
Data link

The data link forms the communications channel between the main control unit and individual
appliance controllers and sensors throughout the house. Of the many possible ways this could be
achieved (radio, infra-red, wires, etc.) the neatest method is through the mains wiring system, as
devices being controlled are likely to use the mains as their source of power and so do not need
another connection.

There is an established mains based control system called X10, but this is only designed for
110V 60Hz North American mains systems, not for European 220/240V 50Hz mains. Therefore
it is not possible to produce a compatible system for European use.

The obvious problem with using mains is that there is a high current high voltage 50Hz
frequency already present, so the data link has to be kept separate to prevent interference
between the two signals. To do this, the most reliable way is to modulate any signal with a high
frequency carrier, so that the 50Hz mains signal can be filtered out by the receiving circuit,
leaving the high frequency carrier with the data modulated on it. Because of the potential
dangers of using the mains directly, all the circuits were tested using a transformed down mains
voltage. This was achieved using a standard transformer mounted in a sealed metal box with
taps at 2, 4, 6, 8, 10 and 12V RMS. In a production system, this would either be the main power
transformer for the appliance, or an additional auxiliary transformer.

There are dedicated ICs which will contain the entire transmission and receiving system, but
these cannot be used here because they require a direct connection to the mains, so cannot be
used with a step-down transformer.

A block diagram of the data link is shown below:

Transmission
system including

modulation
Amplification

FilteringDemodulation Amplification
Digital

processing

Transmission line

Digital
data
out

Digital
data
in

This would be repeated twice to provide a two-way (duplex) communications channel, with the
same transmission line being used.

Initially only one channel was constructed to evaluate the systems being used. The receiving
electronics depends on the transmitting electronics and the signal being transmitted, so the
transmitting circuit was considered first.

56Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Transmission

In the first instance, the following amplitude modulator (a Colpitts oscillator) was tried for the
transmission system:

Modulating
supply rail

0V

1K

1K

220µH

1nF

100pF

BC107

22K

1 MHz
output

When this was first built, it behaved erratically, and would not oscillate properly. At first I
thought this was down to the transistor, because a lack of BC107s meant a BC109 had to be
used. These two transistors are similar in most respects, but they may have been operating at the
limits of their specification. Examining a data book showed that the guaranteed minimum
frequency a BC107 or BC109 could switch at was 150 MHz, greatly in excess of even any upper
sidebands being generated here. Replacing the transistor for one from another batch or another
manufacturer had no effect, ruling out the transistor as the problem.

As the components were fairly close together on the breadboard, I wondered whether the
capacitance of the board was having an effect. This capacitance is only slightly smaller than the
100pF capacitor being used, so it may have had an effect on it. To test this, the circuit was
rebuilt spaced further apart on the board, using the same components. This did work, giving a
steady output waveform reasonably close to a sine wave when given a +15V supply rail. When
the supply rail was lowered, the amplitude of the output fell, but the frequency did not change
noticeably.

The modulating properties of this circuit were tested by feeding it a digital square wave between
0 and 5V. The resulting bursts of sine wave showed that the output was being modulated
properly. When the frequency of the modulated input was increased to around 100 kHz, the
oscilloscope showed that the modulated output was taking a few microseconds to start up, so the
spaces between pulses of the output increased, reducing its mark/space ratio.

57Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Modulating
signal

Output
signal

This would give an upper limit on the bandwidth that could be used, but as the control
information consists of only a few bytes, only a small bandwidth is required.

The problem with the system as it stands is that it has a very small power output, as any load will
affect its oscillation. A high power amplifier is required to boost the signal into a form suitable
for mains transmission. This was tried using a push-pull output stage as shown below:

47Ω

47Ω

Vin

BC441

BC461

+15V

–15V

Vout

When this was connected, there was very little output at all. The transistor data book states that
the maximum frequency of these transistors is 50MHz. However, this circuit is primarily
designed for audio signals, so its gain may be severely reduced for such high frequency
applications. The problem with using high frequency transistors is that they can supply a
relatively small current – of the transistors it was possible to obtain, the 2N4427 had the highest
collector current of 500mA at up to 500MHz. A semiconductor manufacturer’s catalogue
showed that even solid gold cased microwave transistors designed for the military could only
supply 120mA. These are small compared to the 2A the BC441 and BC461 pair can supply at
audio frequencies.

58Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Although there was a very small output, the push-pull output stage was connected to a 8V AC
transformer output to see if this affected the oscillator in any way. It certainly did, causing the
AC signal to leak into the oscillator so that large AC signals were present throughout. This
overwhelmed the small signals making it oscillate so that it was not possible to detect any 1MHz
signal at all. The reason for this leakage is that bipolar transistors are being used. When the
transistor is turned on, there is 0.7V across the base-emitter junction. If 11.3V (peak voltage of
8V RMS) suddenly appears at the emitter of the NPN transistor, the base will rise to 12V. Thus
the AC signal will leak through the transistor with only a small amount of crossover distortion.
This signal will now be present at the collector of the BC109 in the Colpitts oscillator, and so
will leak through into the oscillator, preventing it from working.

There are two alternatives to prevent this problem, either filter out the sine wave or use a
MOSFET, which does not suffer from the problem of the AC leaking through it. The problem
with a MOSFET is that the maximum frequency is very close to that being passed through it, so
problems may occur. The alternative, filtering out the 50Hz sine wave, is a better choice. This
filter has to be designed so that it can filter out the 50Hz entering in one direction, while
allowing the high frequency carrier to pass through in the other direction. Any active device
connected directly to the output might suffer similar problems to the bipolar transistor above, so
a passive filter is needed.

The problem with amplitude modulation is that it is very susceptible to noise. In a system such
as the one above, very narrow bandpass filters would be required to minimise any noise from
being detected as a signal. As the signal is AM, transmission factors, such as reflection caused
by plugging in a new appliance to the ring main, could modify the amplitude of the signal and so
generate spurious digital outputs.

To prevent these problems, a 150 kHz frequency modulator from Electronic Systems was tried:

0V

0V

+15V

+

−
Vin

Vout

100nF

10K

47K

22K

4.7K 4.7K
1nF

1nF

741

4001 4001

4069

As the 741’s output had a swing of ±13V, the CMOS logic was powered from +15V.

59Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

When this circuit was tried, a number of problems arose. Firstly, it was very reluctant to start
oscillating. The power-on reset system composed of the 100nF capacitor and 10K resistor
appeared to drop the reset signal before the components had settled down, so the system did not
always start when power was applied. The situation was improved by replacing the 100nF
capacitor with a 10µF value. This meant that there was a short delay before the system started
oscillating, but it appeared to be more reliable.

Another problem appeared to be that the system would sometimes stop oscillating for no
apparent reason. The only way to restart it was to momentarily short the 10µF capacitor,
effectively performing a power-on reset. An oscilloscope showed that there was a significant
amount of noise on the power supply rails. Inserting large numbers of decoupling capacitors
across the supply reduced this, but the unreliability persisted. One possible explanation for it is
that if a momentary drop in the power supply coincided with a high level on one of the input
pins, perhaps generated by the voltage across a capacitor, then the input would be at a higher
voltage than the power supply. It is known problem that if the input or output of a CMOS gate is
driven beyond the supply, it will go into a state known as ‘SCR latchup’, where two transistors in
a push-pull formation will both turn on, effectively shorting the power supply. This would result
in the chip getting hot and burning itself out, but in this case the supply will still be fluctuating
and will clear this problem. While this is happening the logic output of the gate could be
anything, and so the circuit is quite likely to stop oscillating.

The obvious alternative is to replace the CMOS logic gates with another family. The problem is
that the 4000 series is the only family which can handle power supplies above +7V. Reducing
the voltage to this, or to the standard TTL level of +5V would severely limit the range of output
frequencies.

When the circuit did work, it produced a reasonable square wave which did vary with the input
voltage. However, it was not possible to see how rapidly the output was changing. If a square
wave were input into the system, there would be a period after the edge of the square wave
where the output would gradually rise or fall in frequency. The assembled circuit would not
oscillate for long enough to be able to measure this, but the diagram below shows what should
happen:

Voltage

Frequency

Voltage

Input square wave

Frequency of output

Output waveform

60Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

This would cause problems at the decoding end. The other problem with this circuit is that it
requires a wider bandpass filter at the receiving end. This creates a larger frequency window
which noise can pass through. In radio systems, the noise factor comes from factors involving
the electromagnetic wave, such as diffraction and destructive interference. In a mains
transmission system, these may be present, but also present are sources which generate a regular
frequency of noise, such as motors or equipment containing electronic oscillators which leak into
the mains. In most of these applications the fundamental frequency will be much lower than the
high frequency used for transmission, but higher harmonics of the noise frequency may fall
within the transmission band.

A frequency shift keyed modulator would overcome many of these problems, as the receiving
circuit only needs to deal with two specific frequencies. Unfortunately, the only FSK modulator
circuits I could find were essentially digital in nature, and designed for generating tones for
sending down a telephone line or storing on cassette tape. This uses a 1.2 kHz signal to represent
a 0 and a 2.4 kHz signal to represent a 1. Using these frequencies directly with the mains would
be very susceptible to noise, and may cause electrical appliances to resonate audibly at these
frequencies. The problem with using two frequencies is that the attenuation caused by the mains
may be a function of the frequency. Therefore one frequency may have a greater amplitude than
the other when they are received. This means some kind of automatic gain control is required.
The AGC would have to be designed very carefully to ensure that both emerge at the same
amplitude, but if there is no signal present the AGC will not amplify the noise on the line to
make it so the same strength as the signal. The AGC would also have to adjust itself to take into
account changes in signal amplitude caused by the plugging and unplugging of electrical
appliances, which would affect the properties of the transmission line.

Some of these problems can be overcome if very tight timing is used on the digital signal. This
method is similar in principle to Morse code, where the length of a pulse is used to determine its
logic state. If a pulse is detected which has a duration not recognised as either of the two logic
states, it can be ignored, providing significant noise immunity. This means one frequency can
used, which simplifies the electronics immensely.

To test this, a derivative of the oscillator above was used, this time using TTL NOR gates, as the
oscillator here is a fully digital system:

0V

Vout

1K 1K
1nF

1nF

4001 4001 4001

0V 0V

This was intended to produce a 500 kHz square wave. This was tested, and did produce a good
square wave.

61Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Transmission filtering

This square wave cannot be sent through the mains directly, as if there was a signal being sent at
a higher frequency, the higher harmonics of the 500 kHz square wave might interfere with it.
The square wave therefore needs to be converted to a sine wave to minimise interference, and the
simplest way to do this is to filter off the higher harmonics. If a passive filter is used, it can also
form the filter which prevents the mains waveform interfering with the output driver from the
oscillator.

This application needs a reasonably sharp bandpass filter to filter out the 50 Hz mains frequency,
as well as any mains-borne noise. The best passive filter that will perform this function is a
series LC network, as shown below, as it has a small bandwidth. There is an additional benefit,
as the filter has a low output impedance, a desirable property for the output.

Vin Vout

L C

R

0V

To compensate for component tolerances, the filter must be adjustable. A variable capacitor is
easier to use than a variable inductor, so this can be used as the tuning component. The highest
value that was to hand was a 0-125pF AM tuning capacitor, which therefore determines the
inductor to be used. At 500 kHz:

f
0

= 1

2p LC

LC = 1
f
0
2p

L = 1

4p2Cf
2

0

L = 1

4p2.125×10
−12

.(500×10
3
)
2

L = 0.81 mH

This was achieved by using a 10mH and a 1mH in parallel, which gives 0.91mH. This allows
the capacitor to adjust the resonant frequency around the calculated value. At the resonant
frequency, a simplified estimate of the impedance Z is:

62Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Z = 2 × (2pf
0
L)

= 4p × 500×10
3

× 1
1

10
+ 1

1

×10
−3

= 5700W

The actual value is much more complicated to calculate, due to the phase difference between the
inductor and capacitor. To provide a good degree of filtering, a 10K resistor was chosen as R.
The output of the filter was connected to an oscilloscope, which showed that it was significantly
more like a sine wave than the input. It was not possible to tune the circuit to give a perfect sine
wave, but this does not matter too much, as the filter has greatly reduced the higher harmonics
being produced from the output. The output from a mains transformer at 12V RMS was
connected to the output of the filter, and the oscilloscope showed that very little of the 50 Hz
signal was passing through to the input. This prevents the output NOR gate being affected by a
large AC signal at its output.

When the oscillator was run and the AC voltage applied to the output of the filter, there was little
discernible difference between the output and a pure sine wave. It is likely that the transformed
mains sine wave would swamp the small high frequency output anyway.

63Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Receiver filtering

Now a signal has been imposed on the mains, it needs to be extracted at the receiving end. The
first hurdle to be overcome is to filter out the 50 Hz mains frequency. Again an LC filter is
required to filter out any noise present on the mains line. A series LC filter could be used as
before, except it has a low impedance, when it is better for the receiving end to have a high input
impedance. The alternative is to use a parallel LC filter, which does have a high input
impedance. This is shown below:

Vin Vout

LC

R

0V

The resonant frequency is the same as before, at . Therefore, the same values of1/2p LC
inductor and capacitor as before can be used. Since they are in parallel, the impedance can be
estimated by:

1
Z

= 1
2pfL

+ 2pfC

1
Z

= 1
2pfL

+
4p2f

2
CL

2pfL

Z =
2pfL

1 + 4p2f
2
CL

Z = 2858
1 + 1.12

Z = 1350W

Therefore, to minimise attenuation of the desired frequency while allowing a good range of
attenuation for other frequencies, a 470Ω resistor was used for R.

This gave an output signal of approximately 200mV peak-to-peak, of which it could be seen that
there was a considerable fluctuation due to the 50 Hz mains signal creeping through. To filter
this out, another LC filter could be used. However, the variable capacitor used is bulky and
expensive, and the system would need complicated tuning if more than one were used. In this
situation, all that is required is to filter off the mains signal. This could be performed with a high
pass active filter, but this would be operating very close to the frequency limits of the op-amp,
and a filtering circuit might generate higher harmonics which the op-amp could not respond fast
enough to. For these reasons, a simple passive RC high pass filter was chosen:

64Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Vin Vout

C

R

0V

As the current that can be supplied by the LC filter is very small, the impedance of the RC filter
needs to be as high as possible. This can be achieved by making R very large, so little current
will be drawn. 100K is a suitable value. The filter will start to attenuate at the break frequency,
and has a shallow increase in attenuation as the frequency decreases. To filter off the 50 Hz
mains frequency, but leave a wide band for the signal, a break frequency of 100 kHz was chosen.
The capacitor value can be calculated as shown below:

f
0

= 1
2pRC

C = 1
2pfR

= 1

2p × 100×10
3

× 100×10
3

= 15 pF

This could be affected by board capacitance or noise, so it was decided to reduce the resistor
value to 10K and increase the capacitor value to 150 pF.

When the RC filter was in place, it could be seen that it was filtering off a good proportion of the
50Hz mains signal, but not all of it. To remedy this, three RC filters were connected in series to
the signal:

Vin Vout

0V

10K

150pF150pF150pF

10K 10K

This virtually eliminated the 50 Hz interference, at the expense of the 500 kHz signal, which was
reduced to around 75mV peak-to-peak in size. Therefore this will need amplifying before it is
converted to a digital signal.

65Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Receiver amplification

The 75mV 500 kHz signal needs to be amplified to make it into a manageable amplitude. There
are three main types of amplifier that could be used here, op-amp, bipolar transistor or FET.
Discrete transistor circuits are more complicated than op-amp based systems, and some rely on a
particular type of transistor having particular characteristics. Therefore it was decided to use an
op-amp amplifier.

As the frequency being used is high, the standard 741 cannot be used and so high frequency
op-amps are required. As the closed loop gain of any op-amp decreases with frequency, several
op-amps are necessary, each amplifying by a small amount. The OP282 and AD711 op-amps
were chosen because they were able to operate at high frequencies and had high slew rates. The
AD711 is a video amplifier, designed for unity gain operation at high frequencies. This can be
used to buffer the signal when it has been amplified by the OP282, which is a dual op-amp.

One half of the OP282 was used in non-inverting amplifier mode to form an amplifier with gain
11:

+

−

0V

100K

10K

Vin
Vout

Power supplies of ±15V were used with all op-amps. This amplifier gave reasonable
performance, and seemed to be amplifying the signal properly. There was a considerable amount
of distortion which showed up as blurring on the oscilloscope, but it did not appear to be
significant as the main sine wave was propagating as expected. This amplifier gave an output of
about 800mV peak-to-peak at the same frequency as the input.

This needs further amplification. To do this, the other half of the OP282 was used in the same
non-inverting amplifier circuit as before. This circuit did not work properly, either giving an
erratic output or a very small one. Adding extra decoupling to the supply rails, and replacing the
OP282 chip had no effect. The input voltage to the amplifier continued to oscillate as before.

The OP282’s data sheet showed what the problem was. This device has a slew rate of 8V/µs,
while the amplifier circuit is trying to produce a 9V signal at 500 kHz. In one cycle the voltage
goes from positive to negative to positive again, so in 1µs the output has to slew 9V. This is
above that rated for the device, so this is likely to be causing the problems with the output.

The OP282 could be replaced by another type of op-amp, but it is doubtful whether cheap
op-amps would be able to give the gain needed at the frequencies required.

66Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Rethink

As well as the problems with the op-amps, the circuit would only work when one type of
transformer was being used to supply the 12V AC. Other types would cause a significant drop in
the transmission of the carrier signal. As the mains circuit in a house is constantly changing,
with devices being switched on and off, the receiver circuit would be susceptible to these
changes.

I also realised that the impedance of the transformer was causing attenuation by interfering with
the filtering circuit, and effectively filtering out the carrier signal. The method of overcoming
this problem that is used in baby alarms, which use the mains as a transmission medium, is to
add another coil to the inductor used in the filtering circuit, which converts it into a mains
transformer. As it is not possible to directly connect to the mains for the purposes of this project,
it was not possible to try this.

For these reasons, I decided to abandon the mains, and modify the circuit I had built to make it
transmit along a single wire link. The system was designed so that if direct mains connection
were possible it could easily be modified to transmit through the mains.

67Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Wire link transmitter

The frequency of the oscillator was reduced, so that problems with op-amp slew rates could be
avoided. To minimise interference between the two channels, I decided to make one channel
have a 100 kHz carrier and the other to have a 10 kHz carrier. The 10 kHz carrier could cause an
audible noise if equipment resonated at that frequency, but it is likely that, if passed through the
mains, it would be tiny compared to the 50 Hz signal. To ensure that the channels did not
interfere with each other, the two channels were built and tested simultaneously.

The 100 kHz carrier was produced using the same oscillator circuit as before, with 4.7nF
capacitors instead of 1nF capacitors. This increases the period by 4.7 times, which gives
approximately 100 kHz. As with virtually all RC oscillators, it is not possible to determine the
frequency precisely, but as long as any filters are tuned to match this output frequency the exact
value will not matter.

The 10 kHz carrier was produced by the same principle, except with 47nF capacitors. When
both of the output frequencies were displayed on an oscilloscope, they were shown to be roughly
correct. Both of the enable pins on the oscillators were taken low by wire to permanently turn
then on for the purposes of testing.

The same transmitter LC filter was used as before, although the inductor value had to be
modified for the new frequency:

f
0

= 1

2p LC

LC = 1
f
0
2p

L = 1

4p2Cf
2

0

L = 1

4p2.125×10
−12

.(10×10
3
)
2

L = 20.2 mH

The closest value to hand was a 47mH, so two were used in parallel to give 23.5mH. The
impedance of this combination can be calculated as before:

Z = 2 × (2pf
0
L)

= 4p × 100×10
3

× 23.5×10
−3

= 29500W

To produce a potential divider with a reasonable range of output voltages, a 47K resistor was
used as the resistor between the output and ground.

68Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

This was repeated for the other side of the link, which has to pass 10 kHz.

f
0

= 1

2p LC

LC = 1
f
0
2p

L = 1

4p2Cf
2

0

L = 1

4p2.125×10
−12

.(10×10
3
)
2

L = 2.02 H

This is a very large inductance, which would be expensive to make from ready made inductors as
the largest value I was able to obtain was 47mH. It would be possible to wind an inductor
specially, but without any form of accurate inductance meter, its value can only be determined by
trial and error. This is obviously not a very satisfactory solution.

The best compromise it was possible to find was to use four 47mH inductors in series to produce
a 188mH inductance. This filters off some of the high harmonics of the 10 kHz square wave,
and so prevents them interfering with the 100 kHz sine wave from the other channel. The filter
does not filter off all the harmonics, so the output is not perfectly square, but this should not
cause many problems.

The impedance of the inductor/capacitor combination is as follows:

Z = 2 × (2pf
0
L)

= 4p × 10×10
3

× 188×10
−3

= 24000W

Therefore a 47K resistor was used as with the 100 kHz transmitter.

The outputs of both of the transmitter circuits were joined together with a long length of single
core wire, to simulate a noisy connection. In practice, the signal would be carried on screened
cable, which would significantly reduce the noise problem. An oscilloscope, connected to the
wire, showed that when one transmitter was activated by taking its enable input low, the output
frequency was present on the transmission line. When both were triggered the output trace was
blurry suggesting that the oscilloscope could not lock onto either of the frequencies. This
suggests that there is a complex waveform being produced, which is difficult to detect on an
analogue oscilloscope.

69Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Wire link receiver

Now an transmission signal has been produced, its two component frequencies need to be
separated, so that they can be detected individually. Previously, another of LC filter was used as
the receive filter. This was for the mains based system, where there is a need to filter out the
50Hz sine wave, as well as any other sources of interference.

This system uses a wire link, so these extra signals should not be present. Therefore, using an
LC filter is overkill when a simpler filter could be used instead. An LC filter would be required
if this system were being converted to mains operation, but the whole filter would have to be
redesigned anyway to incorporate a transformer which also acts as the inductor in the circuit.

The simple alternative to an LC filter is to use an RC filter. These have a much greater
bandwidth than LC filters, so each section can filter off the range of frequencies containing the
unwanted carrier, leaving a frequency band containing the desired carrier frequency.

For the 100 kHz receiver, a high pass RC filter is required to remove the 10 kHz carrier. At low
frequencies, a capacitor has a high resistance, so needs to be at the top of a potential divider to
reduce the amplitude of the low frequency signals. Therefore a high pass filter is as shown
below:

Vin Vout

C

R

0V

The break frequency is given by 1/2πRC. Before, using a 100K resistor gave a very small
capacitor value. To prevent this problem, a 1K resistor was used. This means that the input
impedance of the filter is reduced, but this is necessary to give a reasonable capacitor value
which is less subject to noise and board capacitances. This can therefore be calculated:

f
0

= 1
2pRC

C = 1
2pfR

= 1

2p × 100×10
3

× 100×10
3

= 1.6 nF

The nearest value to this is 1.5nF, and so this was used.

70Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

When this circuit was connected to the transmission line, its output showed that the 100 kHz
signal was clearly visible, although it was blurred when the 10 kHz oscillator was activated.
This problem was solved before by placing a number of RC filters in series, to increase the
attenuation:

Single RC filter

0dB

f
0

Gain

Frequency

0dB

f
0

Gain

Frequency

Two RC filters in series

Two of these filters in series helped, but three removed most of the blurring from the signal,
indicating it was almost free of low frequency carrier. The output signal was about 100mV peak-
to-peak in size.

For the 10 kHz receiver, the 100 kHz carrier needs to be filtered out. This can be achieved by an
RC low pass filter. This is similar to an RC high pass filter, except with the resistor and
capacitor transposed:

Vin Vout

C

0V

R

With a high frequency input, the capacitor has a low resistance, and so pulls Vout down towards
0V, reducing the amplitude of the signal.

The break frequency of this system is again 1/2πRC. As the break frequency is lower than the
previous filter, higher value resistors can be used, which means that this circuit has a higher input
impedance, and so loads the transmission line less. To give a break frequency of 10 kHz, 10K
resistors were used. The capacitor value is then:

71Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

f
0

= 1
2pRC

C = 1
2pfR

= 1

2p × 10×10
3

× 10×10
3

= 1.6 nF

When this was constructed, it showed the same problem as before, namely blurring when both
transmitters were activated. Putting four of these filters in series solved the problem.
Presumably the problem with the output filtering from the transmitter has meant that the higher
harmonics produced have increased the blurring. The output signal was around 75mV peak-to-
peak in size.

Amplification

Both of the signals need to be amplified so they can be reasonably detected. As before, there are
three types of possible amplification circuit, op-amp, FET or bipolar transistor. For simplicity, I
decided to use an op-amp, since the problems with high frequencies encountered before are not
as important, as the transmission frequencies are lower.

To avoid problems with slew rate, the gain for each op-amp amplifier circuit should not be too
high. To amplify 75mV to a detectable 7.5V requires a gain of 100, which is potentially too
much for a single op-amp. I therefore decided to use at least two op-amps for each channel.
Since the OP282 used before has a high slew rate and good frequency response, as well as two
op-amps on one IC, this is an ideal device for this purpose.

Of the two major amplifier configurations, inverting and non-inverting, the non-inverting
amplifier has an input impedance equal to that of the IC, approximately 150MΩ, while the
inverting amplifier has an input impedance equal to that of its input resistor. 150M is a much
greater resistance than any discrete resistor, so the non-inverting amplifier will have a higher
input impedance, which is desirable as it will be drawing current from a high impedance passive
filter.

The non-inverting amplifier configuration is shown below:

+

−

0V

Rf

Ra

Vin
Vout

72Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

The gain of this amplifier is

Gain = 1 +
Rf
Ra

Therefore, to give a gain of 10, Rf must be 9 time Ra. The precise gain does not matter, so a
100K resistor can be used for Rf, and a 10K for Ra, to give a gain of 11.

This was tried with the 100 kHz signal and found to work without any problems involving the
high frequency. The other OP282 was used to amplify the 10 kHz received signal, and this also
worked.

The 100 kHz signal showed some degree of blurring on the oscilloscope, after it had emerged
from the amplifier. This was removed by using another 1K/1.5nF passive filter attached to the
amplifier’s output to filter it off. This gave a signal about 800mV in size from both of the
channels. This needs further amplification to allow digital processing of the signal.

As there was a spare op-amp on each of the OP282s, it seemed sensible to use them. They were
tried using the same non-inverting amplifier configuration with gain 11. This worked again,
producing large (about 8V peak-to-peak), relatively clean, output signals from both channels.

Signal detection

Now we have a reasonable amplitude sine wave, this has to be converted to a logic level
indicating the presence or absence of this sine wave.

There are a number of methods by which this could be achieved. A frequency-to-voltage
converter could convert this to a voltage, which could then be compared with a reference
voltage. This is not very satisfactory, as with no signal to converter will just pick up noise. A
phase locked loop (PLL) could be constructed to detect only one precise frequency. However,
PLLs are sensitive to noise, and may inadvertently lock onto the frequency from a nearby
oscillator or digital circuit.

The amplitude of noise at the receiver output when the transmitter is disabled is about 1V peak-
to-peak, compared with an 8V p-p signal. It might therefore be possible to smooth the signal
with a capacitor, as in a power supply, to give a level depending on the level of the input. If a
threshold is taken between the 1V noise and 8V signal, the two can be distinguished.

This was tested with the 100 kHz receiver. Firstly, the signal was decoupled with a 10nF
capacitor to remove any DC component. This worked, but converted the signal to ±4V, the
negative component of which would cause problems with a logic chip. Therefore the negative
component needed to be clamped with a diode. This produced a signal between 4V and −0.7V, a
signal compatible with a logic gate. The problem with this is that if the amplitude of the signal
were reduced significantly, say to ±2V, it would fall outside the threshold and so not be detected.
To remedy this, I tried using a pair of resistors acting as a bias network. As negligible current
flows through the decoupling capacitor, these resistors were used to pull the voltage after the
decoupling capacitor to around the threshold of a logic gate. CMOS logic has a threshold of
about 2.5V, so 100K and 220K resistors were used to pull the logic input to:

73Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

V =
V

0
R2

R1 + R2

= 5 × 220×10
3

100×10
3

+ 220×10
3

= 1.6V

This leaves about 1V margin for noise, while allowing signals as low as 1.5V to be detected.

The diagram of this section is shown below:

+

−

+5V

0V

10nF

100K

220K

1N4148

Gain 11 amplifier

output
Vout

This produced a reasonable output signal which oscillated around 1.5V. There was one problem
however. While the voltage was clamped to prevent it going below −0.7V, there was no upper
limit, so it would go up to about 10V with a strong signal. This would blow any logic chip
connected to Vout whcih was powered from 5V. To prevent this, the signal diode was replaced
by a 5.1V zener diode. When Vout tries to go above 10V, the diode has 5.1V across it and so
pulls it down, clamping it to 5.1V. If it tries to go below −0.7V, the diode conducts, and so
clamps it at −0.7V.

This produced a good signal, which seemed to be ready for feeding into a logic gate. The same
circuit was constructed for the 10 kHz receiver, and it appeared to be working properly.

Now the signal has to be fed into a logic gate to buffer the signal. It has to be a CMOS chip, as
TTL devices draw too much current, and the decoupling capacitor has a very small current
supplying capability. A 4069 was tried by connecting its input to Vout of the 100 kHz receiver
shown above. This caused the voltage at Vout to fall dramatically, so that the gate did not detect
it. This appears to be a symptom of the device drawing too much current. It was therefore
replaced with a 4001 with the inputs of each gate connected together, forming a quad inverter
chip. When this was tried, the output did not show a sign of any oscillation, and stayed high.
When the transmitter was turned off, the output went low. The circuit was therefore working, but
without any smoothing components. This is a little strange, but it is possible that the propagation
delay on the device is greater than the 100 kHz.

When this circuit was tried on the 10 kHz channel, the output was a noisy square wave. I tried
passing it through another NOR gate inverter, which squared it up considerably. This, however,
still needed conversion to a logic level by smoothing it. A number of capacitor values were tried,

74Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

but these all caused the signal to drop below the threshold of the CMOS gate. Finally, a large
470nF capacitor was tried between the gate output and +5V This did the trick, giving a
reasonable high logic level when the transmitter was enabled, but not taking a long time to fall to
a low logic level when the transmitter was disabled.

The data link was tested by applying a square wave to the input and examining the output
waveform. More details on this are shown in the Evaluation section, but it was found that the
most the 10 kHz side could manage was 80 Hz, while the 100 kHz side could handle 2500 Hz.

75Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Data link circuit diagram

1K
1K

4.7nF
4.7nF

4001
4001

4001

0V
0V

47nF

47nF

1K
1K

47nF
47nF

4001
4001

4001

0V
0V

47nF
47nF

47nF
47nF

0V

0V

125pF

47K

125pF47K

T
ransm

ission line

100 kH
z channel

digital in

10 kH
z channel

digital in

76Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

0V

1.5nF

1K

0V

1.5nF

1K

0V

1.5nF

1K

0V

1.5nF

10K

0V

1.5nF

10K

0V

1.5nF

10K

+−

0V

100K
10K

+−

0V

100K
10K

+−

0V

100K
10K

O
P

282

32
1

32
1

56
7

O
P

282
O

P
282

+−

0V

100K
10K

56
7

O
P

282

1.5nF

1K

+
5V

0V

10nF

100K

220K

5.1V+
5V

0V

10nF

100K

220K

5.1V

+
5V

100 kH
z channel

digital out

10 kH
z channel

digital out

470nF

77Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Remote control module

Now the master control unit and data link have been designed, there needs to be a system to
connect to the end of the data link and communicate with the master control unit. If mains
transmission were being used, this system would either be mounted in the equipment that needs
to be controlled, or in a special plug which would contain the extra electronics as well as the
standard fuse and cable clamp. This method would involve no modifications to equipment, and
could probably be performed by the householder. Since mains transmission is not possible, the
module cannot be used in this way, but it will be designed as if it can use the mains, so that the
system is as close as possible to a production system.

What is required is a system to connect to the end of the wire data link, which would be the
mains wiring in a production system, and control a device or devices under the commands sent
through the data link. Since it would be impractical to have a separate data link wire from the
master control unit for each appliance (this would be impossible with mains anyway), all the
devices have to communicate along the same length of wire. It would be very difficult for each
device to use a different carrier frequency on the data link, as this would severely limit the
maximum number of devices possible, and would require very carefully tuned circuits, which is
something that should be avoided in a production system.

The alternative is to have a simple two-way link, as has already been built, so that each device
receives all the transmitted data, and then determines whether the digital data it receives is
directed towards it. Such a system is similar to a computer network – the data is transmitted over
a few wires to all computers, but one machine ignores anything not specifically for it.

This would require some intelligence, which it is obviously not present in a simple logic system
built out logic components such as counters and shift registers. A microprocessor system similar
to the master control unit could be used, but this would be vast overkill, since all the system
needs to do is decode the data link signal and control a device, which does not take much
processing power. In addition, the microprocessor system would be very difficult to fit into the
space contained within a large mains plug.

As detailed before, another possible choice is to use a microcontroller. This is essentially an
entire microprocessor system on one IC, with a number of input and output ports. Some contain
an internal ROM or EPROM so that the chip itself can be programmed, reducing the need for
external circuitry. There are many possible devices that fit into the microcontroller category,
and, like microprocessors, each family and usually each device is unique in design, so the device
used has to be chosen from the start. Suitable families include the Motorola 68HC11, the ARM
Thumb, the Arizona Microchip PIC, the Zilog Z8 family, the SGS SG62 family and the Intel/
Philips 8031.

Of these, the Microchip PIC seems the best choice for a number of reasons. Firstly they are
extremely cheap – prices go as low as £1.89, which is not bad for the amount of computing
power that a PIC provides. Secondly, the PIC itself is reasonably powerful – executing more
instructions per second than many 8 or 16 bit computers. The amount of work done per
instruction is less, but they still have ample power for this task. Finally, the entire system is
packaged in one IC – it requires only a crystal or RC network to provide a clock, and a 2 to 6V
power supply. Of the many devices in the PIC range, the PIC16C84 was chosen because it was
an on-chip EEPROM (electrically erasable PROM) program memory, which means that software

78Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

development times are substantially shortened, as the chip can be erased instantly, instead of
waiting for up to 20 minutes for an EPROM based microcontroller to erase under ultraviolet
light. Other PIC devices have additional features such as analogue to digital converters, but the
EEPROM feature is more important for development purposes. The devices in the PIC range are
reasonably compatible with each other, so code initially written on the 16C84 could be
transferred to other devices in the range which have these other features.

The 16C84 comes in an 18 pin plastic DIP package, which will easily fit in breadboard. For
reference, the specification is shown in Appendix A, and includes a pinout diagram of the device.

The PIC was given a 5V power supply, and it /MCLR (reset) signal was pulled high with a
resistor to allow it to execute a program. The PIC has an internal power-on reset, so an external
one is not needed. Having done this, all that needs to be connected to it to make it function is an
RC or crystal oscillator to provide the clock. Since the transmission line will carry a serial signal
of some sort, an accurate timebase is essential, and this can only be provided by a crystal clock.
The 16C84 is supplied in two versions, rated at 4 and 10 MHz respectively. Since this system
will not be running very quickly, there is no need for the more expensive 10 MHz version.
Therefore a 4 MHz crystal was used in the crystal oscillator circuit below:

0V

OSC1

OSC2

16

15

4 MHz

22pF

22pF

PIC16C84

+5V

0V

1K

V
DD

V
SS

MCLR

A simple test program, shown below, signified that the PIC was working perfectly by producing
a square wave on all the pins of the Port B input/output port. The PIC was programmed in a
programmer attached to the parallel port of a computer, and then inserted into the breadboard to
be tested.

 LIST P=16C84
 MOVLW 0
 TRIS PORT_B
 OPTION
LOOP SLEEP
 INCF PORT_B,F
 GOTO LOOP
 END

79Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

PIC hardware

In addition to the simple system support hardware, extra hardware is required for this particular
application. This needs to be connected to the 13 input/output pins provided by the 16C84,
which are composed of a 5 bit port (Port A) and an 8 bit port (Port B).

Firstly, a means is require to allow each device attached to the data link to be able to recognise
that a command is for it. One possibility is to hard-wire an identification code into each PIC, so
that each device is unique. This can be done either in the main program memory or in a special
set of ID locations set aside for this purpose. The problem with this is that the devices could not
be mass produced very easily, as each one would be a slightly different. It also means the code
cannot be changed after production.

An alternative is to use a hardware method, where the PIC reads the code from external hardware
through an input port. The obvious way to do this is to use an 8 way DIP switch, providing 256
different combinations. If this were connected directly to an input port, it would occupy 8 of the
13 I/O lines, which is not ideal. A better idea is to treat the 8 bit output port like a processor bus,
and only connect the DIP switch to the 8 bit port when it is required. This can be performed with
a tristate. Since the 74LS244 was used before, there is no reason why not to use it again. The
244 has two active low enable pins, one controlling a block of 4 bits. If these are connected
together and connected to an output pin, the 8 bit DIP switch output can be connected to Port B
only when the output pin is low. For this pin, pin RA0 on Port A was chosen, as it is a general
purpose pin. The diagram of the DIP switch system is shown below:

RA0

1G 2G

RB0-RB3 1Y1-4

RB4-RB7 2Y1-4

PIC16C84
74LS244

+5V

0V

10K

1A1-4,
2A1-4

Repeated 8 times

This was tested, and did work. The switches were set to binary 7, which is the code used to
signify the immersion heater in the master control software (see later).

The other major hardware that is required is a means of controlling the electrical device itself. If
it were a resistive or inductive device, a triac could be used to give proportional control, but this
cannot be done without direct access to the mains. A system designed to work on low voltage
AC would require considerable modification to cope with mains voltages. The alternative is to
use a relay for simple on/off control. This isolates the high voltages, and the system will be able
to switch any voltage up to the maximum rating of the relay. A production system would require
proportional control, an this could be managed with a triac, but a relay will suffice for the
purposes of this project.

80Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

A relay coil requires a significant amount of current, more than a PIC output pin could supply.
To be able to switch large currents, large relays generally require 12V, which could not be
provided by the PIC anyway. Therefore, a buffer is needed between the PIC output pin and the
relay. There are many ICs which could perform this function, but this is overkill since only one
output is needed. The simplest method to do this is to use a transistor. A BFY51 NPN transistor
can handle the current drawn by a relay, and has enough current gain to be driven by a PIC
output pin. It was tried in the standard configuration shown below, including a protection diode
across the relay coil:

+12V

0V

15K
RA1

1N4001

BFY51

PIC16C84

This worked quite well, and was able to be powered by the output current from a PIC pin.

To enable the PIC and relay to be powered from a single power supply, the unit needs a voltage
regulator to convert 12V to 5V. This simplest regulator available is a single 78L05 device, which
only requires two decoupling capacitors to perform this function, and can supply 100mA. One
was connected as shown below, and found to work:

12V in 5V out

100nF1µF

IN OUT

GND

78L05

0V 0V

The only hardware left to interface with is the data link itself. The serial interfacing code (see
next section for further details) needs to use RA4 as the receive pin, and can use any pin as the
transmit pin. Since RA2 is not being used, it seems sensible to use this. The data link has a
digital input and a digital output, so they were connected directly to these I/O pins. They could
not be tested without the full serial interfacing code being present.

81Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Remote module software

The PIC in the remote module needs to be programmed to accept commands from the data link
and then decode them. Because this is mainly a hardware project, the software will not be
examined in too much detail, and so only a basic outline of it is presented here, as well as the full
source code to allow it to be inspected more thoroughly if desired.

The data link is a serial system, so a serial data stream has to be sent along it. Performing serial
communications in software is a common task for a PIC, so the manufacturers, Arizona
Microchip, have written a software routine to do this in Application Note AN555, which is freely
distributable. Since there is no point in rewriting the code myself, I have included a slightly
modified version of this code in the module software. This is clearly marked so it is possible to
determine the code I have written.

A flow chart for the software is shown below. The numbers enable sections in the source code to
be linked with this diagram.

Read ID number
from DIP switches
into memory

No data yet

Yes

No

$FF arrived

No data yet

Not received yet

Transmit ID number
on data link

Wait until byte
arrives on data

link

Wait until byte
arrives on data

link

Wait until byte $FF
arrives on data link

Is it the
same as the ID

number?

If it is less than $80
turn relay off,

otherwise turn it on

Start

➀

➁

➂

➃

➄

➅

➆

82Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Essentially, the module listens for an ID code. If it is not its own, it waits until the end of the
data packet. If it is, it controls the device and sends a byte back to the master control unit, so it
knows that the device has responded. It then waits for the end of the data packet. This allows
variable length data packets, so that, for example, an oven could be controlled by sending more
data bytes which set the temperature, control whether the fan is turned on, and so on, while this
would be ignored by all other devices.

The code is split into five chunks, four of which (are related to the serial link, and are direct
copies from Application Note AN555. The main control code for the remote control unit is
contained in MAIN.ASM, which is shown below. The other four files, which are copied from
AN555, are not shown here. Essentially they provide the routines GetChar and PutChar and
their support software.

Main routines

TITLE “Home Automation System Remote Control Unit”
SUBTITLE “Basic on/off control program, version 1.00”

Processor 16C84
Radix DEC
EXPAND

include “16Cxx.h”

; set up RS232 serial link

_ClkIn equ 4000000 ; Input Clock Frequency is 4 Mhz
_BaudRate set 75 ; Baud Rate (bits per second) is 75
_DataBits set 8 ; 8 bit data, can be 1 to 8
_StopBits set 1 ; 1 Stop Bit, 2 Stop Bits is not
implemented

#define _PARITY_ENABLE FALSE ; NO Parity
#define _ODD_PARITY FALSE ; EVEN Parity, if Parity enabled
#define _USE_RTSCTS FALSE ; NO Hardware Handshaking is Used

include “rs232.h”

; settings for remote unit

id_value equ 0x20 ; reserve memory location to
; store ID value

#define id_latch _porta,0 ; pin connected to 74LS244 enable
#define relay _porta,1 ; pin to use for relay

ORG _ResetVector
goto Start

ORG _IntVector
goto Interrupt

83Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

; Main program

Start:
movlw 0xFE ; make port A all inputs except RA0
movwf _trisa
movlw 0xFF ; make port B all inputs
movwf _trisb

movlw 0x00 ; enable 74LS244, reset rest of port ➀
movwf _porta
movf _portb,W ; read port B value into W register
movwf id_value ; store in memory
movlw 0x01 ; disable 74LS244
movwf _porta

call InitSerialPort ; set up serial port

NewCommand:

call WaitForNext ; get a byte from data link ➁
movf RxReg,w ; move byte into W

subwf id_value,W ; subtract W from ID, put in W ➂
btfsc _z ; is Z set (bytes are equal => ID is ours)
goto CommandForUs ; if so, receive command

; if not, wait until $FF is received
WaitForEnd:

call WaitForNext ; get a byte from data link ➆
movf RxReg,w ; move byte into W
sublw 0xFF ; subtract $FF from received byte
btfss _z ; is Z clear (not $FF)
goto WaitForEnd ; if not carry on waiting

goto NewCommand ; if so, wait for a new command

CommandForUs:

call WaitForNext ; get a byte from data link ➃
btfss RxReg,7 ; is it above $7F (bit 7 set)
bcf relay ; if not turn off relay

btfsc RxReg,7 ; is it above $7F (bit 7 set) ➄
bsf relay ; if so, turn on relay

movf id_value,W ; read ID value
movwf TxReg ; put it transmit register

call PutChar ; send it ➅

CommandSendingAck:
btfsc _txmtProgress ; has it finished?
goto CommandSendingAck ; if not, wait until it has

; - could do other jobs here
goto WaitForEnd ; if so, wait for end of data packet

84Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

; routine to wait for next byte to be received

WaitForNext:
call GetChar ; wait for a byte reception
btfsc _rcvOver ; _rcvOver Gets Cleared when a Byte Is

; Received (in RxReg)
goto WaitForNext ; USER can perform other jobs here,

; can poll _rcvOver bit
return

; ******* Code below this point is copied from AN555 ********

;***;
 RS-232 Routines
;;**;
 Interrupt Service Routine
;
; Only RTCC Inturrupt Is used. RTCC Inturrupt is used as timing for Serial
; Port Receive & Transmit
; Since RS-232 is implemented only as a Half Duplex System, The RTCC is
; shared by both Receive & Transmit Modules.
; Transmission :
; RTCC is setup for Internal Clock increments and
; interrupt is generated when
; RTCC overflows. Prescaler is assigned, depending on
; The INPUT CLOCK & the
; desired BAUD RATE.
; Reception :
; When put in receive mode, RTCC is setup for external
; clock mode (FALLING EDGE)
; and preloaded with 0xFF. When a Falling Edge is
; detected on RTCC Pin, RTCC
; rolls over and an Interrupt is generated (thus Start
; Bit Detect). Once the start
; bit is detected, RTCC is changed to INTERNAL CLOCK
; mode and RTCC is preloaded
; with a certain value for regular timing interrupts to
; Poll RTCC Pin (i.e RX pin).
;
;***
Interrupt:

btfss _rtif
retfie ; other interrupt, simply return &

 ; enable GIE
;
; Save Status On INT : WREG & STATUS Regs
;

movwf SaveWReg
swapf _status,w ; affects no STATUS bits : Only way OUT

 ;to save STATUS Reg ?????
movwf SaveStatus

;
btfsc _txmtProgress
goto _TxmtNextBit ; Txmt Next Bit
btfsc _rcvProgress
goto _RcvNextBit ; Receive Next Bit
goto _SBitDetected ; Must be start Bit

;
RestoreIntStatus:

swapf SaveStatus,w

85Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

movwf _status ; restore STATUS Reg
swapf SaveWReg, F ; save WREG
swapf SaveWReg,w ; restore WREG
bcf _rtif
retfie

;
;***;
;
;
; Configure TX Pin as output, make sure TX Pin Comes up in high state on
; Reset
; Configure, RX_Pin (RTCC pin) as Input, which is used to poll data on
; reception
;
; Program Memory : 9 locations
; Cycles : 10
;***

InitSerialPort:
clrf SerialStatus

bcf _rp0 ; select Page 0 for Port Access
bsf TX ; make sure TX Pin is high on

 ; powerup, use RB Port Pullup
bsf _rp0 ; Select Page 1 for TrisB access
bcf TX ; set TX Pin As Output Pin, by

 ; modifying TRIS
 if _USE_RTSCTS

bcf _RTS ; RTS is output signal,
 ; controlled by PIC16Cxx

bsf _CTS ; CTS is Input signal, controlled
 ; by the host

 endif
bsf RX_Pin ; set RX Pin As Input for

 ; reception
return

;
;***

include “txmtr.asm” ; The Transmit routines are in file
; “txmtr.asm”

include “rcvr.asm” ; The Receiver Routines are in File
; “rcvr.asm”

;***
END

86Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Master control transmitter

Since the master control unit has to send data along the transmission line at a very slow 75 bits
per second, it will spend a long time doing this, which will slow the system down. As PICs are
very cheap and simple, it seems sensible to dedicate another PIC as a transmitter, which leaves
the master control unit free to get on with other things while transmission is taking place. The
intelligence provided by the PICs also allows additional features such as error correction to be
programmed into them, which makes the data link more robust.

The power and crystal connections are similar to before, but this time the PIC needs to be
connected directly to the main control unit. The most obvious place for this is one of the 6522’s
input/output ports, which allows parallel data transmission to and from the PIC. Since the 6522’s
Port A allows automatic read and write handshaking, which means the port will automatically
generate a data strobe and an acknowledge signal when talking to another device, this seems the
better port to use, and can be connected to the PIC’s Port B. PIC I/O lines RA0 and RA1 can be
used as handshaking lines with the 6522’s to control data transfer on the bus. This leaves RA4,
which must be the serial receive line, and RA2, which can be the transmit line as before. The
last line, RA3, can be used to generate an interrupt when a serial byte is received by being
connected to the 6522’s CB1. The circuit diagram below shows these connections:

0V

OSC1

OSC2

16

15

4 MHz

22pF

22pF

PIC16C84

+5V

0V

V
DD

V
SS

MCLR
6522

PA0-PA7 RB0-RB7

RA2

RA4
Transmit
Receive

To Data
Link

RA0

RA1

CA1

CA2

RESET

RESET

RA3CB1

The reset line goes to the control unit’s master /RESET signal, so that everything is reset at the
same time.

This could not be tested without the software, which is detailed below. It is similar to that of the
remote module, as it uses the same serial transmit/receive code, but employed in a different
situation, so the main controlling code is different.

87Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

The software is outlined in the flowchart below:

Is RA1 low?

Start

➀

➁

➂

Yes

No

No

Yes

➃

➄

➅

➆

Initialise ports

Read Port B into
memory, take RA0

low

Transmit stored byte
through data link

Put byte value on
Port B

Has a
serial byte been

received?

Take RA3 low
(send interrupt to

68000)

Take RA3 high and
RA0 low (deassert
interrupt line and

acknowledge write)

Wait until RA1
is low

88Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

The listing is shown below. It uses the same serial files as before, and, to save space, the second
half of the source file has been omitted, as it contains the same code as in the remote unit’s code
listing. The omitted section is headed RS232 Routines in that listing.

TITLE “Home Automation System Master Control Unit”
SUBTITLE “Data link transceiver, version 1.00”

Processor 16C84
Radix DEC
EXPAND

include “16Cxx.h”

; set up RS232 serial link

_ClkIn equ 4000000 ; Input Clock Frequency is 4 Mhz
_BaudRate set 75 ; Baud Rate (bits per second) is 75
_DataBits set 8 ; 8 bit data, can be 1 to 8
_StopBits set 1 ; 1 Stop Bit, 2 Stop Bits is not
implemented

#define _PARITY_ENABLE FALSE ; NO Parity
#define _ODD_PARITY FALSE ; EVEN Parity, if Parity enabled
#define _USE_RTSCTS FALSE ; NO Hardware Handshaking is Used

include “rs232.h”

; settings for transceiver unit

#define CA1 _porta,0 ; define 6522 pins
#define CA2 _porta,1
#define CB1 _porta,2

ORG _ResetVector
goto Start

;

ORG _IntVector
goto Interrupt

;
; Main program

Start:

movlw 0xFF ; make port B inputs ➀
movwf _trisb
movlw 0xFF ; make all Port A high (otherwise
movwf _porta ; may cause 68K IRQ when TRIS set)
movlw 10110b ; make RA3 (CB1) and RA0 (CA1)
movwf _trisa ; outputs, rest inputs
call InitSerialPort ; set up serial port

89Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

CheckSend:
btfss CA2 ; is CA2 low (byte sent)?

goto SendTxdByte ; if so, transmit 6522 byte ➁

call GetChar ; wait for a byte reception
btfsc _rcvOver ; if nothing has been received

goto CheckSend ; carry on waiting ➃

; if something has, read it
GetRxdByte:

movf RxReg,w ; move received byte into W

movwf _portb ; and then to port B ➄
bcf CB1 ; assert CB1 (cause 68K IRQ)

WaitFor6522Ack:

btfsc CA2 ; wait for 6522 reply ➅
goto WaitFor6522Ack ; not yet? Carry on waiting..

bsf CB1 ; assert CB1 (clear IRQ)

bcf CA1 ; reply to write ➆
nop ; make sure 6522 has got it
nop
nop
nop
nop
nop
bsf CA1 ; and deassert CA1
goto CheckSend ; and now wait for next

SendTxdByte:

movf _portb,W ; read value on Port B ➂
movwf TxReg ; get ready to transmit
bcf CA1 ; signify data has been taken
call PutChar ; send it

SendingTxdByte:
btfsc _txmtProgress ; has it finished?
goto SendingTxdByte ; if not, wait until it has

bsf CA1 ; deassert acknowledge line
goto CheckSend ; if so, wait for next one

90Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Master control software

This is the main chunk of software that controls the master control unit, and so controls the entire
system. Mainly what it does is handles the menu system by sending it through the serial port. It
was not possible to use a modem, because two telephone lines would be needed for testing, but
the software would need little modification to do this. For the purposes of demonstration, only
one appliance can be controlled by the software because there is only one receiver module, but
this could easily be extended to up to 255 appliances.

The software is split into four chunks, all of which I have written and are thus included here.
The main program controls the menu system and contains most of the code. The interrupt
service routines handle interrupts generated by the various devices in the master control unit, and
are mostly separate for the main program. The exception code handles any exceptions triggered
by the 68000 by displaying a flashing pattern on the LED port. It also contains the beginnings of
an operating system, as the TRAP command is used to provide access to a number of software
routines as if they were additional instructions. In this version, the only routines present are real
time clock accessing routines, as well as a means of calling instructions that can only be
executed in supervisor mode. In a proper operating system, this would be extended to access
large numbers of routines, in a similar way to that of the INT instruction of the 8086 and the SWI
instruction of the ARM. Finally, the definitions file defines names for a number of numeric
constants, which improves the clarity of the assembly listing.

The full software listings are shown in Appendix B.

When the unit is first reset, the following menu in sent through the master control unit’s serial
port, and appears on a terminal connected to it:

This is the main menu, which contains the main control options. Of these, 4 and 5 do not do
anything in the current version of the software, but they are included to demonstrate what should
be present in a production system. 6 merely shows a display of the current time, and so this
should be improved as well.

91Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Pressing 1 leads to the Configure Menu, which currently only allows the current time to be set:

Pressing 1 here gives a series of prompts to enter the time:

Pressing 2 at the main menu allows you to control a device immediately. As only one device is
implemented is this system, only the immersion heater can be controlled.

92Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

If a number other than 7 is pressed, a message is displayed saying that there is only one device
controllable. If 7 is pressed, the user is asked whether they want to turn the device on, off, or
proportionally control it. In this example, they have pressed 3 for proportional control, and so
are prompted for a value. At present, this value is sent directly to the device, but the software
could be modified to accept it as a percentage or as a temperature, for example.

Option 3 from the main menu allows a timed event to be set. At present, the software will only
support one event to occur in the next 24 hours. It brings up the same menu as for control timed
event, so that the device can be selected. Once it has been selected, the system asks for the time
and setting for that device.

After this, the system displays the main menu again. Option 7 on the main menu would hang up
a modem if one were connected, as it sends +++ to enter modem command mode, and then ATH
to hang up the telephone line.

93Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Evaluation

In its current form, the system does work, but to produce a system for mass production would
still need a lot of work. In most areas, the hardware that has been built is sufficient for
production, but the software needs considerable improvement. Most of the limitations that
currently exist in the system exist because the software has been written to demonstrate the
hardware, and show what it could do in a production system. Many weeks or months could be
spent improving the software to bring the system up to a marketable product. In particular, much
needed features include support for modems, which I was not able to include because it needed
two telephone lines for testing, which were not available and would have generate large bills in
the process. The system should also have password protection, so that only the owner of the
house can access the system, and support for more than one timed event. The hardware is
capable of setting approximately 2,000 timed events which can be set up to 99 years ahead, but
there was no time to implement this in the software.

The microprocessor system itself seems to be quite reliable – it was left on overnight, and was
still running in the morning. This is a necessity in a system that it intending to be left running for
long periods. Also, if the system does crash while the householder is away, it may leave safety
critical devices on, such as an oven or an electric fire. If it has severely crashed, it may not come
back on line, and so the householder would not be able to turn these devices off. No evidence
was found that this would happen, and if it did because of power failure the power on reset
should clear any problems. A useful addition to the system would be a watchdog timer chip,
which has to be accessed by the system every few seconds. If this is not done, the watchdog
timer will decide the system has crashed and assert the master reset line.

The emulated EPROM was not perfectly reliable, and occasionally did not write a value
properly. After investigation, it seems that the most likely cause was the 1.8m cable which
connected the microprocessor board to the parallel port of the computer. As the signals
travelling along this cable are quite fast, they start to deteriorate after a short distance. This
would not matter in a production system, as the emulated EPROM would have to be replaced
with real EPROMs or mask programmed ROMs to ensure the program stayed intact when power
was removed.

The system occupies a large amount of board area, which would ideally be reduced in a
production system. This could be done by using 16 bit wide RAM and ROM, and employing a
processor that contains some on-chip peripherals, such as the Motorola 68300 series. The large
board area which contains just wiring could be significantly reduced by building the system on a
four or six layer PCB. As the ROM would be real ROM, there would be no need for the many
tristates used in the EPROM emulator.

The data link worked reasonably well, although it was occasionally subject to interference. This
is probably because the transmitters are driven by the output of a logic gate. Ideally, there should
be some form of power amplifier to boost the signal before it is transmitted. The receiver could
also be improved, because it currently has a fixed gain. If the transmitted signal varies in
strength, the receiver picks up these variations and this may cause the logic output signal to be
lost when the strength is low. This could be improved by adding an automatic gain control to
more greatly amplify weak signals. This would have to be very carefully designed to ensure that
it discriminated between noise and signal.

94Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Occasionally the data link would get very noisy and lose the signal altogether. The output signal
could be changed by moving different metal items above the breadboard. This seems to have
been due to the RF signals being generated interfering with other parts of the circuit, possibly
creating a feedback loop. The metal objects absorb the electromagnetic radiation produced, and
so affect the circuit. This effect could probably have been eliminated by building the
transmitters and receivers in separate metal boxes.

The data link was evaluated numerically by passing a square wave through in each direction, and
determining the maximum frequency of square wave that could be resolved. On the 10 kHz
carrier, the communications channel could handle frequencies from 0.1 to 80 Hz, while on the
100 kHz channel, it could handle from 0.1 to 2500 Hz. On both square wave outputs, there was
a blurred rising edge of the square wave, and it was this that limited the bandwidth. The most
likely cause of this is a delay in the transmission oscillator starting up, in which the output level
is unstable. This gets transmitted through the various filters and amplifiers and is converted to a
blur on the logic output. Careful filtering would be able to reduce this. As it is, the PIC does not
appear to suffer a problem with this.

As stated previously, if this were a production version, the data link would use a direct mains
connection to avoid the filtering effect of power transformers. If direct mains access were
possible in this project, I would probably have investigated one of the mains carrier transceiver
ICs designed for this purpose, such as the National Semiconductor LM1893. As it is, the system
being used for the data link could be modified for mains use, and would probably work
reasonably well if the improvements mentioned above were implemented. Mains is a much
more noisy medium than a length of wire, so sharper filtering would have to be used.

The PICs at each end of the data link seemed to be working reasonably well, although they were
occasionally susceptible to noise introduced in the data link. This could be reduced or even
eliminated from a digital point of view by adding error correction to their software. This system
is similar to that used on CD players to ignore scratches, and involves sending more data than is
required, so that the receiving system can detect if there is an error in it, and reconstruct the
original data packet from the extra information.

In summary, the system worked reasonably well for what it did, and showed that the hardware
was working and sufficient for the task, but the software needs considerable refinement if this
were to be a marketable product. The limitations of no direct mains access meant that the data
link was different to that would be used in a production system, and this would need
modification if this were to be produced commercially. A mains link is much more convenient,
because it does not need extra wiring around the home.

95Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Photographs of project

The microprocessor system

96Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

97Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

68000 CPU

16 bit LED
display

Real time clock

6821 PIA

16K EPROM emulator
Cable to programming
computer’s parallel port

Reset button
Halt button

6522 VIA

PIC interface
(added after this
photo was taken)

16K static RAM

Bus interfacing

control hardware
and system

➀

➁

➂

➀

➁

Interrupt control

➂

Serial port and baud
rate generation

Serial cable to
terminal computer

8 bit DIP switch
input port

NMI button

Keypad connected to
spare 6821 inputs

98Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

99Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Data link and remote module

Non-functional mains data link circuit

Wire data link circuit (both ends) and remote module logic board

100Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Appendix A

Excerpts from ‘M68000 Microprocessor User’s Manual’
(copyright Motorola Corporation)

101Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Bitmap removed to save space
Copy available from http://www.mot.com

102Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Bitmap removed to save space
Copy available from http://www.mot.com

Bitmap removed to save space
Copy available from http://www.mot.com

103Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

104Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Appendix B

Main program

INCLUDE x68.defs

trap_code EQU $200
interrupt_code EQU $400

INCLUDE x68.excs
INCLUDE x68.intserv4

ORG $800 * base of ROM after exception table
start

BRA main_init * main initialisation
start_init

BSR serial_init * initialise serial system
BSR pia_init * initialise PIA
BSR rtc_init * initialise clock
BSR via_init * set VIA to talk to PIC
BSR program_init

main_menu
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send
LEA mmstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for main menu, and send

MOVEQ #‘7’,D1 * maximum number to accept
BSR num_wait * wait for a character
MOVE.L D0,D2
MOVE.W #$8000,D1 * provide a small delay so that the

main_menu_char_delay * character can be seen on terminal
DBF D1,main_menu_char_delay
MOVEQ #FF,D0
BSR serial_putc * clear screen
SUB.B #‘1’,D2 * convert ASCII number into
CMP.B #0,D2 * binary
BEQ system_config
CMP.B #1,D2
BEQ control_now
CMP.B #2,D2
BEQ set_event
CMP.B #5,D2
BEQ rtc_showtime
CMP.B #6,D2
BEQ quit
BRA main_menu

quit
LEA modem_cmdmode,A0 * pointer to modem wakeup string
BSR send_string
MOVEQ #5,D1

105Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

quit_loop1
MOVE.L #$FFFF,D0 * Effectively a delay loop value

quit_loop2 * of $5FFFF
DBF D0,quit_loop2 * wait for a seconds until modem
DBF D1,quit_loop1 * responds
LEA.l modem_hangup,A0
BSR send_string * send hangup command

quit_waitfornodcd
MOVE.B ACIA_SR,D0 * get status register
BTST #2,D0 * is DCD bit high
BEQ quit_waitfornodcd * if not wait until it is
CLR D0

quit_endloop
ADDQ #1,D0
BRA quit_endloop

system_config
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send
LEA configstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for config menu, and send
MOVE.B #‘2’,D1 * maximum number to accept
BSR num_wait * get key character
MOVE.L D0,D2
MOVE.W #$8000,D1 * provide a small delay so that the

system_config_char_delay * character can be seen on terminal
DBF D1,system_config_char_delay
MOVEQ #FF,D0
BSR serial_putc * clear screen
SUB.B #‘1’,D2 * convert ASCII number into binary
CMP.B #0,D2 * if 1 pressed, set time
BEQ rtc_settime
CMP.B #1,D2 * if 2 pressed, go to main menu
BEQ main_menu
BRA system_config

num_wait * wait for a number to be entered
* must be 1 digit, between 1 and D1

BSR serial_getc * get character
BEQ num_wait * if no char ready, wait for one
CMP.B #‘1’,D0 * is it a number 1-2
BLT num_wait * if not wait for a number
CMP.B D1,D0
BGT num_wait
BSR serial_putc * send the character
RTS

rtc_settime
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers

 BSR send_stringtable * print banner
LEA clksetstrtbl,A1

 BSR send_stringtable * print title

LEA rtcsettbl,A3 * table pointing to prompt and regs
rtc_settime_loop

106Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

MOVEQ #CR,D0
BSR serial_putc
MOVEQ #LF,D0
BSR serial_putc
MOVEA.L (A3)+,A2 * get prompt ptr
MOVE.W (A3)+,D3 * get min value
MOVE.W (A3)+,D4 * get max value
BSR get_bcd_number
MOVE.W (A3)+,D1 * RTC register
MOVE.L D0,D2 * value to store
MOVE.W #Hardware_RTC_Write,D0 * call OS routine
TRAP #15
MOVE.L (A3),D0 * get next address
TST D0 * is it zero?
BNE rtc_settime_loop * if not, get next value
BRA system_config

get_bcd_number
MOVEA.L A2,A0
BSR send_string * print prompt
BSR get_line * read line
BSR.S bcdval_line * extract BCD data from line
CMP.W D3,D0
BLT.S get_bcd_number_again
CMP.W D4,D0 * is it past max value
BGT.S get_bcd_number_again
RTS

get_bcd_number_again
LEA cursorup,A0
BSR send_string
LEA wipestr,A0
BSR send_string
BRA get_bcd_number

bcdval_line * convert string pointed to by A0
MOVEM.L D1/A0,-(A7) * to BCD number
MOVE.B (A0)+,D1 * get character
CMP.B #‘0’,D1 * check it is a valid digit
BLT.S bcdval_line_err
CMP.B #‘9’,D1
BGT.S bcdval_line_err
SUB.B #‘0’,D1 * convert to binary digit
LSL.W #4,D1 * make into MSB
MOVE.W D1,D0 * put in D0
MOVE.B (A0)+,D1 * get character
CMP.B #32,D1
BLT.S bcdval_line_singdig
CMP.B #‘0’,D1 * check it is a valid digit
BLT.S bcdval_line_err
CMP.B #‘9’,D1
BGT.S bcdval_line_err
SUB.B #‘0’,D1 * convert to binary digit
OR.W D1,D0 * put in LSB of D0
AND.W #$FF,D0
MOVEM.L (A7)+,D1/A0
RTS * return value in D0

bcdval_line_err
MOVEQ #-1,D0 * return invalid result

107Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

MOVEM.L (A7)+,D1/A0
RTS

bcdval_line_singdig * if second digit is ctrl char,
LSR.W #4,D0 * treat as 1 digit
AND.W #$0F,D0
MOVEM.L (A7)+,D1/A0
RTS

control_now
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send
LEA connowstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for config menu, and send
MOVE.B #‘9’,D1 * maximum number to accept
BSR num_wait * get key character
MOVE.L D0,D2
MOVE.W #$8000,D1 * provide a small delay so that the

control_now_char_delay * character can be seen on terminal
DBF D1,control_now_char_delay
MOVEQ #FF,D0
BSR serial_putc * clear screen
SUB.B #‘1’,D2 * convert ASCII number into binary
CMP.B #8,D2 * if 9 pressed, go to main menu
BEQ main_menu
CMP.B #7,D2 * if 8 pressed, get number of other
BEQ control_now_other_device * device and control it
CMP.B #6,D2 * if 7 pressed, get number of heater
BEQ control_now_heater_device * and control it
BRA not_implemented * if other number, say isn’t

* implemented

control_now_other_device
BSR other_device
BRA control_device

control_now_heater_device
BSR heater_device
BRA control_device

not_implemented
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send
LEA notimpstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for message, and send

not_implemented_wait
BSR serial_getc
BEQ not_implemented_wait * wait for key to be pressed
BRA main_menu

other_device
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send

108Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

CLR D3 * minimum number
MOVE.W #$99,D4 * maximum number
LEA od1,A2 * get prompt
BSR get_bcd_number * get the number - should be 0-255,

* but is simpler if get_bcd is used
* therefore only 0-99 available

BSR hex_to_dec * convert to hex number in D0
RTS * return

heater_device
MOVE.W heater_dev_no,D0* read heater device number
RTS

control_device
MOVE.L D0,D6 * keep device number safe
MOVEQ #$67,D7 * code for control now
BRA set_event_get_setting * find out what to set to

control_device_now * D6=device number, D0=setting
MOVE.L D6,D1 * put number in D1
EXG.L D0,D1 * swap number and setting
BSR send_PIC_command * send command packet
BRA main_menu * then go to main menu

set_event
MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for banner, and send
LEA setevstrtbl,A1 * point to table of string pointers
BSR send_stringtable * for config menu, and send
MOVE.B #‘9’,D1 * maximum number to accept
BSR num_wait * get key character
MOVE.L D0,D2
MOVE.W #$8000,D1 * provide a small delay so that the

set_event_char_delay * character can be seen on terminal
DBF D1,set_event_char_delay
MOVEQ #FF,D0
BSR serial_putc * clear screen
SUB.B #‘1’,D2 * convert ASCII number into binary
CMP.B #8,D2 * if 9 pressed, go to main menu
BEQ main_menu
CMP.B #7,D2 * if 8 pressed, get number of other
BEQ set_event_other_device * device and control it
CMP.B #6,D2 * if 7 pressed, get number of heater
BEQ set_event_heater_device * and control it
BRA not_implemented * if other number, say isn’t

* implemented

set_event_other_device
BSR other_device
BRA set_event_get_details

set_event_heater_device
BSR heater_device
BRA set_event_get_details

set_event_get_details

MOVE.L D0,D2

109Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

MOVEQ #RTC_DEVICE_ALRM,D1 * device number byte in CMOS
MOVE.W #Hardware_RTC_Write,D0 * write it
TRAP #15

MOVEQ #FF,D0
BSR serial_putc * clear the terminal screen
LEA banstrtbl,A1 * point to table of string pointers

 BSR send_stringtable * print banner
LEA setdetstrtbl,A1

 BSR send_stringtable * print title

LEA setdettbl,A3 * table pointing to prompt and regs
set_event_get_details_loop

MOVEQ #CR,D0
BSR serial_putc
MOVEQ #LF,D0
BSR serial_putc
MOVEA.L (A3)+,A2 * get prompt ptr
MOVE.W (A3)+,D3 * get min value
MOVE.W (A3)+,D4 * get max value
BSR get_bcd_number
MOVE.W (A3)+,D1 * RTC register
MOVE.L D0,D2 * value to store
MOVE.W #Hardware_RTC_Write,D0 * call OS routine
TRAP #15
MOVE.L (A3),D0 * get next address
TST D0 * is it zero?
BNE set_event_get_details_loop * if not, get next value

set_event_get_setting
LEA newline,A0
BSR send_string * print newline
LEA devctrlstrtbl,A1
BSR send_stringtable * print menu
MOVE.B #‘3’,D1 * maximum number to accept
BSR num_wait * get key character
MOVE.L D0,D2
MOVE.W #$8000,D1 * provide a small delay so that the

set_event_get_details_char_delay * character can be seen on terminal
DBF D1,set_event_get_details_char_delay
SUB.B #‘1’,D2 * convert ASCII number into binary
CMP.B #0,D2 * if 1 pressed, turn off
BEQ set_event_gd_off
CMP.B #1,D2 * if 8 pressed, turn on
BEQ set_event_gd_on

* here 2 was pressed, so get number
LEA newline,A1
MOVEA.L A1,A0
BSR send_string

LEA value,A2
MOVEQ #0,D3
MOVE.W #$99,D4
BSR get_bcd_number
CMP #$67,D7 * control immediately?
BEQ control_device_now

set_event_store_data
MOVEQ #RTC_DATA_VALUE,D1
MOVE.L D0,D2

110Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

MOVE.W #Hardware_RTC_Write,D0
TRAP #15

set_event_enable_irq
MOVEQ #RTC_STATUS_B,D1 * RTC register B
MOVE.W #Hardware_RTC_Read,D0 * read it
TRAP #15
BSET #5,D0 * set alarm interrupt enable
MOVE.L D0,D2
MOVEQ #RTC_STATUS_B,D1 * RTC register B
MOVE.W #Hardware_RTC_Write,D0 * write it
TRAP #15
BRA main_menu

set_event_gd_off
MOVEQ #0,D0
BRA set_event_store_data

set_event_gd_on
MOVE.W #$99,D0
BRA set_event_store_data

send_PIC_command * D0 = device number, D1 = value
BSR send_PIC_byte * send D0
MOVE.L D1,D0
BSR send_PIC_byte * send D1
MOVE.W #$FF,D0
BSR send_PIC_byte * send end of packet code
RTS

send_PIC_byte
MOVE.B D0,VIA_DRA * write value to PIC through VIA
MOVE.W #$FFF,D7 * delay value

send_PIC_byte_loop * delay waiting for IRQ
DBF D7,send_PIC_byte_loop
RTS

* Initialisation section for main program

main_init
MOVE.W #$0,SR * clear status register - go into

* user mode

MOVEA.L #$43F00,A7 * set user stack pointer to
* sensible RAM address

BRA start_init * return - can’t use BSR/RTS because
* stacks have been swapped

pia_init
MOVE.B #$31,PIA_CRA * access DDRA, enable CA1

* and system interrupts
MOVE.B #$FF,PIA_DDRA * make PIA Port A outputs
MOVE.B #$00,PIA_CRB * set PB0-3 outputs,
MOVE.B #$0F,PIA_DDRB * PB4-7 inputs
MOVE.B #$04,PIA_CRB * select Peripheral Reg B
MOVE.B #$F9,PIA_PRB * other bits high, R-/W high,

* DS, AS low, /CS high
RTS * return

111Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

serial_init
MOVE.B DIN,D0 * read input port
AND.B #$7F,D0 * mask off other bits
MOVE.B D0,D1 * take copy of D0
AND.B #$7,D0 * mask only bps selector bits
MOVE.B D0,SER_BPS * set serial data rate

MOVE.B #3,ACIA_CR * Initialise 6850

MOVEQ #2,D2 * select divide by 64

BTST #3,D1 * is bit 3 of DIP switch on?
BNE.S serial_init_setdiv16 * if so select div by 16

serial_init_cont1
AND.B #$70,D1 * get word select bits
LSR.B #2,D1 * shift into correct position for

* ACIA control register
OR.B D1,D2 * OR with D2 -> D2
*OR.B #$00,D2 * CR7-5 = 101, RTS on, enable

* receive and transmit IRQs
MOVE.B D2,ACIA_CR * set control register
MOVE.B D2,SERIAL_CONFIG
CLR.W SERIAL_RX_INPTR * Reset buffer pointers
CLR.W SERIAL_RX_OUTPTR
CLR.W SERIAL_TX_INPTR
CLR.W SERIAL_TX_OUTPTR
RTS * return from subroutine

serial_init_setdiv16
MOVEQ #1,D2 * select divide by 16
BRA serial_init_cont1

rtc_init
MOVEQ #RTC_STATUS_D,D1 * RTC status register D
MOVE.W #Hardware_RTC_Read,D0 * read it
TRAP #15
MOVE.L D0,D3 * Preserve result

MOVEQ #RTC_STATUS_A,D1 * RTC status register A
MOVEQ #$00,D2 * clear it
MOVE.W #Hardware_RTC_Write,D0 * call OS routine
TRAP #15
MOVEQ #RTC_STATUS_C,D1 * RTC status register C
MOVE.W #Hardware_RTC_Read,D0 * reset interrupt flags
TRAP #15 * call OS routine
MOVEQ #RTC_STATUS_B,D1 * RTC status register B
MOVEQ #$10,D2 * set Update Interrupt Enabled
MOVE.W #Hardware_RTC_Write,D0
TRAP #15

BTST #7,D3 * is bit 7 of reg D (VRT) set?
BNE rtc_init_end * if so, don’t bother to reset time

MOVEQ #RTC_SECS,D1 * on startup, set time and date
MOVEQ #$00,D2 * to 00:00:00 on 1st January 1997
MOVE.W #Hardware_RTC_Write,D0
TRAP #15
MOVEQ #RTC_MINS,D1
MOVEQ #$00,D2
MOVE.W #Hardware_RTC_Write,D0

112Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

TRAP #15
MOVEQ #RTC_HRS,D1
MOVEQ #$00,D2
MOVE.W #Hardware_RTC_Write,D0
TRAP #15
MOVEQ #RTC_DAY,D1
MOVEQ #$1,D2
MOVE.W #Hardware_RTC_Write,D0
TRAP #15
MOVEQ #RTC_DATE,D1
MOVEQ #$1,D2
MOVE.W #Hardware_RTC_Write,D0
TRAP #15
MOVEQ #RTC_MONTH,D1
MOVEQ #$1,D2
MOVE.W #Hardware_RTC_Write,D0
TRAP #15
MOVEQ #RTC_YEAR,D1
MOVE.b #$97,D2
MOVE.W #Hardware_RTC_Write,D0
TRAP #15

rtc_init_end
 RTS

via_init * VIA initialisation
CLR.B VIA_DDRA * Make port A an input
CLR.B VIA_DDRB * Make port B an input
MOVE.B #%00001000,VIA_PCR * Select port A handshake mode
MOVE.B #%10010000,VIA_IER * Enable CB1 interrupt
RTS * Return

program_init
MOVE.L #TF_BLK,TF_START * initialise timeframe list
MOVE.L #TF_BLK,TF_END
RTS

* Miscellaneous general purpose subroutines

serial_putc
BTST #1,ACIA_SR * is port 1 ready for a character?
BEQ serial_putc * if not, wait for it
MOVE.B D0,ACIA_TR * out it goes.
RTS

serial_getc
BTST #0,ACIA_SR * is character ready?
BEQ.S serial_getc_ret * if not, return Zero status
MOVE.B ACIA_RR,D0 * else get the character
AND.B #$7F,D0 * zero out the high bit

serial_getc_ret
RTS

send_string * Send serial string pointed to by A0
MOVE.B (A0)+,D0 * get next byte
TST.B D0
BEQ send_string_return
BSR serial_putc * send it
BRA send_string * if not do next one

113Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

send_string_return
RTS

send_bcd_number
MOVE.L D1,-(A7)
MOVE.L D0,D1
LSR #4,D0
AND #$0F,D0
ADD.B #‘0’,D0
BSR serial_putc
MOVE.L D1,D0
AND #$0F,D0
ADD.B #‘0’,D0
BSR serial_putc
MOVE.L (A7)+,D1
RTS

send_stringtable * send an whole string table through
* the serial port
* on entry A1 points to table

MOVEM.L D1/A0,-(A7)
CLR D1

send_stringtable_loop
MOVEA.L (A1,D1),A0 * get address from table
CMPA #0,A0
BEQ send_stringtable_end * if zero, end procedure
BSR send_string * if not, send string
ADDQ #4,D1
BRA send_stringtable_loop

send_stringtable_end
MOVEM.L (A7)+,D1/A0 * restore registers
RTS * return

get_line * read a line, terminated by control
* character from serial port

LEA SERIAL_WORKSPACE,A0 * buffer to store string
get_line_loop

BSR serial_getc * get character
BEQ get_line_loop
CMP.B #127,D0 * is it delete/backspace
BEQ get_line_del * if so delete character
CMP.B #8,D0
BEQ get_line_del
BSR serial_putc * otherwise echo it to the terminal
MOVE.B D0,(A0)+
CMP.B #31,D0 * is it control char?
BGT get_line_loop * if not, get next
MOVE.B #0,-1(A0) * replace control char with zero
LEA SERIAL_WORKSPACE,A0 * return start of string
RTS

get_line_del
SUBQ #1,A0 * delete previous char
CMPA.L #SERIAL_WORKSPACE,A0 * is it before workspace
BLT.S get_line * if so, start again
MOVEQ #8,D0 * backspace
BSR serial_putc
MOVEQ #‘ ’,D0 * overwrite last char
BSR serial_putc
MOVEQ #8,D0 * backspace

114Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

BSR serial_putc * delete character on terminal
BRA.S get_line_loop * and delete char

rtc_sendtime
LEA tsec,A0
BSR send_string
MOVE.B RTC_SC_SECS,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA tmin,A0
BSR send_string
MOVE.B RTC_SC_MINS,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA thrs,A0
BSR send_string
MOVE.B RTC_SC_HRS,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA tday,A0
BSR send_string
MOVE.B RTC_SC_DAY,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA tdate,A0
BSR send_string
MOVE.B RTC_SC_DATE,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA tmonth,A0
BSR send_string
MOVE.B RTC_SC_MONTH,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
LEA tyear,A0
BSR send_string
MOVE.B RTC_SC_YEAR,D0
BSR send_bcd_number
LEA newline,A0
BSR send_string
RTS

rtc_showtime
 MOVEQ #FF,D0

BSR serial_putc
rtc_showloop

BSR rtc_sendtime
MOVE.W #$1000,D0

rl
DBF D0,rl
lea up,A0
BSR send_string
BSR serial_getc
BNE main_menu
BRA rtc_showloop

115Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

DC.L 0

hex_to_dec
MOVE.W D0,D1 * D0 = BCD value

* D1 = decimal result
AND.W #$F,D1 * mask off high bits
AND.W #$F0,D0 * mask off low bits of D0
LSR.W #4,D0 * make into nybble
MOVE.L D0,D2 * D2 is temp reg
LSL.W #3,D2 * D0 * 8
ADD.W D0,D2 * D0 * 8 + D0
ADD.W D0,D2 * D0 * 8 + D0 + D0 = 10 D0
ADD.W D1,D2 * add to low nybble and ret in D0
MOVE.W D2,D0
RTS

* Data and text messages

heater_dev_no
DC.W $0007 * PIC id number for heater
DCB.W 0,0

tb
DC.B ‘Home Control System’,LF,CR,LF,CR,0
DCB.W 0,0

ver
DC.B ‘Version 1.10 (9 March 1997)’,LF,CR,LF,CR,LF,CR,0
DCB.W 0,0

* Main menu options
mm
mm1 DC.B ‘1) Configure system’,LF,CR,LF,CR,0
mm2 DC.B ‘2) Control appliance now’,LF,CR,LF,CR,0
mm3 DC.B ‘3) Set timed event’,LF,CR,LF,CR,0
mm4 DC.B ‘4) List current timed events’,LF,CR,LF,CR,0
mm5 DC.B ‘5) Clear timed event’,LF,CR,LF,CR,0
mm6 DC.B ‘6) View current conditions’,LF,CR,LF,CR,0
mm7 DC.B ‘7) Goodbye’,LF,CR,LF,CR,0
gap DC.B LF,CR,0
plent DC.B ‘Please enter a number : ’,0

DC.W 0

banstrtbl
DC.L tb
DC.L ver
DC.L 0

mmstrtbl
DC.L mm1
DC.L mm2
DC.L mm3
DC.L mm4
DC.L mm5
DC.L mm6
DC.L mm7
DC.L gap
DC.L plent
DC.L 0

cs
cs1 DC.B ‘1) Set system clock’,LF,CR,LF,CR,0

116Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

cs2 DC.B ‘2) Return to main menu’,LF,CR,LF,CR,0
DC.L 0

configstrtbl
DC.L cs1
DC.L cs2
DC.L gap
DC.L plent
DC.L 0

sc
sc1 DC.B ‘Set system clock’,LF,CR,0
sc2 DC.B ‘————————’,LF,CR,0

DC.W 0

clksetstrtbl
DC.L sc1
DC.L sc2
DC.L 0

modem_cmdmode
DC.B ‘+++’,0

modem_hangup
DC.B ‘ATH’,CR,0
dc.l 0

tsec DC.B ‘Seconds: ’,0
tmin DC.B ‘Minutes: ’,0
thrs DC.B ‘Hours: ’,0
tday DC.B ‘Day of week: ’,0
tdate DC.B ‘Day of month: ’,0
tmonth DC.B ‘Month: ’,0
tyear DC.B ‘Year: 19’,0

DCB.W 0,0

rtcsettbl
DC.L tyear
DC.W $00,$99,RTC_YEAR
DC.L tmonth
DC.W $01,$12,RTC_MONTH
DC.L tdate
DC.W $01,$31,RTC_DATE
DC.L thrs
DC.W $00,$23,RTC_HRS
DC.L tmin
DC.W $00,$59,RTC_MINS
DC.L tsec
DC.W $00,$59,RTC_SECS
DC.L 0
DC.W 0,0

cn DC.B ‘Control device now’,LF,CR,0
cns DC.B ‘—————————’,LF,CR,LF,CR,0
ct1 DC.B ‘1) Central heating’,LF,CR,0
ct2 DC.B ‘2) Outside lights’,LF,CR,0
ct3 DC.B ‘3) Ground floor lights’,LF,CR,0
ct4 DC.B ‘4) Ground floor appliances’,LF,CR,0
ct5 DC.B ‘5) First floor lights’,LF,CR,0
ct6 DC.B ‘6) First floor appliances’,LF,CR,0
ct7 DC.B ‘7) Immersion heater’,LF,CR,0

117Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

ct8 DC.B ‘8) Other electrical devices’,LF,CR,LF,CR,0
ct9 DC.B ‘9) Return to main menu’,LF,CR,LF,CR,0

DCB.W 0,0

connowstrtbl
DC.L cn
DC.L cns
DC.L ct1
DC.L ct2
DC.L ct3
DC.L ct4
DC.L ct5
DC.L ct6
DC.L ct7
DC.L ct8
DC.L ct9
DC.L gap
DC.L plent
DC.L 0

se DC.B ‘Set timed event’,LF,CR,0
ses DC.B ‘———————-’,LF,CR,LF,CR,0
 DCB.W 0,0

setevstrtbl
DC.L se
DC.L ses
DC.L ct1
DC.L ct2
DC.L ct3
DC.L ct4
DC.L ct5
DC.L ct6
DC.L ct7
DC.L ct8
DC.L ct9
DC.L gap
DC.L plent
DC.L 0

DCB.W 0,0
ni1 DC.B ‘This function is not implemented in this version’,LF,CR,0
ni2 DC.B ‘of the control software. Currently, only the’,LF,CR,0
ni3 DC.B ‘immersion heater can be controlled.’,LF,CR,LF,CR,0
ni4 DC.B ‘If this system were being used commercially,’,LF,CR,0
ni5 DC.B ‘these functions would be present and the software’,LF,CR,0
ni6 DC.B ‘would be considerably refined.’,LF,CR,LF,CR,0
nip DC.B ‘Press any key to continue.’,LF,CR,0

 DCB.W 0,0
notimpstrtbl

DC.L ni1
DC.L ni2
DC.L ni3
DC.L ni4
DC.L ni5
DC.L ni6
DC.L nip
DC.L 0

118Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

DCB.W 0,0
od1 DC.B ‘Enter number of device to control: ’,0

setdetstrtbl
DC.L se
DC.L ses
DC.L 0

setdettbl
DC.L thrs
DC.W $00,$23,RTC_HRS_ALRM
DC.L tmin
DC.W $00,$59,RTC_MINS_ALRM
DC.L tsec
DC.W $00,$59,RTC_SECS_ALRM
*DC.L value
*DC.W $00,$99,$0F
DC.L 0
DC.W 0,0

dc
dc1 DC.B ‘Device control:’,LF,CR,LF,CR,0
dc2 DC.B ‘1) Device off’,LF,CR,0
dc3 DC.B ‘2) Device on’,LF,CR,0
dc4 DC.B ‘3) Proportional control’,LF,CR,0

DCB.W 0,0

devctrlstrtbl
DC.L dc1
DC.L dc2
DC.L dc3
DC.L dc4
DC.L gap
DC.L plent
DC.L 0

proptbl
DC.L value
DC.W $00,$99,$0F
DC.L 0,0

value DC.B ‘Value to send to device: ’,0
DCB.W 0,0

newline DC.B CR,LF,0

up DC.B 27,‘[1A’,27,‘[1A’,27,‘[1A’,27,‘[1A’,27,‘[1A’,27,‘[1A’,27,‘[1A’,0

wipestr DCB.B 79,‘ ’
DCB.B 79,8
DC.B 0

cursorup
DC.B 27,‘[1A’,LF,0
END start

119Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Interrupt handling code

* Interrupt service routines

ORG $70 * PIA’s interrupt vector
DC.L pia_int

ORG $74 * VIA’s interrupt vector
DC.L via_int

ORG $7C * NMI handler
DC.L memdump

ORG interrupt_code * Centrally allocated code space

int_return * general purpose return
MOVEM.L (A7)+,ALLREGS * restore regs
RTE * return

pia_int * Called on PIA interrupt
MOVEM.L ALLREGS,-(A7) * Preserve all registers on stack
MOVE.B PIA_CRA,D0 * Read PIA status register A

BTST #7,D0 * Is IRQ A set
BNE rtc_int * its an RTC interrupt
BTST #6,D0 * Is IRQ B set
NOP * its something else’s interrupt
MOVE.B PIA_CRB,D0 * Read PIA status register A
BTST #7,D0 * Is IRQ A set
NOP * its something else’s interrupt
BTST #6,D0 * Is IRQ B set
NOP * its something else’s interrupt
MOVEM.L (A7)+,ALLREGS
RTE

rtc_int
MOVE.L #Hardware_RTC_Read,D0 * read the RTC to clear interrupt
MOVE.B #RTC_STATUS_C,D1* status register C
TRAP #15 * do it
BTST #5,D0 * is it alarm interrupt?
BNE rtc_int_alarm
BTST #4,D0 * is it update interrupt?
BNE rtc_int_softcopy
MOVEM.L (A7)+,ALLREGS
RTE

rtc_int_softcopy * Copy the RTC values into RAM
MOVE.L #Hardware_RTC_Read,D0 * read the RTC seconds
MOVE.B #RTC_SECS,D1 * second register
TRAP #15 * do it
MOVE.B D0,RTC_SC_SECS * store in memory
MOVE.L #Hardware_RTC_Read,D0 * do the same for all the other
MOVE.B #RTC_SECS_ALRM,D1 * timing registers
TRAP #15
MOVE.B D0,RTC_SC_SECS_ALRM
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_MINS,D1
TRAP #15
MOVE.B D0,RTC_SC_MINS

120Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_MINS_ALRM,D1
TRAP #15
MOVE.B D0,RTC_SC_MINS_ALRM
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_HRS,D1
TRAP #15
MOVE.B D0,RTC_SC_HRS
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_HRS_ALRM,D1
TRAP #15
MOVE.B D0,RTC_SC_HRS_ALRM
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_DAY,D1
TRAP #15
MOVE.B D0,RTC_SC_DAY
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_DATE,D1
TRAP #15
MOVE.B D0,RTC_SC_DATE
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_MONTH,D1
TRAP #15
MOVE.B D0,RTC_SC_MONTH
MOVE.L #Hardware_RTC_Read,D0
MOVE.B #RTC_YEAR,D1
TRAP #15
MOVE.B D0,RTC_SC_YEAR
MOVEM.L (A7)+,ALLREGS
RTE

rtc_int_alarm
MOVE.W #Hardware_RTC_Read,D0 * read status register
MOVEQ #RTC_STATUS_B,D1
TRAP #15

BCLR #5,D0 * clear alarm bit - disable

MOVE.L D0,D2 * alarm interrupts
MOVE.W #Hardware_RTC_Write,D0 * write status register
MOVEQ #RTC_STATUS_B,D1
TRAP #15

MOVE.W #Hardware_RTC_Read,D0 * read device number
MOVEQ #RTC_DEVICE_ALRM,D1
TRAP #15

MOVE.L D0,D7
MOVE.W #Hardware_RTC_Read,D0 * read setting
MOVEQ #RTC_DATA_VALUE,D1
TRAP #15

* now D7 = device to write
* and D0 = value to write to it

MOVE.L D0,D1 * put values in correct registers
MOVE.L D7,D0

BSR send_PIC_command * send to PIC

MOVEM.L (A7)+,ALLREGS
RTE

121Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

via_int
MOVEM.L ALLREGS,-(A7) * Preserve all registers on stack
MOVE.B VIA_IFR,D0 * Read VIA interrupt flags
BTST #4,D0 * Has CB1 interrupt occurred?
BNE via_cb1_int * Handle it
BTST #2,D0 * Has CA1 interrupt occurred?
BNE via_ca1_int * Handle it
MOVEM.L (A7)+,ALLREGS * If neither, return
RTE

via_ca1_int
MOVE.B VIA_DRA,D0 * Read register and clear interrupt
MOVEM.L (A7)+,ALLREGS * then return
RTE

via_cb1_int
MOVE.B VIA_DRB,D0 * Read register and clear interrupt

* from 6522
MOVE.B VIA_PCR,D0 * Read current contents of PCR
MOVE.B D0,D1 * Preserve it
BSET #3,D0
BSET #2,D0 * Take CA2 low
BCLR #1,D0
MOVE.B D0,VIA_PCR * do it - clears PIC interrupt

 MOVEQ #$7F,D7
via_cb1_int_delay

DBF D7,via_cb1_int_delay * short delay loop

MOVE.B D1,VIA_PCR * reset to original status
MOVEM.L (A7)+,ALLREGS * then return
RTE

memdump
MOVEM.L ALLREGS,-(A7) * Preserve registers on stack
LEA $0,A0 * address to start at

memdump_loop1
MOVE.B (A0)+,D0 * get byte from memory
MOVE.B D0,ACIA_TR * transmit byte

memdump_get_tdre1
MOVE.B ACIA_SR,D1 * get ACIA status
BTST #1,D1 * is Tx data reg empty
BEQ memdump_get_tdre1 * if not wait until is
CMPA.L #$4000,A0 * is end of ROM
BNE memdump_loop1 * if not loop round
LEA $40000,A0 * address to start at

memdump_loop2
MOVE.B (A0)+,D0 * get byte from memory
MOVE.B D0,ACIA_TR * transmit byte

memdump_get_tdre2
MOVE.B ACIA_SR,D1 * get ACIA status
BTST #1,D1 * is Tx data reg empty
BEQ memdump_get_tdre2 * if not wait until is
CMPA.L #$44000,A0 * is end of ROM
BNE memdump_loop2 * if not loop round
MOVEM.L (A7)+,ALLREGS * Restore stacked registers
RTE * and return

122Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Exception handling code

ORG $0
DC.L $44000 * full descending supervisor stack

* pointer
DC.L start * code address to call

DC.L $108 * exception vector table
DC.L $10C * - all point to routine to set
DC.L $110 * D0 to vector number then flash
DC.L $114 * it on the LEDs
DC.L $118
DC.L $11C
DC.L $120
DC.L $124
DC.L $128
DC.L $12C
DC.L $130
DC.L $134
DC.L $138
DC.L $13C
DC.L $140
DC.L $144
DC.L $148
DC.L $14C
DC.L $150
DC.L $154
DC.L $158
DC.L $15C
DC.L $160
DC.L $164
DC.L $168
DC.L $16C
DC.L $170
DC.L $174
DC.L $178
DC.L $17C

trap0vector
DC.L trap0 * TRAP #0 handler - OS routines
DC.L trap * Simple trap handler - just return
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap
DC.L trap

trap15vector
DC.L trap15 * TRAP #15 handler - hardware accesses

 ORG $108 * code to set D0 to exception
MOVEQ #$8,D0 * vector number as pointed to above

123Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

BRA.S exception
MOVEQ #$C,D0
BRA.S exception
MOVEQ #$10,D0
BRA.S exception
MOVEQ #$14,D0
BRA.S exception
MOVEQ #$18,D0
BRA.S exception
MOVEQ #$1C,D0
BRA.S exception
MOVEQ #$20,D0
BRA.S exception
MOVEQ #$24,D0
BRA.S exception
MOVEQ #$28,D0
BRA.S exception
MOVEQ #$2C,D0
BRA.S exception
MOVEQ #$30,D0
BRA.S exception
MOVEQ #$34,D0
BRA.S exception
MOVEQ #$38,D0
BRA.S exception
MOVEQ #$3C,D0
BRA.S exception
MOVEQ #$40,D0
BRA.S exception
MOVEQ #$44,D0
BRA.S exception
MOVEQ #$48,D0
BRA.S exception
MOVEQ #$4C,D0
BRA.S exception
MOVEQ #$50,D0
BRA.S exception
MOVEQ #$54,D0
BRA.S exception
MOVEQ #$58,D0
BRA.S exception
MOVEQ #$5C,D0
BRA.S exception
MOVEQ #$60,D0
BRA.S exception
MOVEQ #$64,D0
BRA.S exception
MOVEQ #$68,D0
BRA.S exception
MOVEQ #$6C,D0
BRA.S exception
MOVEQ #$70,D0
BRA.S exception
MOVEQ #$74,D0
BRA.S exception
MOVEQ #$78,D0
BRA.S exception
MOVEQ #$7C,D0
NOP * Should be at $180 by now

124Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

ORG $180
exception

MOVE #$2600,SR * Only allow NMI
MOVE.B D0,D4 * preserve exception no.
MOVE.B D0,DOUT_H * write exception code on high LEDs
MOVE.B #-1,D0 * initial value to store on low LEDs

excep_loop
MOVE.B D0,DOUT_L * store on low LEDs
NOT D0 * invert D0
MOVE.W #$FFFF,D1 * loop variable

* byte
excep_time_loop

DBF D1,excep_time_loop * decrement and loop (waste time)

BRA.S excep_loop

excep_serial_send
SUB #1,D2 * decrement D2
CMP #14,D2 * is it first byte
BEQ excep_serial_send_excep * if so send exception number
MOVE.B (A7)+,D3 * get next byte of stack frame
MOVE.B D3,ACIA_TR * transmit it
BRA excep_time_loop

excep_serial_send_excep
MOVE.B D4,ACIA_TR * transmit exception number
BRA excep_time_loop

ORG trap_code

trap * Temporary code to handle TRAPs
RTE * Simply return

trap0 * Basic operating system support
* D0 contains the number of
* the routine to call

CMP.B #OS_Reset,D0 * OS_Reset
BEQ OS_Reset_Code *
CMP.B #OS_Stop,D0 * OS_Stop
BEQ OS_Stop_Code *
RTE * Unknown TRAP #0

trap15 * Handle hardware accesses
* All should be passed through here,
* so that the same code will work
* on different systems
* D0 is the number of the routine
* to be called - bits 8-15 signify
* number of device being accessed.

CMP.W #Hardware_RTC_Read,D0
BEQ Hardware_RTC_Read_Code * access real time clock
CMP.W #Hardware_RTC_Write,D0
BEQ Hardware_RTC_Write_Code * access real time clock
RTE * Unknown TRAP #0

OS_Reset_Code * Go into SVC mode and do a reset
RESET
RTE * For completeness - will never get

* here

OS_Stop_Code * Go into SVC mode and halt

125Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

STOP #$0 * STOP in user mode - allow all IRQs
RTE * For completeness - will never get

* here

Hardware_RTC_Read_Code * on entry D1 = register number
* to read
* on exit D0 = register value

MOVE.B #$31,PIA_CRA * select PIA DDRA
MOVE.B #$FF,PIA_DDRA * make Port A outputs
MOVE.B #$04,PIA_CRB * select PIA Periph Reg B
MOVE.B #$35,PIA_CRA * select PIA Periph Reg A (keep CA1

* interrupts enabled)
MOVE.B D1,PIA_PRA * output address on Port A
MOVE.B #$F3,PIA_PRB * other bits high, enable chip,

* assert AS, read mode
MOVE.B #$F1,PIA_PRB * negate AS - must be 135ns between

* instructions for this to work
* without an extra delay

MOVE.B #$31,PIA_CRA * select DDRA
MOVE.B #$00,PIA_DDRA * make port A inputs
MOVE.B #$35,PIA_CRA * select Periph Reg A
MOVE.B #$F5,PIA_DDRB * other bits high, enable chip,

* read mode, assert DS
MOVE.B PIA_PRA,D0 * read data from Port A into D0
MOVE.B #$F9,PIA_PRB * other bits high, disable RTC,read
RTE * return from exception

Hardware_RTC_Write_Code * on entry D1 = register number
* to write
* D2 = value to write

MOVE.B #$31,PIA_CRA * select PIA DDRA
MOVE.B #$FF,PIA_DDRA * make Port A outputs
MOVE.B #$04,PIA_CRB * select PIA Periph Reg B
MOVE.B #$35,PIA_CRA * select PIA Periph Reg A (keep CA1

* interrupts enabled)
MOVE.B D1,PIA_PRA * output address on Port A
MOVE.B #$F2,PIA_PRB * other bits high, enable chip,

* assert AS, write mode
MOVE.B #$F0,PIA_PRB * negate AS - must be 135ns between

* instructions for this to work
* without an extra delay

MOVE.B #$31,PIA_CRA * select DDRA
MOVE.B #$FF,PIA_DDRA * make port A outputs
MOVE.B #$35,PIA_CRA * select Periph Reg A
MOVE.B D2,PIA_PRA * write data from D2 to Port A
MOVE.B #$F4,PIA_PRB * other bits high, enable chip,

* write mode, assert DS
MOVE.B #$F9,PIA_PRB * other bits high, disable RTC, read
RTE * return from exception

126Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Definitions file

* Definitions for 68k based home automation system

* Register sets

ALLREGS REG D0-D7/A0-A6 * Register set for all registers
DATAREGS REG D0-D7 * Data register set
ADRREGS REG A0-A6 * GP Address registers
ALLADRREGS REG A0-A7 * All Address registers

* Hardware addresses

IO_BASE EQU $80000 * Allow shifting of IO space

ACIA EQU IO_BASE+$000
ACIA_SR EQU IO_BASE+$000 * Status register - read only
ACIA_CR EQU IO_BASE+$000 * Control register - write only
ACIA_RR EQU IO_BASE+$002 * Receive register - read only
ACIA_TR EQU IO_BASE+$002 * Transmit register- write only
SER_BPS EQU IO_BASE+$004 * Serial BPS and control lines

PIA EQU IO_BASE+$200
PIA_PRA EQU IO_BASE+$200 * Peripheral register A (CRA bit 2 set)
PIA_DDRA EQU IO_BASE+$200 * Data direction register A (CRA bit 2 clear)
PIA_CRA EQU IO_BASE+$202 * Control register A
PIA_PRB EQU IO_BASE+$204 * Peripheral register B (CRB bit 2 set)
PIA_DDRB EQU IO_BASE+$204 * Data direction register B (CRB bit 2 clear)
PIA_CRB EQU IO_BASE+$206 * Control register B

VIA EQU IO_BASE+$300
VIA_DRB EQU IO_BASE+$300 * Data register B
VIA_DRA EQU IO_BASE+$302 * Data register A
VIA_DDRB EQU IO_BASE+$304 * Data direction register B
VIA_DDRA EQU IO_BASE+$306 * Data direction register A
VIA_T1CL EQU IO_BASE+$308 * T1 Low counter
VIA_T1CH EQU IO_BASE+$30A * T1 High counter
VIA_T1LL EQU IO_BASE+$30C * T1 Low latches
VIA_T1LH EQU IO_BASE+$30E * T1 High latches
VIA_T2CL EQU IO_BASE+$310 * T2 Low counter
VIA_T2CH EQU IO_BASE+$312 * T2 High counter
VIA_SR EQU IO_BASE+$314 * Shift Register
VIA_ACR EQU IO_BASE+$316 * Auxiliary Control Register
VIA_PCR EQU IO_BASE+$318 * Peripheral Control Register
VIA_IFR EQU IO_BASE+$31A * Interrupt Flag Register
VIA_IER EQU IO_BASE+$31C * Interrupt Enable Register
VIA_NHDRA EQU IO_BASE+$31E * No Handshake DRA

DIN EQU IO_BASE+$600 * Digital In
DOUT EQU IO_BASE+$600 * Digital Out
DOUT_H EQU IO_BASE+$600 * Digital Out - high byte
DOUT_L EQU IO_BASE+$601 * Digital Out - low byte

RTC_SECS EQU $00 * Real Time Clock internal addresses
RTC_SECS_ALRM EQU $01
RTC_MINS EQU $02
RTC_MINS_ALRM EQU $03
RTC_HRS EQU $04
RTC_HRS_ALRM EQU $05

127Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

RTC_DAY EQU $06
RTC_DATE EQU $07
RTC_MONTH EQU $08
RTC_YEAR EQU $09
RTC_STATUS_A EQU $0A
RTC_STATUS_B EQU $0B
RTC_STATUS_C EQU $0C
RTC_STATUS_D EQU $0D
RTC_DATE_ALRM EQU $0E
RTC_MONTH_ALRM EQU $0F
RTC_YEAR_ALRM EQU $10

RTC_DEVICE_ALRM EQU $0E
RTC_DATA_VALUE EQU $0F

* Software interrupt numbers

OS_Reset EQU $0 * SWI number
OS_Stop EQU $1

Serial_GetByte EQU $0
Serial_PutByte EQU $1
Hardware_RTC_Write EQU $900
Hardware_RTC_Read EQU $901

* RAM allocations

RAM_BASE EQU $40000 * Allow shifting of RAM space

SERIAL_BUFLEN EQU $FF * Size of receive and transmit buffers
SERIAL_STATUS EQU RAM_BASE+$000 * Store serial status on IRQ
SERIAL_RX_INPTR EQU RAM_BASE+$002 * Pointer to store incoming data at
SERIAL_RX_OUTPTR EQU RAM_BASE+$004 * Pointer to read from
SERIAL_TX_INPTR EQU RAM_BASE+$006 * Pointer to write to
SERIAL_TX_OUTPTREQU RAM_BASE+$008 * Pointer to outputting data
SERIAL_RX_OVERFLOW EQU RAM_BASE+$00A * Flag to show if overflows
SERIAL_TX_OVERFLOW EQU RAM_BASE+$00C * Flag to show if overflows
SERIAL_CONFIG EQU RAM_BASE+$00E
SERIAL_WORKSPACE EQU RAM_BASE+$980 * Workspace for string processing
SERIAL_INBUF EQU RAM_BASE+$1000 * Serial input buffer
SERIAL_OUTBUF EQU SERIAL_INBUF+SERIAL_BUFLEN * Serial output buffer
SERIAL_INEND EQU SERIAL_OUTBUF-2
SERIAL_OUTEND EQU SERIAL_INBUF+SERIAL_BUFLEN - 2

RTC_SC_SECS EQU RAM_BASE+$010 * Soft copy of Real Time Clock
RTC_SC_SECS_ALRM EQU RAM_BASE+$011
RTC_SC_MINS EQU RAM_BASE+$012
RTC_SC_MINS_ALRM EQU RAM_BASE+$013
RTC_SC_HRS EQU RAM_BASE+$014
RTC_SC_HRS_ALRM EQU RAM_BASE+$015
RTC_SC_DAY EQU RAM_BASE+$016
RTC_SC_DATE EQU RAM_BASE+$017
RTC_SC_MONTH EQU RAM_BASE+$018
RTC_SC_YEAR EQU RAM_BASE+$019

TF_BLK EQU RAM_BASE+$1200 * Block to hold timeframes
TF_BLK_END EQU RAM_BASE+$2000 * allow plenty of space
TF_START EQU RAM_BASE+$020 * Pointer to first
TF_END EQU RAM_BASE+$022 * Pointer to last

128Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

TF_TIME EQU $0 * Offset into timeframe
TF_DEVICE EQU $4
TF_ACTION EQU $6
TF_LEN EQU $A * Length of timeframe block

* Miscellaneous definitions

LF EQU 10
FF EQU 12
CR EQU 13

129Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Bibliography and References

Motorola, “Motorola Semiconductor Master Selection Guide”, Tenth Revision, Motorola Inc.,
Phoenix, Arizona, 1996.

Motorola Semiconductor Products Sector,“M68000 User’s Manual”, Ninth Edition, Motorola
Inc., Tempe, Arizona, 1994.

Motorola, “M68000 Family Programmer’s Reference Manual”, First Revision, Motorola Inc.,
Phoenix, Arizona, 1992.

Mike Tooley, “Newnes 68000 Family Pocket Book”, Newnes, Oxford, 1992.

Mike Tooley, “Newnes Computer Engineer’s Pocket Book”, Fourth Edition, Newnes, Oxford,
1996.

Motorola Logic Integrated Circuits Division, “FAST and LS TTL Data”, Fifth Edition, Motorola
Inc., Phoenix, Arizona, 1992.

National Semiconductor, “National Application Specific Analog Products Databook”, 1995
Edition, National Semiconductor Corporation, Santa Clara, California, 1995.

Paul Horowitz, Winfield Hill, “The Art of Electronics”, Second Edition, Cambridge University
Press, Cambridge, UK, 1989.

Acorn Computers Ltd, “Acorn Risc PC Welcome Guide”, Issue 1, Acorn Computers Ltd,
Cambridge, UK, 1994.

M. W. Brimicombe, “Electronic Systems”, Thomas Nelson and Sons, Walton-on-Thames, UK,
1985.

Mark Ward, “Digital data comes down the mains”, Technology, New Scientist, 18 January 1997.

“Remote control of your home energy”, The Messenger, 12 February 1997.

Internet comp.home.automation newsgroup frequently asked questions list (X10 section).

Data sheets on MC68000, MC146818A, MC6821, MC6840, MC6845, MC6850, MC6854,
W65C22S, MAX1691, MAX665, MAX1232, MAX238CNG, R6502, PIC16C84, OP282.

Amar Palacherla, “Application Note AN555: Software Implementation of Asynchronous Serial
I/O for PIC16CXX”, Arizona Microchip, Chandler, Arizona, 1995.

130Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

Acknowledgements

Semiconductor data generously supplied free of charge by Motorola Inc., Maxim Integrated
Products (UK) Ltd, The Western Design Center, Inc. (Mesa, Arizona), Analog Devices Inc.,
Arizona Microchip Corp., United Microsystems Corp., Rockwell Inc., and National
Semiconductor Corp.

Free IC samples supplied by Maxim Integrated Products (UK) Ltd.

68000 assembler and simulator software written and made freely available by Paul McKee and
Marwan Shaban, North Carolina State University.

PIC programmer hardware design and programming software by David Tait, Manchester
University.

RS Components
Rapid Electronics
Farnell Components
HB Electronics

Mr LM Holland
Mr ATJ Evans

131Copyright Theo Markettos 1997. This may be used for educational and non-profit making purposes
only. The author may be reached at theomarkettos@letterbox.com

