compiler to search
directory dirname/include for locally installed header files instead of
/usr/local/include.

Chapter 4: Installing GCC: Configuration 15

You should specify --with-local-prefix only if your site has a different con-
vention (not /usr/local) for where to put site-specific files.

The default value for --with-local-prefix is /usr/local regardless of the
value of --prefix. Specifying --prefix has no effect on which directory GCC
searches for local header files. This may seem counterintuitive, but actually it
is logical.

The purpose of --prefix is to specify where to install GCC. The local header
files in /usr/local/include—if you put any in that directory—are not part of
GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the --prefix value.)

Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s “system include” directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of
system include directories is that pedantic warnings are turned off for headers
in these directories.

Some autoconf macros add -I directory options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.

GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in /usr.

Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the --program-prefix,
--program-suffix and --program-transform-name options to install
multiple versions into a single directory, but it may be simpler to use different
prefixes and the --with-local-prefix option to specify the location of the
site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).

The same value can be used for both --with-local-prefix and --prefix

provided it is not /usr. This can be used to avoid the default search of
/usr/local/include.

Do not specify /usr as the --with-local-prefix! The directory you use for
--with-local-prefix must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.

Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.

16 No Title

Perhaps they make this assumption because installing GCC creates the direc-
tory.

--with-gcc-major-version-only

Specifies that GCC should use only the major number rather than
major.minor.patchlevel in filesystem paths.

--with-native-system-header-dir=dirname

Specifies that dirname is the directory that contains native system header files,
rather than /usr/include. This option is most useful if you are creating a
compiler that should be isolated from the system as much as possible. It is
most commonly used with the --with-sysroot option and will cause GCC to
search dirname inside the system root specified by that option.

--enable-shared[=package[,...]]

Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries.

If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Pack-
age names currently recognized in the GCC tree are ‘libgcc’ (also known as
‘gcc’), ‘libstdc++’ (not ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ‘ada’,
‘libada’, ‘libgo’, ‘libobjc’, and ‘libphobos’. Note ‘libiberty’ does not sup-
port shared libraries at all.

Use --disable-shared to build only static libraries. Note that --disable-

shared does not accept a list of package names as argument, only --enable-

shared does.

Contrast with --enable-host-shared, which affects host code.

--enable-host-shared

Specify that the host code should be built into position-independent machine
code (with -fPIC), allowing it to be used within shared libraries, but yielding a
slightly slower compiler.

This option is required when building the libgccjit.so library.

Contrast with --enable-shared, which affects target libraries.

--with-gnu-as

Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with --with-gnu-as.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
--with-as=pathname or --with-build-time-tools=pathname.

The following systems are the only ones where it makes a difference whether you
use the GNU assembler. On any other system, --with-gnu-as has no effect.

• ‘hppa1.0-any-any’

• ‘hppa1.1-any-any’

Chapter 4: Installing GCC: Configuration 17

• ‘sparc-sun-solaris2.any’

• ‘sparc64-any-solaris2.any’

--with-as=pathname

Specify that the compiler should use the assembler pointed to by pathname,
rather than the one found by the standard rules to find an assembler, which
are:

• Unless GCC is being built with a cross compiler, check the
libexec/gcc/target/version directory. libexec defaults to
exec-prefix/libexec; exec-prefix defaults to prefix, which de-
faults to /usr/local unless overridden by the --prefix=pathname

switch described above. target is the target system triple, such as
‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as
3.0.

• If the target system is the same that you are building on, check operating
system specific directories (e.g. /usr/ccs/bin on Solaris 2).

• Check in the PATH for a tool whose name is prefixed by the target system
triple.

• Check in the PATH for a tool whose name is not prefixed by the target
system triple, if the host and target system triple are the same (in other
words, we use a host tool if it can be used for the target as well).

You may want to use --with-as if no assembler is installed in the directories
listed above, or if you have multiple assemblers installed and want to choose
one that is not found by the above rules.

--with-gnu-ld

Same as --with-gnu-as but for the linker.

--with-ld=pathname

Same as --with-as but for the linker.

--with-stabs

Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

--with-tls=dialect

Specify the default TLS dialect, for systems were there is a choice. For ARM
targets, possible values for dialect are gnu or gnu2, which select between the
original GNU dialect and the GNU TLS descriptor-based dialect.

--enable-multiarch

Specify whether to enable or disable multiarch support. The default is to check
for glibc start files in a multiarch location, and enable it if the files are found.
The auto detection is enabled for native builds, and for cross builds config-
ured with --with-sysroot, and without --with-native-system-header-dir.
More documentation about multiarch can be found at https://wiki.debian.
org/Multiarch.

#with-gnu-as
#with-as
https://wiki.debian.org/Multiarch
https://wiki.debian.org/Multiarch

18 No Title

--enable-sjlj-exceptions

Force use of the setjmp/longjmp-based scheme for exceptions. ‘configure’
ordinarily picks the correct value based on the platform. Only use this option
if you are sure you need a different setting.

--enable-vtable-verify

Specify whether to enable or disable the vtable verification feature. Enabling
this feature causes libstdc++ to be built with its virtual calls in verifiable mode.
This means that, when linked with libvtv, every virtual call in libstdc++ will
verify the vtable pointer through which the call will be made before actually
making the call. If not linked with libvtv, the verifier will call stub functions (in
libstdc++ itself) and do nothing. If vtable verification is disabled, then libstdc++
is not built with its virtual calls in verifiable mode at all. However the libvtv
library will still be built (see --disable-libvtv to turn off building libvtv).
--disable-vtable-verify is the default.

--disable-gcov

Specify that the run-time library used for coverage analysis and associated host
tools should not be built.

--disable-multilib

Specify that multiple target libraries to support different target variants, calling
conventions, etc. should not be built. The default is to build a predefined set
of them.

Some targets provide finer-grained control over which multilibs are built (e.g.,
--disable-softfloat):

arm-*-* fpu, 26bit, underscore, interwork, biendian, nofmult.

m68*-*-* softfloat, m68881, m68000, m68020.

mips*-*-*

single-float, biendian, softfloat.

msp430-*-*

no-exceptions

powerpc*-*-*, rs6000*-*-*

aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

--with-multilib-list=list

--without-multilib-list

Specify what multilibs to build. list is a comma separated list of values, possibly
consisting of a single value. Currently only implemented for aarch64*-*-*, arm*-
-, riscv*-*-*, sh*-*-* and x86-64-*-linux*. The accepted values and meaning
for each target is given below.

aarch64*-*-*

list is a comma separated list of ilp32, and lp64 to enable ILP32
and LP64 run-time libraries, respectively. If list is empty, then
there will be no multilibs and only the default run-time library will

Chapter 4: Installing GCC: Configuration 19

be built. If list is default or –with-multilib-list= is not specified,
then the default set of libraries is selected based on the value of
--target.

arm*-*-* list is a comma separated list of aprofile and rmprofile to build
multilibs for A or R and M architecture profiles respectively. Note
that, due to some limitation of the current multilib framework,
using the combined aprofile,rmprofile multilibs selects in some
cases a less optimal multilib than when using the multilib profile
for the architecture targetted. The special value default is also
accepted and is equivalent to omitting the option, i.e., only the
default run-time library will be enabled.

list may instead contain @name, to use the multilib configuration
Makefile fragment name in gcc/config/arm in the source
tree (it is part of the corresponding sources, after all). It is
recommended, but not required, that files used for this purpose
to be named starting with t-ml-, to make their intended purpose
self-evident, in line with GCC conventions. Such files enable
custom, user-chosen multilib lists to be configured. Whether
multiple such files can be used together depends on the contents
of the supplied files. See gcc/config/arm/t-multilib and its
supplementary gcc/config/arm/t-*profile files for an example
of what such Makefile fragments might look like for this version
of GCC. The macros expected to be defined in these fragments
are not stable across GCC releases, so make sure they define the
MULTILIB-related macros expected by the version of GCC you
are building. See Section “Target Makefile Fragments” in GNU
Compiler Collection (GCC) Internals.

The table below gives the combination of ISAs, architectures, FPUs
and floating-point ABIs for which multilibs are built for each pre-
defined profile. The union of these options is considered when spec-
ifying both aprofile and rmprofile.

Option aprofile rmprofile
ISAs -marm and -mthumb -mthumb

Architectures default architecture
-march=armv7-a

-march=armv7ve

-march=armv8-a

default architecture
-march=armv6s-m

-march=armv7-m

-march=armv7e-m

-march=armv8-m.base

-march=armv8-m.main

-march=armv7

FPUs none
-mfpu=vfpv3-d16

-mfpu=neon

-mfpu=vfpv4-d16

-mfpu=neon-vfpv4

-mfpu=neon-fp-armv8

none
-mfpu=vfpv3-d16

-mfpu=fpv4-sp-d16

-mfpu=fpv5-sp-d16

-mfpu=fpv5-d16

20 No Title

floating-point
ABIs

-mfloat-abi=soft

-mfloat-abi=softfp

-mfloat-abi=hard

-mfloat-abi=soft

-mfloat-abi=softfp

-mfloat-abi=hard

riscv*-*-*

list is a single ABI name. The target architecture must be either
rv32gc or rv64gc. This will build a single multilib for the specified
architecture and ABI pair. If --with-multilib-list is not given,
then a default set of multilibs is selected based on the value of
--target. This is usually a large set of multilibs.

sh*-*-* list is a comma separated list of CPU names. These must be of the
form sh* or m* (in which case they match the compiler option for
that processor). The list should not contain any endian options -
these are handled by --with-endian.

If list is empty, then there will be no multilibs for extra processors.
The multilib for the secondary endian remains enabled.

As a special case, if an entry in the list starts with a ! (exclamation
point), then it is added to the list of excluded multilibs. Entries
of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once
the leading ! has been stripped).

If --with-multilib-list is not given, then a default set of multi-
libs is selected based on the value of --target. This is usually the
complete set of libraries, but some targets imply a more specialized
subset.

Example 1: to configure a compiler for SH4A only, but supporting
both endians, with little endian being the default:

--with-cpu=sh4a --with-endian=little,big --with-multilib-list=

Example 2: to configure a compiler for both SH4A and SH4AL-
DSP, but with only little endian SH4AL:

--with-cpu=sh4a --with-endian=little,big \

--with-multilib-list=sh4al,!mb/m4al

x86-64-*-linux*

list is a comma separated list of m32, m64 and mx32 to enable 32-bit,
64-bit and x32 run-time libraries, respectively. If list is empty, then
there will be no multilibs and only the default run-time library will
be enabled.

If --with-multilib-list is not given, then only 32-bit and 64-bit
run-time libraries will be enabled.

--with-endian=endians

Specify what endians to use. Currently only implemented for sh*-*-*.

endians may be one of the following:

big Use big endian exclusively.

little Use little endian exclusively.

Chapter 4: Installing GCC: Configuration 21

big,little

Use big endian by default. Provide a multilib for little endian.

little,big

Use little endian by default. Provide a multilib for big endian.

--enable-threads

Specify that the target supports threads. This affects the Objective-C compiler
and runtime library, and exception handling for other languages like C++. On
some systems, this is the default.

In general, the best (and, in many cases, the only known) threading model
available will be configured for use. Beware that on some systems, GCC has
not been taught what threading models are generally available for the system.
In this case, --enable-threads is an alias for --enable-threads=single.

--disable-threads

Specify that threading support should be disabled for the system. This is an
alias for --enable-threads=single.

--enable-threads=lib

Specify that lib is the thread support library. This affects the Objective-C
compiler and runtime library, and exception handling for other languages like
C++. The possibilities for lib are:

aix AIX thread support.

dce DCE thread support.

lynx LynxOS thread support.

mipssde MIPS SDE thread support.

no This is an alias for ‘single’.

posix Generic POSIX/Unix98 thread support.

rtems RTEMS thread support.

single Disable thread support, should work for all platforms.

tpf TPF thread support.

vxworks VxWorks thread support.

win32 Microsoft Win32 API thread support.

--enable-tls

Specify that the target supports TLS (Thread Local Storage). Usually con-
figure can correctly determine if TLS is supported. In cases where it guesses
incorrectly, TLS can be explicitly enabled or disabled with --enable-tls or
--disable-tls. This can happen if the assembler supports TLS but the C
library does not, or if the assumptions made by the configure test are incorrect.

--disable-tls

Specify that the target does not support TLS. This is an alias for --enable-
tls=no.

22 No Title

--disable-tm-clone-registry

Disable TM clone registry in libgcc. It is enabled in libgcc by default. This
option helps to reduce code size for embedded targets which do not use trans-
actional memory.

--with-cpu=cpu

--with-cpu-32=cpu

--with-cpu-64=cpu

Specify which cpu variant the compiler should generate code for by default.
cpu will be used as the default value of the -mcpu= switch. This option is only
supported on some targets, including ARC, ARM, i386, M68k, PowerPC, and
SPARC. It is mandatory for ARC. The --with-cpu-32 and --with-cpu-64

options specify separate default CPUs for 32-bit and 64-bit modes; these options
are only supported for i386, x86-64, PowerPC, and SPARC.

--with-schedule=cpu

--with-arch=cpu

--with-arch-32=cpu

--with-arch-64=cpu

--with-tune=cpu

--with-tune-32=cpu

--with-tune-64=cpu

--with-abi=abi

--with-fpu=type

--with-float=type

These configure options provide default values for the -mschedule=, -march=,
-mtune=, -mabi=, and -mfpu= options and for -mhard-float or -msoft-float.
As with --with-cpu, which switches will be accepted and acceptable values of
the arguments depend on the target.

--with-mode=mode

Specify if the compiler should default to -marm or -mthumb. This option is only
supported on ARM targets.

--with-stack-offset=num

This option sets the default for the -mstack-offset=num option, and will thus
generally also control the setting of this option for libraries. This option is only
supported on Epiphany targets.

--with-fpmath=isa

This options sets -mfpmath=sse by default and specifies the default ISA for
floating-point arithmetics. You can select either ‘sse’ which enables -msse2 or
‘avx’ which enables -mavx by default. This option is only supported on i386
and x86-64 targets.

--with-fp-32=mode

On MIPS targets, set the default value for the -mfp option when using the o32
ABI. The possibilities for mode are:

32 Use the o32 FP32 ABI extension, as with the -mfp32 command-line
option.

Chapter 4: Installing GCC: Configuration 23

xx Use the o32 FPXX ABI extension, as with the -mfpxx command-
line option.

64 Use the o32 FP64 ABI extension, as with the -mfp64 command-line
option.

In the absence of this configuration option the default is to use the o32 FP32
ABI extension.

--with-odd-spreg-32

On MIPS targets, set the -modd-spreg option by default when using the o32
ABI.

--without-odd-spreg-32

On MIPS targets, set the -mno-odd-spreg option by default when using the
o32 ABI. This is normally used in conjunction with --with-fp-32=64 in order
to target the o32 FP64A ABI extension.

--with-nan=encoding

On MIPS targets, set the default encoding convention to use for the special not-
a-number (NaN) IEEE 754 floating-point data. The possibilities for encoding
are:

legacy Use the legacy encoding, as with the -mnan=legacy command-line
option.

2008 Use the 754-2008 encoding, as with the -mnan=2008 command-line
option.

To use this configuration option you must have an assembler version installed
that supports the -mnan= command-line option too. In the absence of this
configuration option the default convention is the legacy encoding, as when
neither of the -mnan=2008 and -mnan=legacy command-line options has been
used.

--with-divide=type

Specify how the compiler should generate code for checking for division by zero.
This option is only supported on the MIPS target. The possibilities for type
are:

traps Division by zero checks use conditional traps (this is the default on
systems that support conditional traps).

breaks Division by zero checks use the break instruction.

--with-llsc

OnMIPS targets, make -mllsc the default when no -mno-llsc option is passed.
This is the default for Linux-based targets, as the kernel will emulate them if
the ISA does not provide them.

--without-llsc

OnMIPS targets, make -mno-llsc the default when no -mllsc option is passed.

--with-synci

On MIPS targets, make -msynci the default when no -mno-synci option is
passed.

24 No Title

--without-synci

On MIPS targets, make -mno-synci the default when no -msynci option is
passed. This is the default.

--with-lxc1-sxc1

On MIPS targets, make -mlxc1-sxc1 the default when no -mno-lxc1-sxc1

option is passed. This is the default.

--without-lxc1-sxc1

On MIPS targets, make -mno-lxc1-sxc1 the default when no -mlxc1-sxc1

option is passed. The indexed load/store instructions are not directly a prob-
lem but can lead to unexpected behaviour when deployed in an application
intended for a 32-bit address space but run on a 64-bit processor. The issue is
seen because all known MIPS 64-bit Linux kernels execute o32 and n32 appli-
cations with 64-bit addressing enabled which affects the overflow behaviour of
the indexed addressing mode. GCC will assume that ordinary 32-bit arithmetic
overflow behaviour is the same whether performed as an addu instruction or as
part of the address calculation in lwxc1 type instructions. This assumption
holds true in a pure 32-bit environment and can hold true in a 64-bit environ-
ment if the address space is accurately set to be 32-bit for o32 and n32.

--with-madd4

On MIPS targets, make -mmadd4 the default when no -mno-madd4 option is
passed. This is the default.

--without-madd4

On MIPS targets, make -mno-madd4 the default when no -mmadd4 option is
passed. The madd4 instruction family can be problematic when targeting a com-
bination of cores that implement these instructions differently. There are two
known cores that implement these as fused operations instead of unfused (where
unfused is normally expected). Disabling these instructions is the only way to
ensure compatible code is generated; this will incur a performance penalty.

--with-mips-plt

On MIPS targets, make use of copy relocations and PLTs. These features are
extensions to the traditional SVR4-based MIPS ABIs and require support from
GNU binutils and the runtime C library.

--with-stack-clash-protection-guard-size=size

On certain targets this option sets the default stack clash protection guard size
as a power of two in bytes. On AArch64 size is required to be either 12 (4KB)
or 16 (64KB).

--enable-__cxa_atexit

Define if you want to use cxa atexit, rather than atexit, to register C++ de-
structors for local statics and global objects. This is essential for fully standards-
compliant handling of destructors, but requires cxa atexit in libc. This option
is currently only available on systems with GNU libc. When enabled, this will
cause -fuse-cxa-atexit to be passed by default.

Chapter 4: Installing GCC: Configuration 25

--enable-gnu-indirect-function

Define if you want to enable the ifunc attribute. This option is currently only
available on systems with GNU libc on certain targets.

--enable-target-optspace

Specify that target libraries should be optimized for code space instead of code
speed. This is the default for the m32r platform.

--with-cpp-install-dir=dirname

Specify that the user visible cpp program should be installed in
prefix/dirname/cpp, in addition to bindir.

--enable-comdat

Enable COMDAT group support. This is primarily used to override the auto-
matically detected value.

--enable-initfini-array

Force the use of sections .init_array and .fini_array (instead of .init and
.fini) for constructors and destructors. Option --disable-initfini-array

has the opposite effect. If neither option is specified, the configure script will
try to guess whether the .init_array and .fini_array sections are supported
and, if they are, use them.

--enable-link-mutex

When building GCC, use a mutex to avoid linking the compilers for multiple
languages at the same time, to avoid thrashing on build systems with limited
free memory. The default is not to use such a mutex.

--enable-maintainer-mode

The build rules that regenerate the Autoconf and Automake output files as
well as the GCC master message catalog gcc.pot are normally disabled. This
is because it can only be rebuilt if the complete source tree is present. If you
have changed the sources and want to rebuild the catalog, configuring with
--enable-maintainer-mode will enable this. Note that you need a recent
version of the gettext tools to do so.

--disable-bootstrap

For a native build, the default configuration is to perform a 3-stage bootstrap
of the compiler when ‘make’ is invoked, testing that GCC can compile itself cor-
rectly. If you want to disable this process, you can configure with --disable-

bootstrap.

--enable-bootstrap

In special cases, you may want to perform a 3-stage build even if the target and
host triplets are different. This is possible when the host can run code compiled
for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC
4.2, to do this you have to configure explicitly with --enable-bootstrap.

--enable-generated-files-in-srcdir

Neither the .c and .h files that are generated from Bison and flex nor the info
manuals and man pages that are built from the .texi files are present in the
repository development tree. When building GCC from that development tree,

26 No Title

or from one of our snapshots, those generated files are placed in your build
directory, which allows for the source to be in a readonly directory.

If you configure with --enable-generated-files-in-srcdir then those gen-
erated files will go into the source directory. This is mainly intended for generat-
ing release or prerelease tarballs of the GCC sources, since it is not a requirement
that the users of source releases to have flex, Bison, or makeinfo.

--enable-version-specific-runtime-libs

Specify that runtime libraries should be installed in the compiler specific subdi-
rectory (libdir/gcc) rather than the usual places. In addition, ‘libstdc++’’s
include files will be installed into libdir unless you overruled it by using
--with-gxx-include-dir=dirname. Using this option is particularly useful
if you intend to use several versions of GCC in parallel. The default is ‘yes’ for
‘libada’, and ‘no’ for the remaining libraries.

--with-aix-soname=‘aix’, ‘svr4’ or ‘both’

Traditional AIX shared library versioning (versioned Shared Object files as
members of unversioned Archive Library files named ‘lib.a’) causes numer-
ous headaches for package managers. However, Import Files as members of
Archive Library files allow for filename-based versioning of shared libraries as
seen on Linux/SVR4, where this is called the "SONAME". But as they prevent
static linking, Import Files may be used with Runtime Linking only, where
the linker does search for ‘libNAME.so’ before ‘libNAME.a’ library filenames
with the ‘-lNAME’ linker flag.

For detailed information please refer to the AIX ld Command reference.

As long as shared library creation is enabled, upon:

--with-aix-soname=aix

--with-aix-soname=both

A (traditional AIX) Shared Archive Library file is created:

• using the ‘libNAME.a’ filename scheme

• with the Shared Object file as archive member named
‘libNAME.so.V’ (except for ‘libgcc_s’, where the Shared

Object file is named ‘shr.o’ for backwards compatibility),
which

− is used for runtime loading from inside the ‘libNAME.a’
file

− is used for dynamic loading via dlopen("libNAME.a(libNAME.so.V)",
RTLD_MEMBER)

− is used for shared linking

− is used for static linking, so no separate Static Archive

Library file is needed

--with-aix-soname=both

--with-aix-soname=svr4

A (second) Shared Archive Library file is created:

• using the ‘libNAME.so.V’ filename scheme

https://www.ibm.com/support/knowledgecenter/search/%22the%20ld%20command%2C%20also%20called%20the%20linkage%20editor%20or%20binder%22

Chapter 4: Installing GCC: Configuration 27

• with the Shared Object file as archive member named ‘shr.o’,
which

− is created with the -G linker flag

− has the F_LOADONLY flag set

− is used for runtime loading from inside the ‘libNAME.so.V’
file

− is used for dynamic loading via dlopen("libNAME.so.V(shr.o)",
RTLD_MEMBER)

• with the Import File as archive member named ‘shr.imp’,
which

− refers to ‘libNAME.so.V(shr.o)’ as the "SONAME", to
be recorded in the Loader Section of subsequent binaries

− indicates whether ‘libNAME.so.V(shr.o)’ is 32 or 64 bit

− lists all the public symbols exported by
‘lib.so.V(shr.o)’, eventually decorated with
the ‘weak’ Keyword

− is necessary for shared linking against ‘lib.so.V(shr.o)’

A symbolic link using the ‘libNAME.so’ filename scheme is created:

• pointing to the ‘libNAME.so.V’ Shared Archive Library file

• to permit the ld Command to find ‘lib.so.V(shr.imp)’ via the
‘-lNAME’ argument (requires Runtime Linking to be enabled)

• to permit dynamic loading of ‘lib.so.V(shr.o)’
without the need to specify the version number via
dlopen("libNAME.so(shr.o)", RTLD_MEMBER)

As long as static library creation is enabled, upon:

--with-aix-soname=svr4

A Static Archive Library is created:

• using the ‘libNAME.a’ filename scheme

• with all the Static Object files as archive members, which

− are used for static linking

While the aix-soname=‘svr4’ option does not create Shared Object files as
members of unversioned Archive Library files any more, package managers
still are responsible to transfer Shared Object files found as member of a
previously installed unversioned Archive Library file into the newly installed
Archive Library file with the same filename.

WARNING: Creating Shared Object files with Runtime Linking enabled may
bloat the TOC, eventually leading to TOC overflow errors, requiring the use of
either the -Wl,-bbigtoc linker flag (seen to break with the GDB debugger) or
some of the TOC-related compiler flags, See Section “RS/6000 and PowerPC
Options” in Using the GNU Compiler Collection (GCC).

--with-aix-soname is currently supported by ‘libgcc_s’ only, so this option
is still experimental and not for normal use yet.

./specific.html#TransferAixShobj

28 No Title

Default is the traditional behavior --with-aix-soname=‘aix’.

--enable-languages=lang1,lang2,...

Specify that only a particular subset of compilers and their runtime libraries
should be built. For a list of valid values for langN you can issue the following
command in the gcc directory of your GCC source tree:

grep ^language= */config-lang.in

Currently, you can use any of the following: all, default, ada, c, c++, d,
fortran, go, jit, lto, objc, obj-c++. Building the Ada compiler has special
requirements, see below. If you do not pass this flag, or specify the option
default, then the default languages available in the gcc sub-tree will be con-
figured. Ada, D, Go, Jit, and Objective-C++ are not default languages. LTO is
not a default language, but is built by default because --enable-lto is enabled
by default. The other languages are default languages. If all is specified, then
all available languages are built. An exception is jit language, which requires
--enable-host-shared to be included with all.

--enable-stage1-languages=lang1,lang2,...

Specify that a particular subset of compilers and their runtime libraries should
be built with the system C compiler during stage 1 of the bootstrap process,
rather than only in later stages with the bootstrapped C compiler. The list
of valid values is the same as for --enable-languages, and the option all

will select all of the languages enabled by --enable-languages. This option
is primarily useful for GCC development; for instance, when a development
version of the compiler cannot bootstrap due to compiler bugs, or when one is
debugging front ends other than the C front end. When this option is used, one
can then build the target libraries for the specified languages with the stage-1
compiler by using make stage1-bubble all-target, or run the testsuite on the
stage-1 compiler for the specified languages using make stage1-start check-

gcc.

--disable-libada

Specify that the run-time libraries and tools used by GNAT should not be
built. This can be useful for debugging, or for compatibility with previous
Ada build procedures, when it was required to explicitly do a ‘make -C gcc

gnatlib_and_tools’.

--disable-libsanitizer

Specify that the run-time libraries for the various sanitizers should not be built.

--disable-libssp

Specify that the run-time libraries for stack smashing protection should not be
built or linked against. On many targets library support is provided by the C
library instead.

--disable-libquadmath

Specify that the GCC quad-precision math library should not be built. On
some systems, the library is required to be linkable when building the Fortran
front end, unless --disable-libquadmath-support is used.

Chapter 4: Installing GCC: Configuration 29

--disable-libquadmath-support

Specify that the Fortran front end and libgfortran do not add support for
libquadmath on systems supporting it.

--disable-libgomp

Specify that the GNU Offloading and Multi Processing Runtime Library should
not be built.

--disable-libvtv

Specify that the run-time libraries used by vtable verification should not be
built.

--with-dwarf2

Specify that the compiler should use DWARF 2 debugging information as the
default.

--with-advance-toolchain=at

On 64-bit PowerPC Linux systems, configure the compiler to use the header
files, library files, and the dynamic linker from the Advance Toolchain release
at instead of the default versions that are provided by the Linux distribution.
In general, this option is intended for the developers of GCC, and it is not
intended for general use.

--enable-targets=all

--enable-targets=target_list

Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are
compilers that are able to generate either 64-bit or 32-bit code. Typically,
the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only
generates 32-bit code. This option enables the 32-bit target to be a bi-arch
compiler, which is useful when you want a bi-arch compiler that defaults to
32-bit, and you are building a bi-arch or multi-arch binutils in a combined tree.
On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), defaulted
to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux,
mips-linux and s390-linux.

--enable-default-pie

Turn on -fPIE and -pie by default.

--enable-secureplt

This option enables -msecure-plt by default for powerpc-linux. See Section
“RS/6000 and PowerPC Options” in Using the GNU Compiler Collection
(GCC),

--enable-default-ssp

Turn on -fstack-protector-strong by default.

--enable-cld

This option enables -mcld by default for 32-bit x86 targets. See Section “i386
and x86-64 Options” in Using the GNU Compiler Collection (GCC),

--enable-large-address-aware

The --enable-large-address-aware option arranges for MinGW executables
to be linked using the --large-address-aware option, that enables the use of

30 No Title

more than 2GB of memory. If GCC is configured with this option, its effects
can be reversed by passing the -Wl,--disable-large-address-aware option
to the so-configured compiler driver.

--enable-win32-registry

--enable-win32-registry=key

--disable-win32-registry

The --enable-win32-registry option enables Microsoft Windows-hosted
GCC to look up installations paths in the registry using the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

key defaults to GCC version number, and can be overridden by the --enable-
win32-registry=key option. Vendors and distributors who use custom in-
stallers are encouraged to provide a different key, perhaps one comprised of
vendor name and GCC version number, to avoid conflict with existing installa-
tions. This feature is enabled by default, and can be disabled by --disable-

win32-registry option. This option has no effect on the other hosts.

--nfp Specify that the machine does not have a floating point unit. This option only
applies to ‘m68k-sun-sunosn’. On any other system, --nfp has no effect.

--enable-werror

--disable-werror

--enable-werror=yes

--enable-werror=no

When you specify this option, it controls whether certain files in the compiler
are built with -Werror in bootstrap stage2 and later. If you don’t specify it,
-Werror is turned on for the main development trunk. However it defaults to
off for release branches and final releases. The specific files which get -Werror
are controlled by the Makefiles.

--enable-checking

--disable-checking

--enable-checking=list

This option controls performing internal consistency checks in the compiler. It
does not change the generated code, but adds error checking of the requested
complexity. This slows down the compiler and may only work properly if you
are building the compiler with GCC.

When the option is not specified, the active set of checks depends on context.
Namely, bootstrap stage 1 defaults to ‘--enable-checking=yes’, builds from
release branches or release archives default to ‘--enable-checking=release’,
and otherwise ‘--enable-checking=yes,extra’ is used. When the option is
specified without a list, the result is the same as ‘--enable-checking=yes’.
Likewise, ‘--disable-checking’ is equivalent to ‘--enable-checking=no’.

The categories of checks available in list are ‘yes’ (most common checks
‘assert,misc,gc,gimple,rtlflag,runtime,tree,types’), ‘no’ (no checks at
all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest checks ‘assert,runtime’)
or ‘none’ (same as ‘no’). ‘release’ checks are always on and to disable them
‘--disable-checking’ or ‘--enable-checking=no[,<other checks>]’ must

Chapter 4: Installing GCC: Configuration 31

be explicitly requested. Disabling assertions makes the compiler and runtime
slightly faster but increases the risk of undetected internal errors causing
wrong code to be generated.

Individual checks can be enabled with these flags: ‘assert’, ‘df’, ‘extra’,
‘fold’, ‘gc’, ‘gcac’, ‘gimple’, ‘misc’, ‘rtl’, ‘rtlflag’, ‘runtime’, ‘tree’,
‘types’ and ‘valgrind’. ‘extra’ extends ‘misc’ checking with extra checks
that might affect code generation and should therefore not differ between
stage1 and later stages in bootstrap.

The ‘valgrind’ check requires the external valgrind simulator, available from
http://valgrind.org/. The ‘rtl’ checks are expensive and the ‘df’, ‘gcac’
and ‘valgrind’ checks are very expensive.

--disable-stage1-checking

--enable-stage1-checking

--enable-stage1-checking=list

This option affects only bootstrap build. If no --enable-checking option is
specified the stage1 compiler is built with ‘yes’ checking enabled, otherwise
the stage1 checking flags are the same as specified by --enable-checking. To
build the stage1 compiler with different checking options use --enable-stage1-
checking. The list of checking options is the same as for --enable-checking.
If your system is too slow or too small to bootstrap a released compiler with
checking for stage1 enabled, you can use ‘--disable-stage1-checking’ to dis-
able checking for the stage1 compiler.

--enable-coverage

--enable-coverage=level

With this option, the compiler is built to collect self coverage information, every
time it is run. This is for internal development purposes, and only works when
the compiler is being built with gcc. The level argument controls whether the
compiler is built optimized or not, values are ‘opt’ and ‘noopt’. For coverage
analysis you want to disable optimization, for performance analysis you want
to enable optimization. When coverage is enabled, the default level is without
optimization.

--enable-gather-detailed-mem-stats

When this option is specified more detailed information on memory allocation
is gathered. This information is printed when using -fmem-report.

--enable-valgrind-annotations

Mark selected memory related operations in the compiler when run under val-
grind to suppress false positives.

--enable-nls

--disable-nls

The --enable-nls option enables Native Language Support (NLS), which lets
GCC output diagnostics in languages other than American English. Native
Language Support is enabled by default if not doing a canadian cross build.
The --disable-nls option disables NLS.

http://valgrind.org/

32 No Title

--with-included-gettext

If NLS is enabled, the --with-included-gettext option causes the build pro-
cedure to prefer its copy of GNU gettext.

--with-catgets

If NLS is enabled, and if the host lacks gettext but has the inferior catgets
interface, the GCC build procedure normally ignores catgets and instead uses
GCC’s copy of the GNU gettext library. The --with-catgets option causes
the build procedure to use the host’s catgets in this situation.

--with-libiconv-prefix=dir

Search for libiconv header files in dir/include and libiconv library files in
dir/lib.

--enable-obsolete

Enable configuration for an obsoleted system. If you attempt to configure GCC
for a system (build, host, or target) which has been obsoleted, and you do not
specify this flag, configure will halt with an error message.

All support for systems which have been obsoleted in one release of GCC is
removed entirely in the next major release, unless someone steps forward to
maintain the port.

--enable-decimal-float

--enable-decimal-float=yes

--enable-decimal-float=no

--enable-decimal-float=bid

--enable-decimal-float=dpd

--disable-decimal-float

Enable (or disable) support for the C decimal floating point extension that is
in the IEEE 754-2008 standard. This is enabled by default only on PowerPC,
i386, and x86 64 GNU/Linux systems. Other systems may also support it,
but require the user to specifically enable it. You can optionally control which
decimal floating point format is used (either ‘bid’ or ‘dpd’). The ‘bid’ (binary
integer decimal) format is default on i386 and x86 64 systems, and the ‘dpd’
(densely packed decimal) format is default on PowerPC systems.

--enable-fixed-point

--disable-fixed-point

Enable (or disable) support for C fixed-point arithmetic. This option is enabled
by default for some targets (such as MIPS) which have hardware-support for
fixed-point operations. On other targets, you may enable this option manually.

--with-long-double-128

Specify if long double type should be 128-bit by default on selected
GNU/Linux architectures. If using --without-long-double-128, long

double will be by default 64-bit, the same as double type. When neither of
these configure options are used, the default will be 128-bit long double when
built against GNU C Library 2.4 and later, 64-bit long double otherwise.

Chapter 4: Installing GCC: Configuration 33

--with-long-double-format=ibm

--with-long-double-format=ieee

Specify whether long double uses the IBM extended double format or the
IEEE 128-bit floating point format on PowerPC Linux systems. This configu-
ration switch will only work on little endian PowerPC Linux systems and on
big endian 64-bit systems where the default cpu is at least power7 (i.e. --with-
cpu=power7, --with-cpu=power8, or --with-cpu=power9 is used).

If you use the --with-long-double-64 configuration option, the --with-long-
double-format=ibm and --with-long-double-format=ieee options are ig-
nored.

The default long double format is to use IBM extended double. Until all of the
libraries are converted to use IEEE 128-bit floating point, it is not recommended
to use --with-long-double-format=ieee.

On little endian PowerPC Linux systems, if you explicitly set the long double

type, it will build multilibs to allow you to select either long double format,
unless you disable multilibs with the --disable-multilib option. At present,
long double multilibs are not built on big endian PowerPC Linux systems. If
you are building multilibs, you will need to configure the compiler using the
--with-system-zlib option.

If you do not set the long double type explicitly, no multilibs will be generated.

--enable-fdpic

On SH Linux systems, generate ELF FDPIC code.

--with-gmp=pathname

--with-gmp-include=pathname

--with-gmp-lib=pathname

--with-mpfr=pathname

--with-mpfr-include=pathname

--with-mpfr-lib=pathname

--with-mpc=pathname

--with-mpc-include=pathname

--with-mpc-lib=pathname

If you want to build GCC but do not have the GMP library, the MPFR
library and/or the MPC library installed in a standard location and do not
have their sources present in the GCC source tree then you can explicitly
specify the directory where they are installed (‘--with-gmp=gmpinstalldir’,
‘--with-mpfr=mpfrinstalldir’, ‘--with-mpc=mpcinstalldir’). The
--with-gmp=gmpinstalldir option is shorthand for --with-gmp-lib=

gmpinstalldir/lib and --with-gmp-include=gmpinstalldir/include.
Likewise the --with-mpfr=mpfrinstalldir option is shorthand for
--with-mpfr-lib=mpfrinstalldir/lib and --with-mpfr-include=

mpfrinstalldir/include, also the --with-mpc=mpcinstalldir option
is shorthand for --with-mpc-lib=mpcinstalldir/lib and --with-mpc-

include=mpcinstalldir/include. If these shorthand assumptions are not
correct, you can use the explicit include and lib options directly. You might
also need to ensure the shared libraries can be found by the dynamic linker

34 No Title

when building and using GCC, for example by setting the runtime shared
library path variable (LD_LIBRARY_PATH on GNU/Linux and Solaris systems).

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-isl=pathname

--with-isl-include=pathname

--with-isl-lib=pathname

If you do not have the isl library installed in a standard location and you
want to build GCC, you can explicitly specify the directory where it is in-
stalled (‘--with-isl=islinstalldir’). The --with-isl=islinstalldir op-
tion is shorthand for --with-isl-lib=islinstalldir/lib and --with-isl-

include=islinstalldir/include. If this shorthand assumption is not correct,
you can use the explicit include and lib options directly.

These flags are applicable to the host platform only. When building a cross
compiler, they will not be used to configure target libraries.

--with-stage1-ldflags=flags

This option may be used to set linker flags to be used when linking stage 1 of
GCC. These are also used when linking GCC if configured with --disable-

bootstrap. If --with-stage1-libs is not set to a value, then the default is
‘-static-libstdc++ -static-libgcc’, if supported.

--with-stage1-libs=libs

This option may be used to set libraries to be used when linking stage 1 of
GCC. These are also used when linking GCC if configured with --disable-

bootstrap.

--with-boot-ldflags=flags

This option may be used to set linker flags to be used when linking stage 2 and
later when bootstrapping GCC. If –with-boot-libs is not is set to a value, then
the default is ‘-static-libstdc++ -static-libgcc’.

--with-boot-libs=libs

This option may be used to set libraries to be used when linking stage 2 and
later when bootstrapping GCC.

--with-debug-prefix-map=map

Convert source directory names using -fdebug-prefix-map when building run-
time libraries. ‘map’ is a space-separated list of maps of the form ‘old=new’.

--enable-linker-build-id

Tells GCC to pass --build-id option to the linker for all final links (links
performed without the -r or --relocatable option), if the linker supports it.
If you specify --enable-linker-build-id, but your linker does not support
--build-id option, a warning is issued and the --enable-linker-build-id

option is ignored. The default is off.

--with-linker-hash-style=choice

Tells GCC to pass --hash-style=choice option to the linker for all final links.
choice can be one of ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default.

Chapter 4: Installing GCC: Configuration 35

--enable-gnu-unique-object

--disable-gnu-unique-object

Tells GCC to use the gnu unique object relocation for C++ template static data
members and inline function local statics. Enabled by default for a toolchain
with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled.

--with-diagnostics-color=choice

Tells GCC to use choice as the default for -fdiagnostics-color= option (if
not used explicitly on the command line). choice can be one of ‘never’, ‘auto’,
‘always’, and ‘auto-if-env’ where ‘auto’ is the default. ‘auto-if-env’ makes
-fdiagnostics-color=auto the default if GCC_COLORS is present and non-
empty in the environment of the compiler, and -fdiagnostics-color=never

otherwise.

--with-diagnostics-urls=choice

Tells GCC to use choice as the default for -fdiagnostics-urls= option
(if not used explicitly on the command line). choice can be one of
‘never’, ‘auto’, ‘always’, and ‘auto-if-env’ where ‘auto’ is the default.
‘auto-if-env’ makes -fdiagnostics-urls=auto the default if GCC_URLS or
TERM_URLS is present and non-empty in the environment of the compiler, and
-fdiagnostics-urls=never otherwise.

--enable-lto

--disable-lto

Enable support for link-time optimization (LTO). This is enabled by default,
and may be disabled using --disable-lto.

--enable-linker-plugin-configure-flags=FLAGS

--enable-linker-plugin-flags=FLAGS

By default, linker plugins (such as the LTO plugin) are built for the host sys-
tem architecture. For the case that the linker has a different (but run-time
compatible) architecture, these flags can be specified to build plugins that
are compatible to the linker. For example, if you are building GCC for a
64-bit x86 64 (‘x86_64-pc-linux-gnu’) host system, but have a 32-bit x86
GNU/Linux (‘i686-pc-linux-gnu’) linker executable (which is executable on
the former system), you can configure GCC as follows for getting compatible
linker plugins:

% srcdir/configure \

--host=x86_64-pc-linux-gnu \

--enable-linker-plugin-configure-flags=--host=i686-pc-linux-gnu \

--enable-linker-plugin-flags=’CC=gcc\ -m32\ -Wl,-rpath,[...]/i686-pc-linux-

gnu/lib’

--with-plugin-ld=pathname

Enable an alternate linker to be used at link-time optimization (LTO) link time
when -fuse-linker-plugin is enabled. This linker should have plugin support
such as gold starting with version 2.20 or GNU ld starting with version 2.21.
See -fuse-linker-plugin for details.

36 No Title

--enable-canonical-system-headers

--disable-canonical-system-headers

Enable system header path canonicalization for libcpp. This can produce
shorter header file paths in diagnostics and dependency output files, but these
changed header paths may conflict with some compilation environments. En-
abled by default, and may be disabled using --disable-canonical-system-

headers.

--with-glibc-version=major.minor

Tell GCC that when the GNU C Library (glibc) is used on the target it will be
versionmajor.minor or later. Normally this can be detected from the C library’s
header files, but this option may be needed when bootstrapping a cross toolchain
without the header files available for building the initial bootstrap compiler.

If GCC is configured with some multilibs that use glibc and some that do
not, this option applies only to the multilibs that use glibc. However, such
configurations may not work well as not all the relevant configuration in GCC
is on a per-multilib basis.

--enable-as-accelerator-for=target

Build as offload target compiler. Specify offload host triple by target.

--enable-offload-targets=target1[=path1],...,targetN[=pathN]

Enable offloading to targets target1, . . . , targetN. Offload compilers are ex-
pected to be already installed. Default search path for them is exec-prefix,
but it can be changed by specifying paths path1, . . . , pathN.

% srcdir/configure \

--enable-offload-targets=x86_64-intelmicemul-linux-gnu=/path/to/x86_64/compiler,nvptx-

none,hsa

If ‘hsa’ is specified as one of the targets, the compiler will be built with support
for HSA GPU accelerators. Because the same compiler will emit the accelerator
code, no path should be specified.

--with-hsa-runtime=pathname

--with-hsa-runtime-include=pathname

--with-hsa-runtime-lib=pathname

If you configure GCC with HSA offloading but do not have the HSA run-
time library installed in a standard location then you can explicitly specify the
directory where they are installed. The --with-hsa-runtime=hsainstalldir
option is a shorthand for --with-hsa-runtime-lib=hsainstalldir/lib and
--with-hsa-runtime-include=hsainstalldir/include.

--enable-cet

--disable-cet

Enable building target run-time libraries with control-flow instrumentation, see
-fcf-protection option. When --enable-cet is specified target libraries are
configured to add -fcf-protection and, if needed, other target specific options
to a set of building options.

The option is disabled by default. When --enable-cet=auto is used, it is
enabled on Linux/x86 if target binutils supports Intel CET instructions and

Chapter 4: Installing GCC: Configuration 37

disabled otherwise. In this case the target libraries are configured to get addi-
tional -fcf-protection option.

--with-riscv-attribute=‘yes’, ‘no’ or ‘default’

Generate RISC-V attribute by default, in order to record extra build informa-
tion in object.

The option is disabled by default. It is enabled on RISC-V/ELF (bare-metal)
target if target binutils supported.

Cross-Compiler-Specific Options

The following options only apply to building cross compilers.

--with-toolexeclibdir=dir

Specify the installation directory for libraries built with a cross compiler. The
default is ${gcc_tooldir}/lib.

--with-sysroot

--with-sysroot=dir

Tells GCC to consider dir as the root of a tree that contains (a subset of) the
root filesystem of the target operating system. Target system headers, libraries
and run-time object files will be searched for in there. More specifically, this acts
as if --sysroot=dir was added to the default options of the built compiler. The
specified directory is not copied into the install tree, unlike the options --with-
headers and --with-libs that this option obsoletes. The default value, in case
--with-sysroot is not given an argument, is ${gcc_tooldir}/sys-root. If
the specified directory is a subdirectory of ${exec_prefix}, then it will be
found relative to the GCC binaries if the installation tree is moved.

This option affects the system root for the compiler used to build target libraries
(which runs on the build system) and the compiler newly installed with make

install; it does not affect the compiler which is used to build GCC itself.

If you specify the --with-native-system-header-dir=dirname option then
the compiler will search that directory within dirname for native system headers
rather than the default /usr/include.

--with-build-sysroot

--with-build-sysroot=dir

Tells GCC to consider dir as the system root (see --with-sysroot) while build-
ing target libraries, instead of the directory specified with --with-sysroot.
This option is only useful when you are already using --with-sysroot. You
can use --with-build-sysroot when you are configuring with --prefix set
to a directory that is different from the one in which you are installing GCC
and your target libraries.

This option affects the system root for the compiler used to build target libraries
(which runs on the build system); it does not affect the compiler which is used
to build GCC itself.

If you specify the --with-native-system-header-dir=dirname option then
the compiler will search that directory within dirname for native system headers
rather than the default /usr/include.

38 No Title

--with-headers

--with-headers=dir

Deprecated in favor of --with-sysroot. Specifies that target headers are
available when building a cross compiler. The dir argument specifies a di-
rectory which has the target include files. These include files will be copied into
the gcc install directory. This option with the dir argument is required when
building a cross compiler, if prefix/target/sys-include doesn’t pre-exist. If
prefix/target/sys-include does pre-exist, the dir argument may be omit-
ted. fixincludes will be run on these files to make them compatible with
GCC.

--without-headers

Tells GCC not use any target headers from a libc when building a cross compiler.
When crossing to GNU/Linux, you need the headers so GCC can build the
exception handling for libgcc.

--with-libs

--with-libs="dir1 dir2 ... dirN"

Deprecated in favor of --with-sysroot. Specifies a list of directories which
contain the target runtime libraries. These libraries will be copied into the gcc
install directory. If the directory list is omitted, this option has no effect.

--with-newlib

Specifies that ‘newlib’ is being used as the target C library. This causes __

eprintf to be omitted from libgcc.a on the assumption that it will be pro-
vided by ‘newlib’.

--with-avrlibc

Only supported for the AVR target. Specifies that ‘AVR-Libc’ is being used
as the target C library. This causes float support functions like __addsf3

to be omitted from libgcc.a on the assumption that it will be provided by
libm.a. For more technical details, cf. PR54461. It is not supported for
RTEMS configurations, which currently use newlib. The option is supported
since version 4.7.2 and is the default in 4.8.0 and newer.

--with-double={32|64|32,64|64,32}

--with-long-double={32|64|32,64|64,32|double}

Only supported for the AVR target since version 10. Specify the default layout
available for the C/C++ ‘double’ and ‘long double’ type, respectively. The
following rules apply:

• The first value after the ‘=’ specifies the default layout (in bits) of the type
and also the default for the -mdouble= resp. -mlong-double= compiler
option.

• If more than one value is specified, respective multilib variants are available,
and -mdouble= resp. -mlong-double= acts as a multilib option.

• If --with-long-double=double is specified, ‘double’ and ‘long double’
will have the same layout.

• The defaults are --with-long-double=64,32 and --with-double=32,64.
The default ‘double’ layout imposed by the latter is compatible with older

http://gcc.gnu.org/PR54461

Chapter 4: Installing GCC: Configuration 39

versions of the compiler that implement ‘double’ as a 32-bit type, which
does not comply to the language standard.

Not all combinations of --with-double= and --with-long-double= are valid.
For example, the combination --with-double=32,64 --with-long-double=32

will be rejected because the first option specifies the availability of multilibs for
‘double’, whereas the second option implies that ‘long double’ — and hence
also ‘double’ — is always 32 bits wide.

--with-double-comparison={tristate|bool|libf7}

Only supported for the AVR target since version 10. Specify what result for-
mat is returned by library functions that compare 64-bit floating point values
(DFmode). The GCC default is ‘tristate’. If the floating point implementation
returns a boolean instead, set it to ‘bool’.

--with-libf7={libgcc|math|math-symbols|no}

Only supported for the AVR target since version 10. Specify to which degree
code from LibF7 is included in libgcc. LibF7 is an ad-hoc, AVR-specific, 64-bit
floating point emulation written in C and (inline) assembly. ‘libgcc’ adds sup-
port for functions that one would usually expect in libgcc like double addition,
double comparisons and double conversions. ‘math’ also adds routines that one
would expect in libm.a, but with __ (two underscores) prepended to the sym-
bol names as specified by math.h. ‘math-symbols’ also defines weak aliases
for the functions declared in math.h. However, --with-libf7 won’t install no
math.h header file whatsoever, this file must come from elsewhere. This option
sets --with-double-comparison to ‘bool’.

--with-nds32-lib=library

Specifies that library setting is used for building libgcc.a. Currently, the valid
library is ‘newlib’ or ‘mculib’. This option is only supported for the NDS32
target.

--with-build-time-tools=dir

Specifies where to find the set of target tools (assembler, linker, etc.) that will
be used while building GCC itself. This option can be useful if the directory
layouts are different between the system you are building GCC on, and the
system where you will deploy it.

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU assembler
and linker in /usr/bin, and the native tools in a different path, and build a
toolchain that expects to find the native tools in /usr/bin.

When you use this option, you should ensure that dir includes ar, as, ld, nm,
ranlib and strip if necessary, and possibly objdump. Otherwise, GCC may
use an inconsistent set of tools.

Overriding configure test results

Sometimes, it might be necessary to override the result of some configure test, for example
in order to ease porting to a new system or work around a bug in a test. The toplevel
configure script provides three variables for this:

40 No Title

build_configargs

The contents of this variable is passed to all build configure scripts.

host_configargs

The contents of this variable is passed to all host configure scripts.

target_configargs

The contents of this variable is passed to all target configure scripts.

In order to avoid shell and make quoting issues for complex overrides, you can pass a
setting for CONFIG_SITE and set variables in the site file.

Objective-C-Specific Options

The following options apply to the build of the Objective-C runtime library.

--enable-objc-gc

Specify that an additional variant of the GNU Objective-C runtime library is
built, using an external build of the Boehm-Demers-Weiser garbage collector
(https://www.hboehm.info/gc/). This library needs to be available for each
multilib variant, unless configured with --enable-objc-gc=‘auto’ in which
case the build of the additional runtime library is skipped when not available
and the build continues.

--with-target-bdw-gc=list

--with-target-bdw-gc-include=list

--with-target-bdw-gc-lib=list

Specify search directories for the garbage collector header files and libraries. list
is a comma separated list of key value pairs of the form ‘multilibdir=path’,
where the default multilib key is named as ‘.’ (dot), or is omitted (e.g.
‘--with-target-bdw-gc=/opt/bdw-gc,32=/opt-bdw-gc32’).

The options --with-target-bdw-gc-include and --with-target-bdw-gc-

lib must always be specified together for each multilib variant and they take
precedence over --with-target-bdw-gc. If --with-target-bdw-gc-include
is missing values for a multilib, then the value for the default multilib
is used (e.g. ‘--with-target-bdw-gc-include=/opt/bdw-gc/include’
‘--with-target-bdw-gc-lib=/opt/bdw-gc/lib64,32=/opt-bdw-gc/lib32’).
If none of these options are specified, the library is assumed in default
locations.

D-Specific Options

The following options apply to the build of the D runtime library.

--enable-libphobos-checking

--disable-libphobos-checking

--enable-libphobos-checking=list

This option controls whether run-time checks and contracts are compiled
into the D runtime library. When the option is not specified, the library
is built with ‘release’ checking. When the option is specified without a
list, the result is the same as ‘--enable-libphobos-checking=yes’.

https://www.hboehm.info/gc/

41

Likewise, ‘--disable-libphobos-checking’ is equivalent to
‘--enable-libphobos-checking=no’.

The categories of checks available in list are ‘yes’ (compiles libphobos with
-fno-release), ‘no’ (compiles libphobos with -frelease), ‘all’ (same as
‘yes’), ‘none’ or ‘release’ (same as ‘no’).

Individual checks available in list are ‘assert’ (compiles libphobos with an
extra option -fassert).

--with-libphobos-druntime-only

--with-libphobos-druntime-only=choice

Specify whether to build only the core D runtime library (druntime), or both
the core and standard library (phobos) into libphobos. This is useful for targets
that have full support in druntime, but no or incomplete support in phobos.
choice can be one of ‘auto’, ‘yes’, and ‘no’ where ‘auto’ is the default.

When the option is not specified, the default choice ‘auto’ means that it
is inferred whether the target has support for the phobos standard library.
When the option is specified without a choice, the result is the same as
‘--with-libphobos-druntime-only=yes’.

--with-target-system-zlib

Use installed ‘zlib’ rather than that included with GCC. This needs to be avail-
able for each multilib variant, unless configured with --with-target-system-

zlib=‘auto’ in which case the GCC included ‘zlib’ is only used when the
system installed library is not available.

43

5 Building

Now that GCC is configured, you are ready to build the compiler and runtime libraries.

Some commands executed when making the compiler may fail (return a nonzero status)
and be ignored by make. These failures, which are often due to files that were not found,
are expected, and can safely be ignored.

It is normal to have compiler warnings when compiling certain files. Unless you are
a GCC developer, you can generally ignore these warnings unless they cause compilation
to fail. Developers should attempt to fix any warnings encountered, however they can
temporarily continue past warnings-as-errors by specifying the configure flag --disable-

werror.

On certain old systems, defining certain environment variables such as CC can interfere
with the functioning of make.

If you encounter seemingly strange errors when trying to build the compiler in a directory
other than the source directory, it could be because you have previously configured the
compiler in the source directory. Make sure you have done all the necessary preparations.

If you build GCC on a BSD system using a directory stored in an old System V file
system, problems may occur in running fixincludes if the System V file system doesn’t
support symbolic links. These problems result in a failure to fix the declaration of size_t
in sys/types.h. If you find that size_t is a signed type and that type mismatches occur,
this could be the cause.

The solution is not to use such a directory for building GCC.

Similarly, when building from the source repository or snapshots, or if you modify *.l

files, you need the Flex lexical analyzer generator installed. If you do not modify *.l files,
releases contain the Flex-generated files and you do not need Flex installed to build them.
There is still one Flex-based lexical analyzer (part of the build machinery, not of GCC
itself) that is used even if you only build the C front end.

When building from the source repository or snapshots, or if you modify Texinfo docu-
mentation, you need version 4.7 or later of Texinfo installed if you want Info documentation
to be regenerated. Releases contain Info documentation pre-built for the unmodified docu-
mentation in the release.

5.1 Building a native compiler

For a native build, the default configuration is to perform a 3-stage bootstrap of the com-
piler when ‘make’ is invoked. This will build the entire GCC system and ensure that it
compiles itself correctly. It can be disabled with the --disable-bootstrap parameter
to ‘configure’, but bootstrapping is suggested because the compiler will be tested more
completely and could also have better performance.

The bootstrapping process will complete the following steps:

• Build tools necessary to build the compiler.

• Perform a 3-stage bootstrap of the compiler. This includes building three times the
target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and
opcodes) if they have been individually linked or moved into the top level GCC source
tree before configuring.

44 No Title

• Perform a comparison test of the stage2 and stage3 compilers.

• Build runtime libraries using the stage3 compiler from the previous step.

If you are short on disk space you might consider ‘make bootstrap-lean’ instead. The
sequence of compilation is the same described above, but object files from the stage1 and
stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer
needed.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’. For example, if you want to save
additional space during the bootstrap and in the final installation as well, you can build
the compiler binaries without debugging information as in the following example. This will
save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries
will still contain debugging information.)

make BOOT_CFLAGS=’-O’ bootstrap

You can place non-default optimization flags into BOOT_CFLAGS; they are less well tested
here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that
you need to specify special flags such as -msoft-float here to complete the bootstrap; or,
if the native compiler miscompiles the stage1 compiler, you may need to work around this,
by choosing BOOT_CFLAGS to avoid the parts of the stage1 compiler that were miscompiled,
or by using ‘make bootstrap4’ to increase the number of stages of bootstrap.

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always
compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET
to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the
native compiler miscompiles the stage1 compiler, you may need to work around this by
avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end.

If you used the flag --enable-languages=... to restrict the compilers to be built, only
those you’ve actually enabled will be built. This will of course only build those runtime
libraries, for which the particular compiler has been built. Please note, that re-defining
LANGUAGES when calling ‘make’ does not work anymore!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2
compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which
you should investigate and report. (On a few systems, meaningful comparison of object
files is impossible; they always appear “different”. If you encounter this problem, you will
need to disable comparison in the Makefile.)

If you do not want to bootstrap your compiler, you can configure with --disable-

bootstrap. In particular cases, you may want to bootstrap your compiler even if the target
system is not the same as the one you are building on: for example, you could build a
powerpc-unknown-linux-gnu toolchain on a powerpc64-unknown-linux-gnu host. In this
case, pass --enable-bootstrap to the configure script.

BUILD_CONFIG can be used to bring in additional customization to the build. It can be
set to a whitespace-separated list of names. For each such NAME, top-level config/NAME.mk
will be included by the top-level Makefile, bringing in any settings it contains. The default
BUILD_CONFIG can be set using the configure option --with-build-config=NAME.... Some
examples of supported build configurations are:

Chapter 5: Building 45

‘bootstrap-O1’
Removes any -O-started option from BOOT_CFLAGS, and adds -O1 to it.
‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ‘BOOT_CFLAGS=’-g -O1’’.

‘bootstrap-O3’
‘bootstrap-Og’

Analogous to bootstrap-O1.

‘bootstrap-lto’
Enables Link-Time Optimization for host tools during bootstrapping.
‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding -flto to
‘BOOT_CFLAGS’. This option assumes that the host supports the linker plugin
(e.g. GNU ld version 2.21 or later or GNU gold version 2.21 or later).

‘bootstrap-lto-noplugin’
This option is similar to bootstrap-lto, but is intended for hosts that do not
support the linker plugin. Without the linker plugin static libraries are not
compiled with link-time optimizations. Since the GCC middle end and back
end are in libbackend.a this means that only the front end is actually LTO
optimized.

‘bootstrap-lto-lean’
This option is similar to bootstrap-lto, but is intended for faster build by
only using LTO in the final bootstrap stage. With ‘make profiledbootstrap’
the LTO frontend is trained only on generator files.

‘bootstrap-debug’
Verifies that the compiler generates the same executable code, whether or not
it is asked to emit debug information. To this end, this option builds stage2
host programs without debug information, and uses contrib/compare-debug
to compare them with the stripped stage3 object files. If BOOT_CFLAGS is over-
ridden so as to not enable debug information, stage2 will have it, and stage3
won’t. This option is enabled by default when GCC bootstrapping is enabled,
if strip can turn object files compiled with and without debug info into iden-
tical object files. In addition to better test coverage, this option makes default
bootstraps faster and leaner.

‘bootstrap-debug-big’
Rather than comparing stripped object files, as in bootstrap-debug, this op-
tion saves internal compiler dumps during stage2 and stage3 and compares them
as well, which helps catch additional potential problems, but at a great cost in
terms of disk space. It can be specified in addition to ‘bootstrap-debug’.

‘bootstrap-debug-lean’
This option saves disk space compared with bootstrap-debug-big, but at the
expense of some recompilation. Instead of saving the dumps of stage2 and
stage3 until the final compare, it uses -fcompare-debug to generate, compare
and remove the dumps during stage3, repeating the compilation that already
took place in stage2, whose dumps were not saved.

46 No Title

‘bootstrap-debug-lib’
This option tests executable code invariance over debug information generation
on target libraries, just like bootstrap-debug-lean tests it on host programs.
It builds stage3 libraries with -fcompare-debug, and it can be used along with
any of the bootstrap-debug options above.

There aren’t -lean or -big counterparts to this option because most libraries
are only build in stage3, so bootstrap compares would not get significant cov-
erage. Moreover, the few libraries built in stage2 are used in stage3 host pro-
grams, so we wouldn’t want to compile stage2 libraries with different options
for comparison purposes.

‘bootstrap-debug-ckovw’
Arranges for error messages to be issued if the compiler built on any
stage is run without the option -fcompare-debug. This is useful to verify
the full -fcompare-debug testing coverage. It must be used along with
bootstrap-debug-lean and bootstrap-debug-lib.

‘bootstrap-cet’
This option enables Intel CET for host tools during bootstrapping.
‘BUILD_CONFIG=bootstrap-cet’ is equivalent to adding -fcf-protection to
‘BOOT_CFLAGS’. This option assumes that the host supports Intel CET (e.g.
GNU assembler version 2.30 or later).

‘bootstrap-time’
Arranges for the run time of each program started by the GCC driver, built in
any stage, to be logged to time.log, in the top level of the build tree.

5.2 Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the
compiler. This makes for an interesting problem as parts of GCC can only be built with
GCC.

To build a cross compiler, we recommend first building and installing a native compiler.
You can then use the native GCC compiler to build the cross compiler. The installed native
compiler needs to be GCC version 2.95 or later.

Assuming you have already installed a native copy of GCC and configured your cross
compiler, issue the command make, which performs the following steps:

• Build host tools necessary to build the compiler.

• Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld,
and opcodes) if they have been individually linked or moved into the top level GCC
source tree before configuring.

• Build the compiler (single stage only).

• Build runtime libraries using the compiler from the previous step.

Note that if an error occurs in any step the make process will exit.

If you are not building GNU binutils in the same source tree as GCC, you will need a
cross-assembler and cross-linker installed before configuring GCC. Put them in the directory
prefix/target/bin. Here is a table of the tools you should put in this directory:

Chapter 5: Building 47

as This should be the cross-assembler.

ld This should be the cross-linker.

ar This should be the cross-archiver: a program which can manipulate archive files
(linker libraries) in the target machine’s format.

ranlib This should be a program to construct a symbol table in an archive file.

The installation of GCC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package. Configure it with
the same --host and --target options that you use for configuring GCC, then build and
install them. They install their executables automatically into the proper directory. Alas,
they do not support all the targets that GCC supports.

If you are not building a C library in the same source tree as GCC, you should also
provide the target libraries and headers before configuring GCC, specifying the directories
with --with-sysroot or --with-headers and --with-libs. Many targets also require
“start files” such as crt0.o and crtn.o which are linked into each executable. There may
be several alternatives for crt0.o, for use with profiling or other compilation options. Check
your target’s definition of STARTFILE_SPEC to find out what start files it uses.

5.3 Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support building in parallel.
To activate this, you can use ‘make -j 2’ instead of ‘make’. You can also specify a bigger
number, and in most cases using a value greater than the number of processors in your
machine will result in fewer and shorter I/O latency hits, thus improving overall throughput;
this is especially true for slow drives and network filesystems.

5.4 Building the Ada compiler

[GNAT-prerequisite], page 3.

5.5 Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in
a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7
percent speedup on compiling C programs. To bootstrap the compiler with profile feedback,
use make profiledbootstrap.

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This com-
piler is used to build a stageprofile compiler instrumented to collect execution counts of
instruction and branch probabilities. Training run is done by building stagetrain compiler.
Finally a stagefeedback compiler is built using the information collected.

Unlike standard bootstrap, several additional restrictions apply. The compiler used to
build stage1 needs to support a 64-bit integral type. It is recommended to only use GCC
for this.

On Linux/x86 64 hosts with some restrictions (no virtualization) it is also possible to
do autofdo build with ‘make autoprofiledback’. This uses Linux perf to sample branches

48 No Title

in the binary and then rebuild it with feedback derived from the profile. Linux perf and
the autofdo toolkit needs to be installed for this.

Only the profile from the current build is used, so when an error occurs it is recommended
to clean before restarting. Otherwise the code quality may be much worse.

49

6 Installing GCC: Testing

Before you install GCC, we encourage you to run the testsuites and to compare your results
with results from a similar configuration that have been submitted to the gcc-testresults
mailing list. Some of these archived results are linked from the build status lists at http://
gcc.gnu.org/buildstat.html, although not everyone who reports a successful build runs
the testsuites and submits the results. This step is optional and may require you to download
additional software, but it can give you confidence in your new GCC installation or point
out problems before you install and start using your new GCC.

First, you must have downloaded the testsuites. These are part of the full distribution,
but if you downloaded the “core” compiler plus any front ends, you must download the
testsuites separately.

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and
Expect; the DejaGnu site has links to these. For running the BRIG frontend tests, a tool
to assemble the binary BRIGs from HSAIL text, HSAILasm must be installed.

If the directories where runtest and expect were installed are not in the PATH, you may
need to set the following environment variables appropriately, as in the following example
(which assumes that DejaGnu has been installed under /usr/local):

TCL_LIBRARY = /usr/local/share/tcl8.0

DEJAGNULIBS = /usr/local/share/dejagnu

(On systems such as Cygwin, these paths are required to be actual paths, not mounts
or links; presumably this is due to some lack of portability in the DejaGnu code.)

Finally, you can run the testsuite (which may take a long time):
cd objdir; make -k check

This will test various components of GCC, such as compiler front ends and runtime
libraries. While running the testsuite, DejaGnu might emit some harmless messages resem-
bling ‘WARNING: Couldn’t find the global config file.’ or ‘WARNING: Couldn’t find

tool init file’ that can be ignored.

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as
described at http://gcc.gnu.org/simtest-howto.html.

6.1 How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ‘make check-gcc’ and language
specific ‘make check-c’, ‘make check-c++’, ‘make check-d’ ‘make check-fortran’, ‘make
check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ‘make check-lto’ in the gcc sub-
directory of the object directory. You can also just run ‘make check’ in a subdirectory of
the object directory.

A more selective way to just run all gcc execute tests in the testsuite is to use
make check-gcc RUNTESTFLAGS="execute.exp other-options"

Likewise, in order to run only the g++ “old-deja” tests in the testsuite with filenames
matching ‘9805*’, you would use

make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"

The file-matching expression following filename.exp= is treated as a series of whitespace-
delimited glob expressions so that multiple patterns may be passed, although any whitespace

http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/ml/gcc-testresults/
http://gcc.gnu.org/buildstat.html
http://gcc.gnu.org/buildstat.html
download.html
http://www.gnu.org/software/dejagnu/
https://github.com/HSAFoundation/HSAIL-Tools/
http://gcc.gnu.org/simtest-howto.html

50 No Title

must either be escaped or surrounded by single quotes if multiple expressions are desired.
For example,

make check-g++ RUNTESTFLAGS="old-deja.exp=9805*\ virtual2.c other-options"

make check-g++ RUNTESTFLAGS="’old-deja.exp=9805* virtual2.c’ other-options"

The *.exp files are located in the testsuite directories of the GCC source, the most
important ones being compile.exp, execute.exp, dg.exp and old-deja.exp. To get a
list of the possible *.exp files, pipe the output of ‘make check’ into a file and look at the
‘Runningexp’ lines.

6.2 Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ‘--target_board’ option of De-
jaGNU, either passed as part of ‘RUNTESTFLAGS’, or directly to runtest if you prefer to
work outside the makefiles. For example,

make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"

will run the standard g++ testsuites (“unix” is the target name for a standard native
testsuite situation), passing ‘-O3 -fmerge-constants’ to the compiler on every test, i.e.,
slashes separate options.

You can run the testsuites multiple times using combinations of options with a syntax
similar to the brace expansion of popular shells:

..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"

(Note the empty option caused by the trailing comma in the final group.) The following
will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all
possible combinations yourself:

--target_board=’arm-sim/-mhard-float/-O1 \

arm-sim/-mhard-float/-O2 \

arm-sim/-mhard-float/-O3 \

arm-sim/-mhard-float \

arm-sim/-msoft-float/-O1 \

arm-sim/-msoft-float/-O2 \

arm-sim/-msoft-float/-O3 \

arm-sim/-msoft-float’

They can be combined as many times as you wish, in arbitrary ways. This list:

..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"

will generate four combinations, all involving ‘-Wextra’.

The disadvantage to this method is that the testsuites are run in serial, which is a
waste on multiprocessor systems. For users with GNU Make and a shell which performs
brace expansion, you can run the testsuites in parallel by having the shell perform the
combinations and make do the parallel runs. Instead of using ‘--target_board’, use a
special makefile target:

make -jN check-testsuite//test-target/option1/option2/...

For example,

make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations
as described above. Note that this is currently only supported in the gcc subdirectory. (To
see how this works, try typing echo before the example given here.)

Chapter 6: Installing GCC: Testing 51

6.3 How to interpret test results

The result of running the testsuite are various *.sum and *.log files in the testsuite sub-
directories. The *.log files contain a detailed log of the compiler invocations and the
corresponding results, the *.sum files summarize the results. These summaries contain
status codes for all tests:

• PASS: the test passed as expected

• XPASS: the test unexpectedly passed

• FAIL: the test unexpectedly failed

• XFAIL: the test failed as expected

• UNSUPPORTED: the test is not supported on this platform

• ERROR: the testsuite detected an error

• WARNING: the testsuite detected a possible problem

It is normal for some tests to report unexpected failures. At the current time the testing
harness does not allow fine grained control over whether or not a test is expected to fail.
This problem should be fixed in future releases.

6.4 Submitting test results

If you want to report the results to the GCC project, use the contrib/test_summary shell
script. Start it in the objdir with

srcdir/contrib/test_summary -p your_commentary.txt \

-m gcc-testresults@gcc.gnu.org |sh

This script uses the Mail program to send the results, so make sure it is in your PATH.
The file your_commentary.txt is prepended to the testsuite summary and should contain
any special remarks you have on your results or your build environment. Please do not
edit the testsuite result block or the subject line, as these messages may be automatically
processed.

53

7 Installing GCC: Final installation

Now that GCC has been built (and optionally tested), you can install it with

cd objdir && make install

We strongly recommend to install into a target directory where there is no previous
version of GCC present. Also, the GNAT runtime should not be stripped, as this would
break certain features of the debugger that depend on this debugging information (catching
Ada exceptions for instance).

That step completes the installation of GCC; user level binaries can be found in
prefix/bin where prefix is the value you specified with the --prefix to configure (or
/usr/local by default). (If you specified --bindir, that directory will be used instead;
otherwise, if you specified --exec-prefix, exec-prefix/bin will be used.) Headers
for the C++ library are installed in prefix/include; libraries in libdir (normally
prefix/lib); internal parts of the compiler in libdir/gcc and libexecdir/gcc;
documentation in info format in infodir (normally prefix/info).

When installing cross-compilers, GCC’s executables are not only installed into bindir,
that is, exec-prefix/bin, but additionally into exec-prefix/target-alias/bin, if that
directory exists. Typically, such tooldirs hold target-specific binutils, including assembler
and linker.

Installation into a temporary staging area or into a chroot jail can be achieved with the
command

make DESTDIR=path-to-rootdir install

where path-to-rootdir is the absolute path of a directory relative to which all installation
paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet;
it will be created if necessary.

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler in-
stallation with e.g. ‘DESTDIR=rootdir’, then the directory rootdir/exec-prefix/target-

alias/bin will be filled with duplicated GCC executables only if it already exists, it will
not be created otherwise. This is regarded as a feature, not as a bug, because it gives
slightly more control to the packagers using the DESTDIR feature.

You can install stripped programs and libraries with

make install-strip

If you are bootstrapping a released version of GCC then please quickly review the build
status page for your release, available from http://gcc.gnu.org/buildstat.html. If your
system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org

indicating that you successfully built and installed GCC. Include the following information:

• Output from running srcdir/config.guess. Do not send that file itself, just the
one-line output from running it.

• The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of
GCC you built and the options you passed to configure.

• Whether you enabled all languages or a subset of them. If you used a full distribution
then this information is part of the configure options in the output of ‘gcc -v’, but if
you downloaded the “core” compiler plus additional front ends then it isn’t apparent
which ones you built unless you tell us about it.

http://gcc.gnu.org/buildstat.html
mailto:gcc@gcc.gnu.org

54 No Title

• If the build was for GNU/Linux, also include:

• The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); this infor-
mation should be available from /etc/issue.

• The version of the Linux kernel, available from ‘uname --version’ or ‘uname -a’.

• The version of glibc you used; for RPM-based systems like Red Hat, Mandrake,
and SuSE type ‘rpm -q glibc’ to get the glibc version, and on systems like Debian
and Progeny use ‘dpkg -l libc6’.

For other systems, you can include similar information if you think it is relevant.

• Any other information that you think would be useful to people building GCC on the
same configuration. The new entry in the build status list will include a link to the
archived copy of your message.

We’d also like to know if the Chapter 9 [Specific], page 57, didn’t include your
host/target information or if that information is incomplete or out of date. Send a note to
gcc@gcc.gnu.org detailing how the information should be changed.

If you find a bug, please report it following the bug reporting guidelines.

If you want to print the GCC manuals, do ‘cd objdir; make dvi’. You will need to have
texi2dvi (version at least 4.7) and TEX installed. This creates a number of .dvi files in
subdirectories of objdir; these may be converted for printing with programs such as dvips.
Alternately, by using ‘make pdf’ in place of ‘make dvi’, you can create documentation in
the form of .pdf files; this requires texi2pdf, which is included with Texinfo version 4.8
and later. You can also buy printed manuals from the Free Software Foundation, though
such manuals may not be for the most recent version of GCC.

If you would like to generate online HTML documentation, do ‘cd objdir; make html’
and HTML will be generated for the gcc manuals in objdir/gcc/HTML.

mailto:gcc@gcc.gnu.org
../bugs/
https://shop.fsf.org/

55

8 Installing GCC: Binaries

We are often asked about pre-compiled versions of GCC. While we cannot provide these for
all platforms, below you’ll find links to binaries for various platforms where creating them
by yourself is not easy due to various reasons.

Please note that we did not create these binaries, nor do we support them. If you have
any problems installing them, please contact their makers.

• AIX:

• Bull’s Open Source Software Archive for for AIX 6 and AIX 7;

• AIX Open Source Packages (AIX5L AIX 6.1 AIX 7.1).

• DOS—DJGPP.

• HP-UX:

• HP-UX Porting Center;

• Solaris 2 (SPARC, Intel):

• OpenCSW

• macOS:

• The Homebrew package manager;

• MacPorts.

• Microsoft Windows:

• The Cygwin project;

• The MinGW and mingw-w64 projects.

• OpenPKG offers binaries for quite a number of platforms.

• The GFortran Wiki has links to GNU Fortran binaries for several platforms.

http://www.bullfreeware.com
http://www.perzl.org/aix/
http://www.delorie.com/djgpp/
http://hpux.connect.org.uk/
https://www.opencsw.org/
https://brew.sh
https://www.macports.org
https://sourceware.org/cygwin/
http://www.mingw.org/
http://mingw-w64.org/doku.php
http://www.openpkg.org/
http://gcc.gnu.org/wiki/GFortranBinaries

57

9 Host/target specific installation notes for GCC

Please read this document carefully before installing the GNU Compiler Collection on your
machine.

Note that this list of install notes is not a list of supported hosts or targets. Not all
supported hosts and targets are listed here, only the ones that require host-specific or
target-specific information have to.

aarch64*-*-*

Binutils pre 2.24 does not have support for selecting -mabi and does not support ILP32. If
it is used to build GCC 4.9 or later, GCC will not support option -mabi=ilp32.

To enable a workaround for the Cortex-A53 erratum number 835769 by default (for
all CPUs regardless of -mcpu option given) at configure time use the --enable-fix-

cortex-a53-835769 option. This will enable the fix by default and can be explicitly
disabled during compilation by passing the -mno-fix-cortex-a53-835769 option.
Conversely, --disable-fix-cortex-a53-835769 will disable the workaround by default.
The workaround is disabled by default if neither of --enable-fix-cortex-a53-835769 or
--disable-fix-cortex-a53-835769 is given at configure time.

To enable a workaround for the Cortex-A53 erratum number 843419 by default (for all
CPUs regardless of -mcpu option given) at configure time use the --enable-fix-cortex-

a53-843419 option. This workaround is applied at link time. Enabling the workaround
will cause GCC to pass the relevant option to the linker. It can be explicitly disabled
during compilation by passing the -mno-fix-cortex-a53-843419 option. Conversely,
--disable-fix-cortex-a53-843419 will disable the workaround by default. The
workaround is disabled by default if neither of --enable-fix-cortex-a53-843419 or
--disable-fix-cortex-a53-843419 is given at configure time.

To enable Branch Target Identification Mechanism and Return Address Signing by de-
fault at configure time use the --enable-standard-branch-protection option. This is
equivalent to having -mbranch-protection=standard during compilation. This can be
explicitly disabled during compilation by passing the -mbranch-protection=none option
which turns off all types of branch protections. Conversely, --disable-standard-branch-
protection will disable both the protections by default. This mechanism is turned off by
default if neither of the options are given at configure time.

alpha*-*-*

This section contains general configuration information for all Alpha-based platforms using
ELF. In addition to reading this section, please read all other sections that match your
target.

amd64-*-solaris2*

This is a synonym for ‘x86_64-*-solaris2*’.

58 No Title

amdgcn-*-amdhsa

AMD GCN GPU target.

Instead of GNU Binutils, you will need to install LLVM 6, or later, and copy
bin/llvm-mc to amdgcn-amdhsa/bin/as, bin/lld to amdgcn-amdhsa/bin/ld,
bin/llvm-nm to amdgcn-amdhsa/bin/nm, and bin/llvm-ar to both bin/amdgcn-amdhsa-

ar and bin/amdgcn-amdhsa-ranlib.

Use Newlib (2019-01-16, or newer).

To run the binaries, install the HSA Runtime from the ROCm Platform, and use
libexec/gcc/amdhsa-amdhsa/version/gcn-run to launch them on the GPU.

arc-*-elf32

Use ‘configure --target=arc-elf32 --with-cpu=cpu --enable-languages="c,c++"’
to configure GCC, with cpu being one of ‘arc600’, ‘arc601’, or ‘arc700’.

arc-linux-uclibc

Use ‘configure --target=arc-linux-uclibc --with-cpu=arc700 --enable-languages="c,c++"’
to configure GCC.

arm-*-eabi

ARM-family processors.

Building the Ada frontend commonly fails (an infinite loop executing xsinfo) if the host
compiler is GNAT 4.8. Host compilers built from the GNAT 4.6, 4.9 or 5 release branches
are known to succeed.

avr

ATMEL AVR-family micro controllers. These are used in embedded applications. There are
no standard Unix configurations. See Section “AVR Options” in Using the GNU Compiler
Collection (GCC), for the list of supported MCU types.

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC.

Further installation notes and other useful information about AVR tools can also be
obtained from:

• http://www.nongnu.org/avr/

• http://www.amelek.gda.pl/avr/

The following error:
Error: register required

indicates that you should upgrade to a newer version of the binutils.

Blackfin

The Blackfin processor, an Analog Devices DSP. See Section “Blackfin Options” in Using
the GNU Compiler Collection (GCC),

More information, and a version of binutils with support for this processor, are available
at https://sourceforge.net/projects/adi-toolchain/.

https://rocm.github.io
http://www.nongnu.org/avr/
http://www.amelek.gda.pl/avr/
https://sourceforge.net/projects/adi-toolchain/

Chapter 9: Host/target specific installation notes for GCC 59

CR16

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in
embedded applications.

See Section “CR16 Options” in Using and Porting the GNU Compiler Collection (GCC),

Use ‘configure --target=cr16-elf --enable-languages=c,c++’ to configure GCC
for building a CR16 elf cross-compiler.

Use ‘configure --target=cr16-uclinux --enable-languages=c,c++’ to configure
GCC for building a CR16 uclinux cross-compiler.

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series.
These are used in embedded applications.

See Section “CRIS Options” in Using the GNU Compiler Collection (GCC), for a list of
CRIS-specific options.

There are a few different CRIS targets:

cris-axis-elf

Mainly for monolithic embedded systems. Includes a multilib for the ‘v10’ core
used in ‘ETRAX 100 LX’.

cris-axis-linux-gnu

A GNU/Linux port for the CRIS architecture, currently targeting ‘ETRAX 100

LX’ by default.

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/

cris/compiler-kit/. More information about this platform is available at http://

developer.axis.com/.

DOS

Please have a look at the binaries page.

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS
compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

epiphany-*-elf

Adapteva Epiphany. This configuration is intended for embedded systems.

--freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any
mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0.

In order to better utilize FreeBSD base system functionality and match the configuration
of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage
SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit

ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/
http://developer.axis.com/
http://developer.axis.com/
binaries.html

60 No Title

by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside libgcc_s.so.1

and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above.

We support FreeBSD using the ELF file format with DWARF 2 debugging for all CPU
architectures. You may use -gstabs instead of -g, if you really want the old debugging
format. There are no known issues with mixing object files and libraries with different
debugging formats. Otherwise, this release of GCC should now match more of the configu-
ration used in the stock FreeBSD configuration of GCC. In particular, --enable-threads
is now configured by default. However, as a general user, do not attempt to replace the
system compiler with this release. Known to bootstrap and check with good results on
FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on
FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT.

The version of binutils installed in /usr/bin probably works with this release of
GCC. Bootstrapping against the latest GNU binutils and/or the version found in
/usr/ports/devel/binutils has been known to enable additional features and improve
overall testsuite results. However, it is currently known that boehm-gc may not configure
properly on FreeBSD prior to the FreeBSD 7.0 release with GNU binutils after 2.16.1.

ft32-*-elf

The FT32 processor. This configuration is intended for embedded systems.

h8300-hms

Renesas H8/300 series of processors.

Please have a look at the binaries page.

The calling convention and structure layout has changed in release 2.6. All code must be
recompiled. The calling convention now passes the first three arguments in function calls
in registers. Structures are no longer a multiple of 2 bytes.

hppa*-hp-hpux*

Support for HP-UX version 9 and older was discontinued in GCC 3.4.

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recom-
mended.

It may be helpful to configure GCC with the --with-gnu-as and --with-as=... options
to ensure that GCC can find GAS.

The HP assembler should not be used with GCC. It is rarely tested and may not work.
It shouldn’t be used with any languages other than C due to its many limitations.

Specifically, -g does not work (HP-UX uses a peculiar debugging format which GCC
does not know about). It also inserts timestamps into each object file it creates, causing
the 3-stage comparison test to fail during a bootstrap. You should be able to continue by
saying ‘make all-host all-target’ after getting the failure from ‘make’.

Various GCC features are not supported. For example, it does not support weak symbols
or alias definitions. As a result, explicit template instantiations are required when using
C++. This makes it difficult if not impossible to build many C++ applications.

binaries.html
./configure.html#with-gnu-as

Chapter 9: Host/target specific installation notes for GCC 61

There are two default scheduling models for instructions. These are PROCES-
SOR 7100LC and PROCESSOR 8000. They are selected from the pa-risc architecture
specified for the target machine when configuring. PROCESSOR 8000 is the default.
PROCESSOR 7100LC is selected when the target is a ‘hppa1*’ machine.

The PROCESSOR 8000 model is not well suited to older processors. Thus, it is impor-
tant to completely specify the machine architecture when configuring if you want a model
other than PROCESSOR 8000. The macro TARGET SCHED DEFAULT can be defined
in BOOT CFLAGS if a different default scheduling model is desired.

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through 11.00,
and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might
cause problems when bootstrapping with an earlier version of GCC or the HP compiler as
essentially the same namespace is required for an entire build. This problem can be avoided
in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ or ‘98’. Another way is to
add an appropriate set of predefines to CC. The description for the munix= option contains
a list of the predefines used with each standard.

More specific information to ‘hppa*-hp-hpux*’ targets follows.

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from
HP.

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for
one-only code and data. This resolves many of the previous problems in using C++ on this
target. However, the ABI is not compatible with the one implemented under HP-UX 11
using secondary definitions.

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to
compile GCC 3.0 and up.

The libffi library haven’t been ported to 64-bit HP-UX and doesn’t build.

Refer to binaries for information about obtaining precompiled GCC binaries for HP-
UX. Precompiled binaries must be obtained to build the Ada language as it cannot be
bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime.

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler
supports only traditional C; you will need either HP’s unbundled compiler, or a binary
distribution of GCC.

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the process
requires several steps. GCC 3.3 can then be used to build later versions.

There are several possible approaches to building the distribution. Binutils can be built
first using the HP tools. Then, the GCC distribution can be built. The second approach is
to build GCC first using the HP tools, then build binutils, then rebuild GCC. There have
been problems with various binary distributions, so it is best not to start from a binary
distribution.

On 64-bit capable systems, there are two distinct targets. Different installation prefixes
must be used if both are to be installed on the same system. The ‘hppa[1-2]*-hp-hpux11*’

binaries.html

62 No Title

target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker.
The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture.

The script config.guess now selects the target type based on the compiler detected during
configuration. You must define PATH or CC so that configure finds an appropriate compiler
for the initial bootstrap. When CC is used, the definition should contain the options that
are needed whenever CC is used.

Specifically, options that determine the runtime architecture must be in CC to correctly
select the target for the build. It is also convenient to place many other compiler op-
tions in CC. For example, CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_

SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit
K&R/bundled mode. The +DA2.0W option will result in the automatic selection of the
‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a
successful build with the HP compiler. CLASSIC TYPES and HPUX SOURCE need to
be defined when building with the bundled compiler, or when using the -Ac option. These
defines aren’t necessary with -Ae.

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target with the --with-ld=...
option. This overrides the standard search for ld. The two linkers supported on this target
require different commands. The default linker is determined during configuration. As a
result, it’s not possible to switch linkers in the middle of a GCC build. This has been
reported to sometimes occur in unified builds of binutils and GCC.

A recent linker patch must be installed for the correct operation of GCC 3.3 and later.
PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They
are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to PHSS_24304,
might be usable but it hasn’t been tested. These patches have been superseded. Consult
the HP patch database to obtain the currently recommended linker patch for your system.

The patches are necessary for the support of weak symbols on the 32-bit port, and for the
running of initializers and finalizers. Weak symbols are implemented using SOM secondary
definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary
symbols. The patches correct a problem of linker core dumps creating shared libraries
containing secondary symbols, as well as various other linking issues involving secondary
symbols.

GCC 3.3 uses the ELF DT INIT ARRAY and DT FINI ARRAY capabilities to run
initializers and finalizers on the 64-bit port. The 32-bit port uses the linker +init and +fini

options for the same purpose. The patches correct various problems with the +init/+fini
options, including program core dumps. Binutils 2.14 corrects a problem on the 64-bit port
resulting from HP’s non-standard use of the .init and .fini sections for array initializers and
finalizers.

Although the HP and GNU linkers are both supported for the ‘hppa64-hp-hpux11*’
target, it is strongly recommended that the HP linker be used for link editing on this
target.

At this time, the GNU linker does not support the creation of long branch stubs. As a
result, it cannot successfully link binaries containing branch offsets larger than 8 megabytes.
In addition, there are problems linking shared libraries, linking executables with -static,
and with dwarf2 unwind and exception support. It also doesn’t provide stubs for internal
calls to global functions in shared libraries, so these calls cannot be overloaded.

Chapter 9: Host/target specific installation notes for GCC 63

The HP dynamic loader does not support GNU symbol versioning, so symbol versioning
is not supported. It may be necessary to disable symbol versioning with --disable-symvers
when using GNU ld.

POSIX threads are the default. The optional DCE thread library is not supported, so
--enable-threads=dce does not work.

--linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later.
More information is available in the libstdc++-v3 documentation.

i?86-*-linux*

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more
information.

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have
a hardware problem. Further information on this can be found on www.bitwizard.nl.

i?86-*-solaris2*

Use this for Solaris 11.3 or later on x86 and x86-64 systems. Starting with GCC 4.7,
there is also a 64-bit ‘amd64-*-solaris2*’ or ‘x86_64-*-solaris2*’ configuration that
corresponds to ‘sparcv9-sun-solaris2*’.

It is recommended that you configure GCC to use the GNU assembler. The versions
included in Solaris 11.3, from GNU binutils 2.23.1 or newer (available as /usr/bin/gas and
/usr/gnu/bin/as), work fine. The current version, from GNU binutils 2.34, is known to
work. Recent versions of the Solaris assembler in /usr/bin/as work almost as well, though.

For linking, the Solaris linker is preferred. If you want to use the GNU linker instead,
the version in Solaris 11.3, from GNU binutils 2.23.1 or newer (in /usr/gnu/bin/ld and
/usr/bin/gld), works, as does the latest version, from GNU binutils 2.34.

To use GNU as, configure with the options --with-gnu-as --with-as=/usr/gnu/bin/

as. It may be necessary to configure with --without-gnu-ld --with-ld=/usr/ccs/bin/

ld to guarantee use of Solaris ld.

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux.

If you are using the installed system libunwind library with --with-system-libunwind,
then you must use libunwind 0.98 or later.

None of the following versions of GCC has an ABI that is compatible with any of the
other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are
compatible with each other: 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This
primarily affects C++ programs and programs that create shared libraries. GCC 3.1 or later
is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be
fully ABI compliant, and hence no more major ABI changes are expected.

http://gcc.gnu.org/PR10877
http://www.bitwizard.nl/sig11/

64 No Title

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will
not work. To prevent GCC from using the wrong assembler, the option --with-gnu-as

may be necessary.

The GCC libunwind library has not been ported to HPUX. This means that for GCC
versions 3.2.3 and earlier, --enable-libunwind-exceptions is required to build GCC.
For GCC 3.3 and later, this is the default. For gcc 3.4.3 and later, --enable-libunwind-
exceptions is removed and the system libunwind library will always be used.

-ibm-aix

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version
4.2 and older was discontinued in GCC 4.5.

“out of memory” bootstrap failures may indicate a problem with process resource limits
(ulimit). Hard limits are configured in the /etc/security/limits system configuration
file.

GCC 4.9 and above require a C++ compiler for bootstrap. IBM VAC++ / xlC cannot
bootstrap GCC. xlc can bootstrap an older version of GCC and G++ can bootstrap recent
releases of GCC.

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier
release of GCC is recommended. Bootstrapping with XLC requires a larger data segment,
which can be enabled through the LDR CNTRL environment variable, e.g.,

% LDR_CNTRL=MAXDATA=0x50000000

% export LDR_CNTRL

One can start with a pre-compiled version of GCC to build from sources. One may
delete GCC’s “fixed” header files when starting with a version of GCC built for an earlier
release of AIX.

To speed up the configuration phases of bootstrapping and installing GCC, one may use
GNU Bash instead of AIX /bin/sh, e.g.,

% CONFIG_SHELL=/opt/freeware/bin/bash

% export CONFIG_SHELL

and then proceed as described in the build instructions, where we strongly recommend
specifying an absolute path to invoke srcdir/configure.

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate
64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries.
Building GMP and MPFR as static archive libraries works better than shared libraries.

Errors involving alloca when building GCC generally are due to an incorrect definition
of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During
the stage1 phase of the build, the native AIX compiler must be invoked as cc (not xlc).
Once configure has been informed of xlc, one needs to use ‘make distclean’ to remove the
configure cache files and ensure that CC environment variable does not provide a definition
that will confuse configure. If this error occurs during stage2 or later, then the problem
most likely is the version of Make (see above).

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler,
GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap

build.html

Chapter 9: Host/target specific installation notes for GCC 65

on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The
native AIX tools do interoperate with GCC.

AIX 7.1 added partial support for DWARF debugging, but full support requires AIX 7.1
TL03 SP7 that supports additional DWARF sections and fixes a bug in the assembler. AIX
7.1 TL03 SP5 distributed a version of libm.a missing important symbols; a fix for IV77796
will be included in SP6.

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX assembler change
that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks
GCC bootstrap on AIX and can cause compilation failures with existing GCC installations.
An AIX iFix for AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477
for AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5,
AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TL07 and AIX 7.1
TL01 should include the fix.

Building libstdc++.a requires a fix for an AIX Assembler bug APAR IY26685 (AIX
4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug
and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR
IY54774 (AIX 5.1)

‘libstdc++’ in GCC 3.4 increments the major version number of the shared object and
GCC installation places the libstdc++.a shared library in a common location which will
overwrite the and GCC 3.3 version of the shared library. Applications either need to be
re-linked against the new shared library or the GCC 3.1 and GCC 3.3 versions of the
‘libstdc++’ shared object needs to be available to the AIX runtime loader. The GCC
3.1 ‘libstdc++.so.4’, if present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be
installed for runtime dynamic loading using the following steps to set the ‘F_LOADONLY’ flag
in the shared object for each multilib libstdc++.a installed:

Extract the shared objects from the currently installed libstdc++.a archive:

% ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime
dynamic loading, but not linking:

% strip -e libstdc++.so.4 libstdc++.so.5

Archive the runtime-only shared object in the GCC 3.4 libstdc++.a archive:

% ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5

Eventually, the --with-aix-soname=svr4 configure option may drop the need for this
procedure for libraries that support it.

Linking executables and shared libraries may produce warnings of duplicate symbols.
The assembly files generated by GCC for AIX always have included multiple symbol def-
initions for certain global variable and function declarations in the original program. The
warnings should not prevent the linker from producing a correct library or runnable exe-
cutable.

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object mod-
ules. The routines provided in AIX 4.3.0 and AIX 4.3.1 to parse archive libraries did not
handle the new format correctly. These routines are used by GCC and result in error mes-
sages during linking such as “not a COFF file”. The version of the routines shipped with
AIX 4.3.1 should work for a 32-bit environment. The -g option of the archive command

./configure.html#WithAixSoname

66 No Title

may be used to create archives of 32-bit objects using the original “small format”. A correct
version of the routines is shipped with AIX 4.3.2 and above.

Some versions of the AIX binder (linker) can fail with a relocation overflow severe error
when the -bbigtoc option is used to link GCC-produced object files into an executable
that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN
USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U455193.

The AIX 4.3.2.1 linker (bos.rte.bind cmds Level 4.3.2.1) will dump core with a segmen-
tation fault when invoked by any version of GCC. A fix for APAR IX87327 is available
from IBM Customer Support and from its techsupport.services.ibm.com website as PTF
U461879. This fix is incorporated in AIX 4.3.3 and above.

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A
fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER
FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX
4.3.1 and above.

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to
support locale-specific representations of various data formats including floating-point num-
bers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported
where GCC does not produce the same floating-point formats that the assembler expects.
If one encounters this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

A default can be specified with the -mcpu=cpu_type switch and using the configure
option --with-cpu-cpu_type.

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard
Unix configurations.

lm32-*-elf

Lattice Mico32 processor. This configuration is intended for embedded systems.

lm32-*-uclinux

Lattice Mico32 processor. This configuration is intended for embedded systems running
uClinux.

m32c-*-elf

Renesas M32C processor. This configuration is intended for embedded systems.

m32r-*-elf

Renesas M32R processor. This configuration is intended for embedded systems.

http://techsupport.services.ibm.com/
http://techsupport.services.ibm.com/
http://techsupport.services.ibm.com/

Chapter 9: Host/target specific installation notes for GCC 67

m68k-*-*

By default, ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ‘m68k-*-linux’ build
libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries,
you can omit the ColdFire ones by passing --with-arch=m68k to configure. Alternatively,
you can omit the M680x0 libraries by passing --with-arch=cf to configure. These targets
default to 5206 or 5475 code as appropriate for the target system when configured with
--with-arch=cf and 68020 code otherwise.

The ‘m68k-*-netbsd’ and ‘m68k-*-openbsd’ targets also support the --with-arch op-
tion. They will generate ColdFire CFV4e code when configured with --with-arch=cf and
68020 code otherwise.

You can override the default processors listed above by configuring with --with-

cpu=target. This target can either be a -mcpu argument or one of the following values:
‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ‘m68040’, ‘m68060’, ‘m68020-40’ and ‘m68020-60’.

GCC requires at least binutils version 2.17 on these targets.

m68k-*-uclinux

GCC 4.3 changed the uClinux configuration so that it uses the ‘m68k-linux-gnu’ ABI
rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared
libraries, both of which were ABI changes.

microblaze-*-elf

Xilinx MicroBlaze processor. This configuration is intended for embedded systems.

mips-*-*

If on a MIPS system you get an error message saying “does not have gp sections for all
it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the
MIPS linker, but there is not really anything wrong, and it is okay to use the output file.
You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A
patch went in just after the GCC 3.3 release to make ‘mips*-*-*’ use the generic im-
plementation instead. You can also configure for ‘mipsel-elf’ as a workaround. The
‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is
expected in future releases.

The built-in __sync_* functions are available on MIPS II and later systems and others
that support the ‘ll’, ‘sc’ and ‘sync’ instructions. This can be overridden by passing
--with-llsc or --without-llsc when configuring GCC. Since the Linux kernel emulates
these instructions if they are missing, the default for ‘mips*-*-linux*’ targets is --with-
llsc. The --with-llsc and --without-llsc configure options may be overridden at
compile time by passing the -mllsc or -mno-llsc options to the compiler.

MIPS systems check for division by zero (unless -mno-check-zero-division is passed
to the compiler) by generating either a conditional trap or a break instruction. Using

68 No Title

trap results in smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from generating the proper
signal (SIGFPE). To enable the use of break, use the --with-divide=breaks configure

option when configuring GCC. The default is to use traps on systems that support them.

moxie-*-elf

The moxie processor.

msp430-*-elf*

TI MSP430 processor. This configuration is intended for embedded systems.

‘msp430-*-elf’ is the standard configuration with most GCC features enabled by de-
fault.

‘msp430-*-elfbare’ is tuned for a bare-metal environment, and disables features related
to shared libraries and other functionality not used for this device. This reduces code and
data usage of the GCC libraries, resulting in a minimal run-time environment by default.

Features disabled by default include:

• transactional memory

• cxa atexit

nds32le-*-elf

Andes NDS32 target in little endian mode.

nds32be-*-elf

Andes NDS32 target in big endian mode.

nvptx-*-none

Nvidia PTX target.

Instead of GNU binutils, you will need to install nvptx-tools. Tell GCC where to find
it: --with-build-time-tools=[install-nvptx-tools]/nvptx-none/bin.

You will need newlib 3.0 git revision cd31fbb2aea25f94d7ecedc9db16dfc87ab0c316 or
later. It can be automatically built together with GCC. For this, add a symbolic link to
nvptx-newlib’s newlib directory to the directory containing the GCC sources.

Use the --disable-sjlj-exceptions and --enable-newlib-io-long-long options
when configuring.

or1k-*-elf

The OpenRISC 1000 32-bit processor with delay slots. This configuration is intended for
embedded systems.

or1k-*-linux

The OpenRISC 1000 32-bit processor with delay slots.

https://github.com/MentorEmbedded/nvptx-tools/

Chapter 9: Host/target specific installation notes for GCC 69

powerpc-*-*

You can specify a default version for the -mcpu=cpu_type switch by using the configure
option --with-cpu-cpu_type.

You will need GNU binutils 2.20 or newer.

powerpc-*-darwin*

PowerPC running Darwin (Mac OS X kernel).

Pre-installed versions of Mac OS X may not include any developer tools, meaning that
you will not be able to build GCC from source. Tool binaries are available at https://
opensource.apple.com.

This version of GCC requires at least cctools-590.36. The cctools-590.36 package refer-
enced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on sys-
tems older than 10.3.9 (aka darwin7.9.0).

powerpc-*-elf

PowerPC system in big endian mode, running System V.4.

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux.

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD.

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simu-
lator.

powerpc-*-eabi

Embedded PowerPC system in big endian mode.

powerpcle-*-elf

PowerPC system in little endian mode, running System V.4.

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM sim-
ulator.

powerpcle-*-eabi

Embedded PowerPC system in little endian mode.

https://opensource.apple.com
https://opensource.apple.com
http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html

70 No Title

rl78-*-elf

The Renesas RL78 processor. This configuration is intended for embedded systems.

riscv32-*-elf

The RISC-V RV32 instruction set. This configuration is intended for embedded systems.
This (and all other RISC-V) targets require the binutils 2.30 release.

riscv32-*-linux

The RISC-V RV32 instruction set running GNU/Linux. This (and all other RISC-V) targets
require the binutils 2.30 release.

riscv64-*-elf

The RISC-V RV64 instruction set. This configuration is intended for embedded systems.
This (and all other RISC-V) targets require the binutils 2.30 release.

riscv64-*-linux

The RISC-V RV64 instruction set running GNU/Linux. This (and all other RISC-V) targets
require the binutils 2.30 release.

rx-*-elf

The Renesas RX processor.

s390-*-linux*

S/390 system running GNU/Linux for S/390.

s390x-*-linux*

zSeries system (64-bit) running GNU/Linux for zSeries.

s390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target
only.

--solaris2*

Support for Solaris 10 has been removed in GCC 10. Support for Solaris 9 has been removed
in GCC 5. Support for Solaris 8 has been removed in GCC 4.8. Support for Solaris 7 has
been removed in GCC 4.6.

Solaris 11.3 provides GCC 4.5.2, 4.7.3, and 4.8.2 as /usr/gcc/4.5/bin/gcc or similar.
Newer Solaris versions provide one or more of GCC 5, 7, and 9. Alternatively, you can
install a pre-built GCC to bootstrap and install GCC. See the binaries page for details.

binaries.html

Chapter 9: Host/target specific installation notes for GCC 71

The Solaris 2 /bin/sh will often fail to configure ‘libstdc++-v3’. We therefore recom-
mend using the following initial sequence of commands

% CONFIG_SHELL=/bin/ksh

% export CONFIG_SHELL

and proceed as described in the configure instructions. In addition we strongly recommend
specifying an absolute path to invoke srcdir/configure.

In Solaris 11, you need to check for system/header, system/linker, and
developer/assembler packages.

Trying to use the linker and other tools in /usr/ucb to install GCC has been observed to
cause trouble. For example, the linker may hang indefinitely. The fix is to remove /usr/ucb
from your PATH.

The build process works more smoothly with the legacy Solaris tools so, if you
have /usr/xpg4/bin in your PATH, we recommend that you place /usr/bin before
/usr/xpg4/bin for the duration of the build.

We recommend the use of the Solaris assembler or the GNU assembler, in conjunction
with the Solaris linker. The GNU as versions included in Solaris 11.3, from GNU binutils
2.23.1 or newer (in /usr/bin/gas and /usr/gnu/bin/as), are known to work. The current
version, from GNU binutils 2.34, is known to work as well. Note that your mileage may
vary if you use a combination of the GNU tools and the Solaris tools: while the combination
GNU as + Solaris ld should reasonably work, the reverse combination Solaris as + GNU ld

may fail to build or cause memory corruption at runtime in some cases for C++ programs.
GNU ld usually works as well. Again, the current version (2.34) is known to work, but
generally lacks platform specific features, so better stay with Solaris ld. To use the LTO
linker plugin (-fuse-linker-plugin) with GNU ld, GNU binutils must be configured with
--enable-largefile.

To enable symbol versioning in ‘libstdc++’ with the Solaris linker, you need to have any
version of GNU c++filt, which is part of GNU binutils. ‘libstdc++’ symbol versioning
will be disabled if no appropriate version is found. Solaris c++filt from the Solaris Studio
compilers does not work.

The versions of the GNU Multiple Precision Library (GMP), the MPFR library and the
MPC library bundled with Solaris 11.3 and later are usually recent enough to match GCC’s
requirements. There are two caveats:

• While the version of the GMP library in Solaris 11.3 works with GCC, you need to
configure with --with-gmp-include=/usr/include/gmp.

• The version of the MPFR libary included in Solaris 11.3 is too old; you need to provide
a more recent one.

sparc*-*-*

This section contains general configuration information for all SPARC-based platforms. In
addition to reading this section, please read all other sections that match your target.

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and
the MPC library are known to be miscompiled by earlier versions of GCC on these platforms.
We therefore recommend the use of the exact versions of these libraries listed as minimal
versions in the prerequisites.

configure.html
prerequisites.html

72 No Title

sparc-sun-solaris2*

When GCC is configured to use GNU binutils 2.14 or later, the binaries produced are
smaller than the ones produced using Solaris native tools; this difference is quite significant
for binaries containing debugging information.

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9
binaries. GCC 3.1 and later properly supports this; the -m64 option enables 64-bit code
generation. However, if all you want is code tuned for the UltraSPARC CPU, you should
try the -mtune=ultrasparc option instead, which produces code that, unlike full 64-bit
code, can still run on non-UltraSPARC machines.

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the
MPC library on a Solaris 7 or later system, the canonical target triplet must be specified as
the build parameter on the configure line. This target triplet can be obtained by invoking
./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR
or MPC). For example on a Solaris 11 system:

% ./configure --build=sparc-sun-solaris2.11 --prefix=xxx

sparc-*-linux*

sparc64-*-solaris2*

When configuring a 64-bit-default GCC on Solaris/SPARC, you must use a build
compiler that generates 64-bit code, either by default or by specifying ‘CC=’gcc -m64’

CXX=’gcc-m64’’ to configure. Additionally, you must pass --build=sparc64-sun-

solaris2.11 or --build=sparcv9-sun-solaris2.11 because config.guess misdetects
this situation, which can cause build failures.

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or
the MPC library, the canonical target triplet must be specified as the build parameter on
the configure line. For example on a Solaris 11 system:

% ./configure --build=sparc64-sun-solaris2.11 --prefix=xxx

sparcv9-*-solaris2*

This is a synonym for ‘sparc64-*-solaris2*’.

c6x-*-*

The C6X family of processors. This port requires binutils-2.22 or newer.

tilegx-*-linux*

The TILE-Gx processor in little endian mode, running GNU/Linux. This port requires
binutils-2.22 or newer.

tilegxbe-*-linux*

The TILE-Gx processor in big endian mode, running GNU/Linux. This port requires
binutils-2.23 or newer.

Chapter 9: Host/target specific installation notes for GCC 73

tilepro-*-linux*

The TILEPro processor running GNU/Linux. This port requires binutils-2.22 or newer.

visium-*-elf

CDS VISIUMcore processor. This configuration is intended for embedded systems.

--vxworks*

Support for VxWorks is in flux. At present GCC supports only the very recent VxWorks
5.5 (aka Tornado 2.2) release, and only on PowerPC. We welcome patches for other archi-
tectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we
believe this is merely a matter of writing an appropriate “configlette” (see below). We are
not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3.

VxWorks comes with an older version of GCC installed in $WIND_BASE/host; we recom-
mend you do not overwrite it. Choose an installation prefix entirely outside $WIND BASE.
Before running configure, create the directories prefix and prefix/bin. Link or copy
the appropriate assembler, linker, etc. into prefix/bin, and set your PATH to include that
directory while running both configure and make.

You must give configure the --with-headers=$WIND_BASE/target/h switch so that
it can find the VxWorks system headers. Since VxWorks is a cross compilation target only,
you must also specify --target=target. configure will attempt to create the directory
prefix/target/sys-include and copy files into it; make sure the user running configure

has sufficient privilege to do so.

GCC’s exception handling runtime requires a special “configlette” module,
contrib/gthr_supp_vxw_5x.c. Follow the instructions in that file to add the module to
your kernel build. (Future versions of VxWorks will incorporate this module.)

x86 64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-*
is an alias for x86 64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the
default is a bi-arch compiler which is able to generate both 64-bit x86-64 and 32-bit x86
code (via the -m32 switch).

x86 64-*-solaris2*

GCC also supports the x86-64 architecture implemented by the AMD64 processor
(‘amd64-*-*’ is an alias for ‘x86_64-*-*’) on Solaris 10 or later. Unlike other systems,
without special options a bi-arch compiler is built which generates 32-bit code by default,
but can generate 64-bit x86-64 code with the -m64 switch. Since GCC 4.7, there is also
a configuration that defaults to 64-bit code, but can generate 32-bit code with -m32. To
configure and build this way, you have to provide all support libraries like libgmp as 64-bit
code, configure with --target=x86_64-pc-solaris2.11 and ‘CC=gcc -m64’.

74 No Title

xtensa*-*-elf

This target is intended for embedded Xtensa systems using the ‘newlib’ C library. It uses
ELF but does not support shared objects. Designed-defined instructions specified via the
Tensilica Instruction Extension (TIE) language are only supported through inline assembly.

The Xtensa configuration information must be specified prior to building GCC. The
include/xtensa-config.h header file contains the configuration information. If you cre-
ated your own Xtensa configuration with the Xtensa Processor Generator, the downloaded
files include a customized copy of this header file, which you can use to replace the default
header file.

xtensa*-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and
the GNU C library (glibc). It also generates position-independent code (PIC) regardless of
whether the -fpic or -fPIC options are used. In other respects, this target is the same as
the ‘xtensa*-*-elf’ target.

Microsoft Windows

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported.

However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s
environment, as a target only. See below.

Intel 32-bit versions

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and
Windows Vista, are supported by several different target platforms. These targets differ in
which Windows subsystem they target and which C libraries are used.

• Cygwin *-*-cygwin: Cygwin provides a user-space Linux API emulation layer in the
Win32 subsystem.

• MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that
provides a subset of POSIX.

• MKS i386-pc-mks: NuTCracker from MKS. See https://www.mkssoftware.com for
more information.

Intel 64-bit versions

GCC contains support for x86-64 using the mingw-w64 runtime library, available from
http://mingw-w64.org/doku.php. This library should be used with the target triple
x86 64-pc-mingw32.

Presently Windows for Itanium is not supported.

Windows CE

Windows CE is supported as a target only on Hitachi SuperH (sh-wince-pe), and MIPS
(mips-wince-pe).

#xtensa*-*-elf
#x-x-cygwin
#x-x-mingw32
https://www.mkssoftware.com
http://mingw-w64.org/doku.php

Chapter 9: Host/target specific installation notes for GCC 75

Other Windows Platforms

GCC no longer supports Windows NT on the Alpha or PowerPC.

GCC no longer supports the Windows POSIX subsystem. However, it does support the
Interix subsystem. See above.

Old target names including *-*-winnt and *-*-windowsnt are no longer used.

PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive.
See http://pw32.sourceforge.net/ for more information.

UWIN support has been removed due to a lack of maintenance.

--cygwin

Ports of GCC are included with the Cygwin environment.

GCC will build under Cygwin without modification; it does not build with Microsoft’s
C++ compiler and there are no plans to make it do so.

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture
desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version
of binutils as possible; use either the latest official GNU binutils release in the Cygwin
distribution, or version 2.20 or above if building your own.

--mingw32

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of
headers are incompatible with the new default semantics of extern inline in -std=c99

and -std=gnu99 modes.

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the
most part, support for these systems has not been deliberately removed, but it has not been
maintained for several years and may suffer from bitrot.

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support for
these systems is still present in that release, but configure will fail unless the --enable-

obsolete option is given. Unless a maintainer steps forward, support for these systems will
be removed from the next release of GCC.

Support for old systems as hosts for GCC can cause problems if the workarounds for
compiler, library and operating system bugs affect the cleanliness or maintainability of the
rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current
GCC, may require first installing an old version of GCC which did work on that system, and
using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases
of GCC 1 and GCC 2 are available in the old-releases directory on the GCC mirror
sites. Header bugs may generally be avoided using fixincludes, but bugs or deficiencies
in libraries and the operating system may still cause problems.

Support for older systems as targets for cross-compilation is less problematic than sup-
port for them as hosts for GCC; if an enthusiast wishes to make such a target work again
(including resurrecting any of the targets that never worked with GCC 2, starting from the

http://pw32.sourceforge.net/
http://www.cygwin.com/
../mirrors.html
../mirrors.html

76 No Title

last version before they were removed), patches following the usual requirements would be
likely to be accepted, since they should not affect the support for more modern targets.

For some systems, old versions of GNU binutils may also be useful, and are available
from pub/binutils/old-releases on sourceware.org mirror sites.

Some of the information on specific systems above relates to such older systems, but
much of the information about GCC on such systems (which may no longer be applicable
to current GCC) is to be found in the GCC texinfo manual.

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate
copies of inlines, vtables and template instantiations will be discarded automatically.

../contribute.html
https://sourceware.org/mirrors.html
./configure.html#with-gnu-ld

77

10 Old installation documentation

Note most of this information is out of date and superseded by the previous chapters of this
manual. It is provided for historical reference only, because of a lack of volunteers to merge
it into the main manual.

Here is the procedure for installing GCC on a GNU or Unix system.

1. If you have chosen a configuration for GCC which requires other GNU tools (such as
GAS or the GNU linker) instead of the standard system tools, install the required tools
in the build directory under the names as, ld or whatever is appropriate.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

2. Specify the host, build and target machine configurations. You do this when you run
the configure script.

The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.

If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to configure; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don’t need to specify a configuration when building a native compiler
unless configure cannot figure out what your configuration is or guesses wrong.

In those cases, specify the build machine’s configuration name with the --host option;
the host and target will default to be the same as the host machine.

Here is an example:
./configure --host=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system’. (The three parts may themselves contain dashes; configure
can figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.

You can also replace parts of the configuration by nicknames or aliases. For example,
‘sun3’ stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3.

You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.

See Section 10.1 [Configurations], page 77, for a list of supported configuration names
and notes on many of the configurations. You should check the notes in that section
before proceeding any further with the installation of GCC.

10.1 Configurations Supported by GCC

Here are the possible CPU types:

1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0,
hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000,

78 No Title

m68k, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k,
pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, sparclite, sparc64, v850,
vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are
used rather than the longer official names.

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds,
dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips,
motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:

386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux,
dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux,
hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos,
nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then configure guesses the operating system from the CPU
and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD.
In practice, the version number is most needed for ‘sysv3’ and ‘sysv4’, which are often
treated differently.

‘linux-gnu’ is the canonical name for the GNU/Linux target; however GCC will also
accept ‘linux’. The version of the kernel in use is not relevant on these systems. A suffix
such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed
versions are obsolete.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an
error message from configure, or it may ignore part of the information and do the best it
can with the rest. configure always prints the canonical name for the alternative that it
used. GCC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above,
is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax,
powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name.

79

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

80 No Title

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 81

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

82 No Title

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

GNU Free Documentation License 83

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

84 No Title

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

GNU Free Documentation License 85

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

86 No Title

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Installing GCC
	Prerequisites
	Downloading GCC
	Installing GCC: Configuration
	Building
	Building a native compiler
	Building a cross compiler
	Building in parallel
	Building the Ada compiler
	Building with profile feedback

	Installing GCC: Testing
	How can you run the testsuite on selected tests?
	Passing options and running multiple testsuites
	How to interpret test results
	Submitting test results

	Installing GCC: Final installation
	Installing GCC: Binaries
	Host/target specific installation notes for GCC
	Old installation documentation
	Configurations Supported by GCC

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

